xref: /aosp_15_r20/external/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2010 Jitse Niesen <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_TRIDIAGONALIZATION_H
12 #define EIGEN_TRIDIAGONALIZATION_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19 template<typename MatrixType>
20 struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
21   : public traits<typename MatrixType::PlainObject>
22 {
23   typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
24   enum { Flags = 0 };
25 };
26 
27 template<typename MatrixType, typename CoeffVectorType>
28 EIGEN_DEVICE_FUNC
29 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
30 }
31 
32 /** \eigenvalues_module \ingroup Eigenvalues_Module
33   *
34   *
35   * \class Tridiagonalization
36   *
37   * \brief Tridiagonal decomposition of a selfadjoint matrix
38   *
39   * \tparam _MatrixType the type of the matrix of which we are computing the
40   * tridiagonal decomposition; this is expected to be an instantiation of the
41   * Matrix class template.
42   *
43   * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
44   * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
45   *
46   * A tridiagonal matrix is a matrix which has nonzero elements only on the
47   * main diagonal and the first diagonal below and above it. The Hessenberg
48   * decomposition of a selfadjoint matrix is in fact a tridiagonal
49   * decomposition. This class is used in SelfAdjointEigenSolver to compute the
50   * eigenvalues and eigenvectors of a selfadjoint matrix.
51   *
52   * Call the function compute() to compute the tridiagonal decomposition of a
53   * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
54   * constructor which computes the tridiagonal Schur decomposition at
55   * construction time. Once the decomposition is computed, you can use the
56   * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
57   * decomposition.
58   *
59   * The documentation of Tridiagonalization(const MatrixType&) contains an
60   * example of the typical use of this class.
61   *
62   * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
63   */
64 template<typename _MatrixType> class Tridiagonalization
65 {
66   public:
67 
68     /** \brief Synonym for the template parameter \p _MatrixType. */
69     typedef _MatrixType MatrixType;
70 
71     typedef typename MatrixType::Scalar Scalar;
72     typedef typename NumTraits<Scalar>::Real RealScalar;
73     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
74 
75     enum {
76       Size = MatrixType::RowsAtCompileTime,
77       SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
78       Options = MatrixType::Options,
79       MaxSize = MatrixType::MaxRowsAtCompileTime,
80       MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
81     };
82 
83     typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
84     typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
85     typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
86     typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
87     typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
88 
89     typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
90               typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
91               const Diagonal<const MatrixType>
92             >::type DiagonalReturnType;
93 
94     typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
95               typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
96               const Diagonal<const MatrixType, -1>
97             >::type SubDiagonalReturnType;
98 
99     /** \brief Return type of matrixQ() */
100     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
101 
102     /** \brief Default constructor.
103       *
104       * \param [in]  size  Positive integer, size of the matrix whose tridiagonal
105       * decomposition will be computed.
106       *
107       * The default constructor is useful in cases in which the user intends to
108       * perform decompositions via compute().  The \p size parameter is only
109       * used as a hint. It is not an error to give a wrong \p size, but it may
110       * impair performance.
111       *
112       * \sa compute() for an example.
113       */
114     explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
115       : m_matrix(size,size),
116         m_hCoeffs(size > 1 ? size-1 : 1),
117         m_isInitialized(false)
118     {}
119 
120     /** \brief Constructor; computes tridiagonal decomposition of given matrix.
121       *
122       * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
123       * is to be computed.
124       *
125       * This constructor calls compute() to compute the tridiagonal decomposition.
126       *
127       * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
128       * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
129       */
130     template<typename InputType>
131     explicit Tridiagonalization(const EigenBase<InputType>& matrix)
132       : m_matrix(matrix.derived()),
133         m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
134         m_isInitialized(false)
135     {
136       internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
137       m_isInitialized = true;
138     }
139 
140     /** \brief Computes tridiagonal decomposition of given matrix.
141       *
142       * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
143       * is to be computed.
144       * \returns    Reference to \c *this
145       *
146       * The tridiagonal decomposition is computed by bringing the columns of
147       * the matrix successively in the required form using Householder
148       * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
149       * the size of the given matrix.
150       *
151       * This method reuses of the allocated data in the Tridiagonalization
152       * object, if the size of the matrix does not change.
153       *
154       * Example: \include Tridiagonalization_compute.cpp
155       * Output: \verbinclude Tridiagonalization_compute.out
156       */
157     template<typename InputType>
158     Tridiagonalization& compute(const EigenBase<InputType>& matrix)
159     {
160       m_matrix = matrix.derived();
161       m_hCoeffs.resize(matrix.rows()-1, 1);
162       internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
163       m_isInitialized = true;
164       return *this;
165     }
166 
167     /** \brief Returns the Householder coefficients.
168       *
169       * \returns a const reference to the vector of Householder coefficients
170       *
171       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
172       * the member function compute(const MatrixType&) has been called before
173       * to compute the tridiagonal decomposition of a matrix.
174       *
175       * The Householder coefficients allow the reconstruction of the matrix
176       * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
177       *
178       * Example: \include Tridiagonalization_householderCoefficients.cpp
179       * Output: \verbinclude Tridiagonalization_householderCoefficients.out
180       *
181       * \sa packedMatrix(), \ref Householder_Module "Householder module"
182       */
183     inline CoeffVectorType householderCoefficients() const
184     {
185       eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
186       return m_hCoeffs;
187     }
188 
189     /** \brief Returns the internal representation of the decomposition
190       *
191       *	\returns a const reference to a matrix with the internal representation
192       *	         of the decomposition.
193       *
194       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
195       * the member function compute(const MatrixType&) has been called before
196       * to compute the tridiagonal decomposition of a matrix.
197       *
198       * The returned matrix contains the following information:
199       *  - the strict upper triangular part is equal to the input matrix A.
200       *  - the diagonal and lower sub-diagonal represent the real tridiagonal
201       *    symmetric matrix T.
202       *  - the rest of the lower part contains the Householder vectors that,
203       *    combined with Householder coefficients returned by
204       *    householderCoefficients(), allows to reconstruct the matrix Q as
205       *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
206       *    Here, the matrices \f$ H_i \f$ are the Householder transformations
207       *       \f$ H_i = (I - h_i v_i v_i^T) \f$
208       *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
209       *    \f$ v_i \f$ is the Householder vector defined by
210       *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
211       *    with M the matrix returned by this function.
212       *
213       * See LAPACK for further details on this packed storage.
214       *
215       * Example: \include Tridiagonalization_packedMatrix.cpp
216       * Output: \verbinclude Tridiagonalization_packedMatrix.out
217       *
218       * \sa householderCoefficients()
219       */
220     inline const MatrixType& packedMatrix() const
221     {
222       eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
223       return m_matrix;
224     }
225 
226     /** \brief Returns the unitary matrix Q in the decomposition
227       *
228       * \returns object representing the matrix Q
229       *
230       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
231       * the member function compute(const MatrixType&) has been called before
232       * to compute the tridiagonal decomposition of a matrix.
233       *
234       * This function returns a light-weight object of template class
235       * HouseholderSequence. You can either apply it directly to a matrix or
236       * you can convert it to a matrix of type #MatrixType.
237       *
238       * \sa Tridiagonalization(const MatrixType&) for an example,
239       *     matrixT(), class HouseholderSequence
240       */
241     HouseholderSequenceType matrixQ() const
242     {
243       eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
244       return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
245              .setLength(m_matrix.rows() - 1)
246              .setShift(1);
247     }
248 
249     /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
250       *
251       * \returns expression object representing the matrix T
252       *
253       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
254       * the member function compute(const MatrixType&) has been called before
255       * to compute the tridiagonal decomposition of a matrix.
256       *
257       * Currently, this function can be used to extract the matrix T from internal
258       * data and copy it to a dense matrix object. In most cases, it may be
259       * sufficient to directly use the packed matrix or the vector expressions
260       * returned by diagonal() and subDiagonal() instead of creating a new
261       * dense copy matrix with this function.
262       *
263       * \sa Tridiagonalization(const MatrixType&) for an example,
264       * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
265       */
266     MatrixTReturnType matrixT() const
267     {
268       eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
269       return MatrixTReturnType(m_matrix.real());
270     }
271 
272     /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
273       *
274       * \returns expression representing the diagonal of T
275       *
276       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
277       * the member function compute(const MatrixType&) has been called before
278       * to compute the tridiagonal decomposition of a matrix.
279       *
280       * Example: \include Tridiagonalization_diagonal.cpp
281       * Output: \verbinclude Tridiagonalization_diagonal.out
282       *
283       * \sa matrixT(), subDiagonal()
284       */
285     DiagonalReturnType diagonal() const;
286 
287     /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
288       *
289       * \returns expression representing the subdiagonal of T
290       *
291       * \pre Either the constructor Tridiagonalization(const MatrixType&) or
292       * the member function compute(const MatrixType&) has been called before
293       * to compute the tridiagonal decomposition of a matrix.
294       *
295       * \sa diagonal() for an example, matrixT()
296       */
297     SubDiagonalReturnType subDiagonal() const;
298 
299   protected:
300 
301     MatrixType m_matrix;
302     CoeffVectorType m_hCoeffs;
303     bool m_isInitialized;
304 };
305 
306 template<typename MatrixType>
307 typename Tridiagonalization<MatrixType>::DiagonalReturnType
308 Tridiagonalization<MatrixType>::diagonal() const
309 {
310   eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
311   return m_matrix.diagonal().real();
312 }
313 
314 template<typename MatrixType>
315 typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
316 Tridiagonalization<MatrixType>::subDiagonal() const
317 {
318   eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
319   return m_matrix.template diagonal<-1>().real();
320 }
321 
322 namespace internal {
323 
324 /** \internal
325   * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
326   *
327   * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
328   *                     On output, the strict upper part is left unchanged, and the lower triangular part
329   *                     represents the T and Q matrices in packed format has detailed below.
330   * \param[out]    hCoeffs returned Householder coefficients (see below)
331   *
332   * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
333   * and lower sub-diagonal of the matrix \a matA.
334   * The unitary matrix Q is represented in a compact way as a product of
335   * Householder reflectors \f$ H_i \f$ such that:
336   *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
337   * The Householder reflectors are defined as
338   *       \f$ H_i = (I - h_i v_i v_i^T) \f$
339   * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
340   * \f$ v_i \f$ is the Householder vector defined by
341   *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
342   *
343   * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
344   *
345   * \sa Tridiagonalization::packedMatrix()
346   */
347 template<typename MatrixType, typename CoeffVectorType>
348 EIGEN_DEVICE_FUNC
349 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
350 {
351   using numext::conj;
352   typedef typename MatrixType::Scalar Scalar;
353   typedef typename MatrixType::RealScalar RealScalar;
354   Index n = matA.rows();
355   eigen_assert(n==matA.cols());
356   eigen_assert(n==hCoeffs.size()+1 || n==1);
357 
358   for (Index i = 0; i<n-1; ++i)
359   {
360     Index remainingSize = n-i-1;
361     RealScalar beta;
362     Scalar h;
363     matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
364 
365     // Apply similarity transformation to remaining columns,
366     // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
367     matA.col(i).coeffRef(i+1) = 1;
368 
369     hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
370                                   * (conj(h) * matA.col(i).tail(remainingSize)));
371 
372     hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
373 
374     matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
375       .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
376 
377     matA.col(i).coeffRef(i+1) = beta;
378     hCoeffs.coeffRef(i) = h;
379   }
380 }
381 
382 // forward declaration, implementation at the end of this file
383 template<typename MatrixType,
384          int Size=MatrixType::ColsAtCompileTime,
385          bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
386 struct tridiagonalization_inplace_selector;
387 
388 /** \brief Performs a full tridiagonalization in place
389   *
390   * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal
391   *    decomposition is to be computed. Only the lower triangular part referenced.
392   *    The rest is left unchanged. On output, the orthogonal matrix Q
393   *    in the decomposition if \p extractQ is true.
394   * \param[out]  diag  The diagonal of the tridiagonal matrix T in the
395   *    decomposition.
396   * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in
397   *    the decomposition.
398   * \param[in]  extractQ  If true, the orthogonal matrix Q in the
399   *    decomposition is computed and stored in \p mat.
400   *
401   * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
402   * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
403   * symmetric tridiagonal matrix.
404   *
405   * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
406   * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
407   * part of the matrix \p mat is destroyed.
408   *
409   * The vectors \p diag and \p subdiag are not resized. The function
410   * assumes that they are already of the correct size. The length of the
411   * vector \p diag should equal the number of rows in \p mat, and the
412   * length of the vector \p subdiag should be one left.
413   *
414   * This implementation contains an optimized path for 3-by-3 matrices
415   * which is especially useful for plane fitting.
416   *
417   * \note Currently, it requires two temporary vectors to hold the intermediate
418   * Householder coefficients, and to reconstruct the matrix Q from the Householder
419   * reflectors.
420   *
421   * Example (this uses the same matrix as the example in
422   *    Tridiagonalization::Tridiagonalization(const MatrixType&)):
423   *    \include Tridiagonalization_decomposeInPlace.cpp
424   * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
425   *
426   * \sa class Tridiagonalization
427   */
428 template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
429 EIGEN_DEVICE_FUNC
430 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
431                                 CoeffVectorType& hcoeffs, bool extractQ)
432 {
433   eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
434   tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
435 }
436 
437 /** \internal
438   * General full tridiagonalization
439   */
440 template<typename MatrixType, int Size, bool IsComplex>
441 struct tridiagonalization_inplace_selector
442 {
443   typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
444   typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
445   template<typename DiagonalType, typename SubDiagonalType>
446   static EIGEN_DEVICE_FUNC
447       void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
448   {
449     tridiagonalization_inplace(mat, hCoeffs);
450     diag = mat.diagonal().real();
451     subdiag = mat.template diagonal<-1>().real();
452     if(extractQ)
453       mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
454             .setLength(mat.rows() - 1)
455             .setShift(1);
456   }
457 };
458 
459 /** \internal
460   * Specialization for 3x3 real matrices.
461   * Especially useful for plane fitting.
462   */
463 template<typename MatrixType>
464 struct tridiagonalization_inplace_selector<MatrixType,3,false>
465 {
466   typedef typename MatrixType::Scalar Scalar;
467   typedef typename MatrixType::RealScalar RealScalar;
468 
469   template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
470   static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
471   {
472     using std::sqrt;
473     const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
474     diag[0] = mat(0,0);
475     RealScalar v1norm2 = numext::abs2(mat(2,0));
476     if(v1norm2 <= tol)
477     {
478       diag[1] = mat(1,1);
479       diag[2] = mat(2,2);
480       subdiag[0] = mat(1,0);
481       subdiag[1] = mat(2,1);
482       if (extractQ)
483         mat.setIdentity();
484     }
485     else
486     {
487       RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
488       RealScalar invBeta = RealScalar(1)/beta;
489       Scalar m01 = mat(1,0) * invBeta;
490       Scalar m02 = mat(2,0) * invBeta;
491       Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
492       diag[1] = mat(1,1) + m02*q;
493       diag[2] = mat(2,2) - m02*q;
494       subdiag[0] = beta;
495       subdiag[1] = mat(2,1) - m01 * q;
496       if (extractQ)
497       {
498         mat << 1,   0,    0,
499                0, m01,  m02,
500                0, m02, -m01;
501       }
502     }
503   }
504 };
505 
506 /** \internal
507   * Trivial specialization for 1x1 matrices
508   */
509 template<typename MatrixType, bool IsComplex>
510 struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
511 {
512   typedef typename MatrixType::Scalar Scalar;
513 
514   template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
515   static EIGEN_DEVICE_FUNC
516   void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
517   {
518     diag(0,0) = numext::real(mat(0,0));
519     if(extractQ)
520       mat(0,0) = Scalar(1);
521   }
522 };
523 
524 /** \internal
525   * \eigenvalues_module \ingroup Eigenvalues_Module
526   *
527   * \brief Expression type for return value of Tridiagonalization::matrixT()
528   *
529   * \tparam MatrixType type of underlying dense matrix
530   */
531 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
532 : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
533 {
534   public:
535     /** \brief Constructor.
536       *
537       * \param[in] mat The underlying dense matrix
538       */
539     TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
540 
541     template <typename ResultType>
542     inline void evalTo(ResultType& result) const
543     {
544       result.setZero();
545       result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
546       result.diagonal() = m_matrix.diagonal();
547       result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
548     }
549 
550     EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
551     EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
552 
553   protected:
554     typename MatrixType::Nested m_matrix;
555 };
556 
557 } // end namespace internal
558 
559 } // end namespace Eigen
560 
561 #endif // EIGEN_TRIDIAGONALIZATION_H
562