1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2010 Gael Guennebaud <[email protected]> 5 // Copyright (C) 2010 Jitse Niesen <[email protected]> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H 12 #define EIGEN_SELFADJOINTEIGENSOLVER_H 13 14 #include "./Tridiagonalization.h" 15 16 namespace Eigen { 17 18 template<typename _MatrixType> 19 class GeneralizedSelfAdjointEigenSolver; 20 21 namespace internal { 22 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues; 23 24 template<typename MatrixType, typename DiagType, typename SubDiagType> 25 EIGEN_DEVICE_FUNC 26 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); 27 } 28 29 /** \eigenvalues_module \ingroup Eigenvalues_Module 30 * 31 * 32 * \class SelfAdjointEigenSolver 33 * 34 * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices 35 * 36 * \tparam _MatrixType the type of the matrix of which we are computing the 37 * eigendecomposition; this is expected to be an instantiation of the Matrix 38 * class template. 39 * 40 * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real 41 * matrices, this means that the matrix is symmetric: it equals its 42 * transpose. This class computes the eigenvalues and eigenvectors of a 43 * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors 44 * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a 45 * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with 46 * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the 47 * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the 48 * eigendecomposition. 49 * 50 * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal 51 * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then 52 * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is 53 * equal to its transpose, \f$ V^{-1} = V^T \f$. 54 * 55 * The algorithm exploits the fact that the matrix is selfadjoint, making it 56 * faster and more accurate than the general purpose eigenvalue algorithms 57 * implemented in EigenSolver and ComplexEigenSolver. 58 * 59 * Only the \b lower \b triangular \b part of the input matrix is referenced. 60 * 61 * Call the function compute() to compute the eigenvalues and eigenvectors of 62 * a given matrix. Alternatively, you can use the 63 * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes 64 * the eigenvalues and eigenvectors at construction time. Once the eigenvalue 65 * and eigenvectors are computed, they can be retrieved with the eigenvalues() 66 * and eigenvectors() functions. 67 * 68 * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) 69 * contains an example of the typical use of this class. 70 * 71 * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and 72 * the likes, see the class GeneralizedSelfAdjointEigenSolver. 73 * 74 * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver 75 */ 76 template<typename _MatrixType> class SelfAdjointEigenSolver 77 { 78 public: 79 80 typedef _MatrixType MatrixType; 81 enum { 82 Size = MatrixType::RowsAtCompileTime, 83 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 84 Options = MatrixType::Options, 85 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 86 }; 87 88 /** \brief Scalar type for matrices of type \p _MatrixType. */ 89 typedef typename MatrixType::Scalar Scalar; 90 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 91 92 typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType; 93 94 /** \brief Real scalar type for \p _MatrixType. 95 * 96 * This is just \c Scalar if #Scalar is real (e.g., \c float or 97 * \c double), and the type of the real part of \c Scalar if #Scalar is 98 * complex. 99 */ 100 typedef typename NumTraits<Scalar>::Real RealScalar; 101 102 friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>; 103 104 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 105 * 106 * This is a column vector with entries of type #RealScalar. 107 * The length of the vector is the size of \p _MatrixType. 108 */ 109 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; 110 typedef Tridiagonalization<MatrixType> TridiagonalizationType; 111 typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; 112 113 /** \brief Default constructor for fixed-size matrices. 114 * 115 * The default constructor is useful in cases in which the user intends to 116 * perform decompositions via compute(). This constructor 117 * can only be used if \p _MatrixType is a fixed-size matrix; use 118 * SelfAdjointEigenSolver(Index) for dynamic-size matrices. 119 * 120 * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp 121 * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out 122 */ 123 EIGEN_DEVICE_FUNC 124 SelfAdjointEigenSolver() 125 : m_eivec(), 126 m_eivalues(), 127 m_subdiag(), 128 m_hcoeffs(), 129 m_info(InvalidInput), 130 m_isInitialized(false), 131 m_eigenvectorsOk(false) 132 { } 133 134 /** \brief Constructor, pre-allocates memory for dynamic-size matrices. 135 * 136 * \param [in] size Positive integer, size of the matrix whose 137 * eigenvalues and eigenvectors will be computed. 138 * 139 * This constructor is useful for dynamic-size matrices, when the user 140 * intends to perform decompositions via compute(). The \p size 141 * parameter is only used as a hint. It is not an error to give a wrong 142 * \p size, but it may impair performance. 143 * 144 * \sa compute() for an example 145 */ 146 EIGEN_DEVICE_FUNC 147 explicit SelfAdjointEigenSolver(Index size) 148 : m_eivec(size, size), 149 m_eivalues(size), 150 m_subdiag(size > 1 ? size - 1 : 1), 151 m_hcoeffs(size > 1 ? size - 1 : 1), 152 m_isInitialized(false), 153 m_eigenvectorsOk(false) 154 {} 155 156 /** \brief Constructor; computes eigendecomposition of given matrix. 157 * 158 * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to 159 * be computed. Only the lower triangular part of the matrix is referenced. 160 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. 161 * 162 * This constructor calls compute(const MatrixType&, int) to compute the 163 * eigenvalues of the matrix \p matrix. The eigenvectors are computed if 164 * \p options equals #ComputeEigenvectors. 165 * 166 * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp 167 * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out 168 * 169 * \sa compute(const MatrixType&, int) 170 */ 171 template<typename InputType> 172 EIGEN_DEVICE_FUNC 173 explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors) 174 : m_eivec(matrix.rows(), matrix.cols()), 175 m_eivalues(matrix.cols()), 176 m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), 177 m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1), 178 m_isInitialized(false), 179 m_eigenvectorsOk(false) 180 { 181 compute(matrix.derived(), options); 182 } 183 184 /** \brief Computes eigendecomposition of given matrix. 185 * 186 * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to 187 * be computed. Only the lower triangular part of the matrix is referenced. 188 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. 189 * \returns Reference to \c *this 190 * 191 * This function computes the eigenvalues of \p matrix. The eigenvalues() 192 * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, 193 * then the eigenvectors are also computed and can be retrieved by 194 * calling eigenvectors(). 195 * 196 * This implementation uses a symmetric QR algorithm. The matrix is first 197 * reduced to tridiagonal form using the Tridiagonalization class. The 198 * tridiagonal matrix is then brought to diagonal form with implicit 199 * symmetric QR steps with Wilkinson shift. Details can be found in 200 * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>. 201 * 202 * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors 203 * are required and \f$ 4n^3/3 \f$ if they are not required. 204 * 205 * This method reuses the memory in the SelfAdjointEigenSolver object that 206 * was allocated when the object was constructed, if the size of the 207 * matrix does not change. 208 * 209 * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp 210 * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out 211 * 212 * \sa SelfAdjointEigenSolver(const MatrixType&, int) 213 */ 214 template<typename InputType> 215 EIGEN_DEVICE_FUNC 216 SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors); 217 218 /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm 219 * 220 * This is a variant of compute(const MatrixType&, int options) which 221 * directly solves the underlying polynomial equation. 222 * 223 * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). 224 * 225 * This method is usually significantly faster than the QR iterative algorithm 226 * but it might also be less accurate. It is also worth noting that 227 * for 3x3 matrices it involves trigonometric operations which are 228 * not necessarily available for all scalar types. 229 * 230 * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: 231 * - double: 1e-8 232 * - float: 1e-3 233 * 234 * \sa compute(const MatrixType&, int options) 235 */ 236 EIGEN_DEVICE_FUNC 237 SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); 238 239 /** 240 *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix 241 * 242 * \param[in] diag The vector containing the diagonal of the matrix. 243 * \param[in] subdiag The subdiagonal of the matrix. 244 * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. 245 * \returns Reference to \c *this 246 * 247 * This function assumes that the matrix has been reduced to tridiagonal form. 248 * 249 * \sa compute(const MatrixType&, int) for more information 250 */ 251 SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); 252 253 /** \brief Returns the eigenvectors of given matrix. 254 * 255 * \returns A const reference to the matrix whose columns are the eigenvectors. 256 * 257 * \pre The eigenvectors have been computed before. 258 * 259 * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding 260 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The 261 * eigenvectors are normalized to have (Euclidean) norm equal to one. If 262 * this object was used to solve the eigenproblem for the selfadjoint 263 * matrix \f$ A \f$, then the matrix returned by this function is the 264 * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. 265 * 266 * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal 267 * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then 268 * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is 269 * equal to its transpose, \f$ V^{-1} = V^T \f$. 270 * 271 * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp 272 * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out 273 * 274 * \sa eigenvalues() 275 */ 276 EIGEN_DEVICE_FUNC 277 const EigenvectorsType& eigenvectors() const 278 { 279 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 280 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 281 return m_eivec; 282 } 283 284 /** \brief Returns the eigenvalues of given matrix. 285 * 286 * \returns A const reference to the column vector containing the eigenvalues. 287 * 288 * \pre The eigenvalues have been computed before. 289 * 290 * The eigenvalues are repeated according to their algebraic multiplicity, 291 * so there are as many eigenvalues as rows in the matrix. The eigenvalues 292 * are sorted in increasing order. 293 * 294 * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp 295 * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out 296 * 297 * \sa eigenvectors(), MatrixBase::eigenvalues() 298 */ 299 EIGEN_DEVICE_FUNC 300 const RealVectorType& eigenvalues() const 301 { 302 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 303 return m_eivalues; 304 } 305 306 /** \brief Computes the positive-definite square root of the matrix. 307 * 308 * \returns the positive-definite square root of the matrix 309 * 310 * \pre The eigenvalues and eigenvectors of a positive-definite matrix 311 * have been computed before. 312 * 313 * The square root of a positive-definite matrix \f$ A \f$ is the 314 * positive-definite matrix whose square equals \f$ A \f$. This function 315 * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the 316 * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. 317 * 318 * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp 319 * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out 320 * 321 * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a> 322 */ 323 EIGEN_DEVICE_FUNC 324 MatrixType operatorSqrt() const 325 { 326 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 327 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 328 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 329 } 330 331 /** \brief Computes the inverse square root of the matrix. 332 * 333 * \returns the inverse positive-definite square root of the matrix 334 * 335 * \pre The eigenvalues and eigenvectors of a positive-definite matrix 336 * have been computed before. 337 * 338 * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to 339 * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is 340 * cheaper than first computing the square root with operatorSqrt() and 341 * then its inverse with MatrixBase::inverse(). 342 * 343 * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp 344 * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out 345 * 346 * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a> 347 */ 348 EIGEN_DEVICE_FUNC 349 MatrixType operatorInverseSqrt() const 350 { 351 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 352 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 353 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); 354 } 355 356 /** \brief Reports whether previous computation was successful. 357 * 358 * \returns \c Success if computation was successful, \c NoConvergence otherwise. 359 */ 360 EIGEN_DEVICE_FUNC 361 ComputationInfo info() const 362 { 363 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); 364 return m_info; 365 } 366 367 /** \brief Maximum number of iterations. 368 * 369 * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n 370 * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). 371 */ 372 static const int m_maxIterations = 30; 373 374 protected: 375 static EIGEN_DEVICE_FUNC 376 void check_template_parameters() 377 { 378 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 379 } 380 381 EigenvectorsType m_eivec; 382 RealVectorType m_eivalues; 383 typename TridiagonalizationType::SubDiagonalType m_subdiag; 384 typename TridiagonalizationType::CoeffVectorType m_hcoeffs; 385 ComputationInfo m_info; 386 bool m_isInitialized; 387 bool m_eigenvectorsOk; 388 }; 389 390 namespace internal { 391 /** \internal 392 * 393 * \eigenvalues_module \ingroup Eigenvalues_Module 394 * 395 * Performs a QR step on a tridiagonal symmetric matrix represented as a 396 * pair of two vectors \a diag and \a subdiag. 397 * 398 * \param diag the diagonal part of the input selfadjoint tridiagonal matrix 399 * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix 400 * \param start starting index of the submatrix to work on 401 * \param end last+1 index of the submatrix to work on 402 * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 403 * \param n size of the input matrix 404 * 405 * For compilation efficiency reasons, this procedure does not use eigen expression 406 * for its arguments. 407 * 408 * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: 409 * "implicit symmetric QR step with Wilkinson shift" 410 */ 411 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> 412 EIGEN_DEVICE_FUNC 413 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); 414 } 415 416 template<typename MatrixType> 417 template<typename InputType> 418 EIGEN_DEVICE_FUNC 419 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 420 ::compute(const EigenBase<InputType>& a_matrix, int options) 421 { 422 check_template_parameters(); 423 424 const InputType &matrix(a_matrix.derived()); 425 426 EIGEN_USING_STD(abs); 427 eigen_assert(matrix.cols() == matrix.rows()); 428 eigen_assert((options&~(EigVecMask|GenEigMask))==0 429 && (options&EigVecMask)!=EigVecMask 430 && "invalid option parameter"); 431 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 432 Index n = matrix.cols(); 433 m_eivalues.resize(n,1); 434 435 if(n==1) 436 { 437 m_eivec = matrix; 438 m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); 439 if(computeEigenvectors) 440 m_eivec.setOnes(n,n); 441 m_info = Success; 442 m_isInitialized = true; 443 m_eigenvectorsOk = computeEigenvectors; 444 return *this; 445 } 446 447 // declare some aliases 448 RealVectorType& diag = m_eivalues; 449 EigenvectorsType& mat = m_eivec; 450 451 // map the matrix coefficients to [-1:1] to avoid over- and underflow. 452 mat = matrix.template triangularView<Lower>(); 453 RealScalar scale = mat.cwiseAbs().maxCoeff(); 454 if(scale==RealScalar(0)) scale = RealScalar(1); 455 mat.template triangularView<Lower>() /= scale; 456 m_subdiag.resize(n-1); 457 m_hcoeffs.resize(n-1); 458 internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); 459 460 m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); 461 462 // scale back the eigen values 463 m_eivalues *= scale; 464 465 m_isInitialized = true; 466 m_eigenvectorsOk = computeEigenvectors; 467 return *this; 468 } 469 470 template<typename MatrixType> 471 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 472 ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) 473 { 474 //TODO : Add an option to scale the values beforehand 475 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 476 477 m_eivalues = diag; 478 m_subdiag = subdiag; 479 if (computeEigenvectors) 480 { 481 m_eivec.setIdentity(diag.size(), diag.size()); 482 } 483 m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); 484 485 m_isInitialized = true; 486 m_eigenvectorsOk = computeEigenvectors; 487 return *this; 488 } 489 490 namespace internal { 491 /** 492 * \internal 493 * \brief Compute the eigendecomposition from a tridiagonal matrix 494 * 495 * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues 496 * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) 497 * \param[in] maxIterations : the maximum number of iterations 498 * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not 499 * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. 500 * \returns \c Success or \c NoConvergence 501 */ 502 template<typename MatrixType, typename DiagType, typename SubDiagType> 503 EIGEN_DEVICE_FUNC 504 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) 505 { 506 ComputationInfo info; 507 typedef typename MatrixType::Scalar Scalar; 508 509 Index n = diag.size(); 510 Index end = n-1; 511 Index start = 0; 512 Index iter = 0; // total number of iterations 513 514 typedef typename DiagType::RealScalar RealScalar; 515 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); 516 const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon(); 517 while (end>0) 518 { 519 for (Index i = start; i<end; ++i) { 520 if (numext::abs(subdiag[i]) < considerAsZero) { 521 subdiag[i] = RealScalar(0); 522 } else { 523 // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1])) 524 // Scaled to prevent underflows. 525 const RealScalar scaled_subdiag = precision_inv * subdiag[i]; 526 if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) { 527 subdiag[i] = RealScalar(0); 528 } 529 } 530 } 531 532 // find the largest unreduced block at the end of the matrix. 533 while (end>0 && subdiag[end-1]==RealScalar(0)) 534 { 535 end--; 536 } 537 if (end<=0) 538 break; 539 540 // if we spent too many iterations, we give up 541 iter++; 542 if(iter > maxIterations * n) break; 543 544 start = end - 1; 545 while (start>0 && subdiag[start-1]!=0) 546 start--; 547 548 internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); 549 } 550 if (iter <= maxIterations * n) 551 info = Success; 552 else 553 info = NoConvergence; 554 555 // Sort eigenvalues and corresponding vectors. 556 // TODO make the sort optional ? 557 // TODO use a better sort algorithm !! 558 if (info == Success) 559 { 560 for (Index i = 0; i < n-1; ++i) 561 { 562 Index k; 563 diag.segment(i,n-i).minCoeff(&k); 564 if (k > 0) 565 { 566 numext::swap(diag[i], diag[k+i]); 567 if(computeEigenvectors) 568 eivec.col(i).swap(eivec.col(k+i)); 569 } 570 } 571 } 572 return info; 573 } 574 575 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues 576 { 577 EIGEN_DEVICE_FUNC 578 static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) 579 { eig.compute(A,options); } 580 }; 581 582 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false> 583 { 584 typedef typename SolverType::MatrixType MatrixType; 585 typedef typename SolverType::RealVectorType VectorType; 586 typedef typename SolverType::Scalar Scalar; 587 typedef typename SolverType::EigenvectorsType EigenvectorsType; 588 589 590 /** \internal 591 * Computes the roots of the characteristic polynomial of \a m. 592 * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. 593 */ 594 EIGEN_DEVICE_FUNC 595 static inline void computeRoots(const MatrixType& m, VectorType& roots) 596 { 597 EIGEN_USING_STD(sqrt) 598 EIGEN_USING_STD(atan2) 599 EIGEN_USING_STD(cos) 600 EIGEN_USING_STD(sin) 601 const Scalar s_inv3 = Scalar(1)/Scalar(3); 602 const Scalar s_sqrt3 = sqrt(Scalar(3)); 603 604 // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The 605 // eigenvalues are the roots to this equation, all guaranteed to be 606 // real-valued, because the matrix is symmetric. 607 Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); 608 Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); 609 Scalar c2 = m(0,0) + m(1,1) + m(2,2); 610 611 // Construct the parameters used in classifying the roots of the equation 612 // and in solving the equation for the roots in closed form. 613 Scalar c2_over_3 = c2*s_inv3; 614 Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; 615 a_over_3 = numext::maxi(a_over_3, Scalar(0)); 616 617 Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); 618 619 Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; 620 q = numext::maxi(q, Scalar(0)); 621 622 // Compute the eigenvalues by solving for the roots of the polynomial. 623 Scalar rho = sqrt(a_over_3); 624 Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] 625 Scalar cos_theta = cos(theta); 626 Scalar sin_theta = sin(theta); 627 // roots are already sorted, since cos is monotonically decreasing on [0, pi] 628 roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) 629 roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) 630 roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; 631 } 632 633 EIGEN_DEVICE_FUNC 634 static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative) 635 { 636 EIGEN_USING_STD(abs); 637 EIGEN_USING_STD(sqrt); 638 Index i0; 639 // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): 640 mat.diagonal().cwiseAbs().maxCoeff(&i0); 641 // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, 642 // so let's save it: 643 representative = mat.col(i0); 644 Scalar n0, n1; 645 VectorType c0, c1; 646 n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); 647 n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); 648 if(n0>n1) res = c0/sqrt(n0); 649 else res = c1/sqrt(n1); 650 651 return true; 652 } 653 654 EIGEN_DEVICE_FUNC 655 static inline void run(SolverType& solver, const MatrixType& mat, int options) 656 { 657 eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); 658 eigen_assert((options&~(EigVecMask|GenEigMask))==0 659 && (options&EigVecMask)!=EigVecMask 660 && "invalid option parameter"); 661 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 662 663 EigenvectorsType& eivecs = solver.m_eivec; 664 VectorType& eivals = solver.m_eivalues; 665 666 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. 667 Scalar shift = mat.trace() / Scalar(3); 668 // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later 669 MatrixType scaledMat = mat.template selfadjointView<Lower>(); 670 scaledMat.diagonal().array() -= shift; 671 Scalar scale = scaledMat.cwiseAbs().maxCoeff(); 672 if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations 673 674 // compute the eigenvalues 675 computeRoots(scaledMat,eivals); 676 677 // compute the eigenvectors 678 if(computeEigenvectors) 679 { 680 if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon()) 681 { 682 // All three eigenvalues are numerically the same 683 eivecs.setIdentity(); 684 } 685 else 686 { 687 MatrixType tmp; 688 tmp = scaledMat; 689 690 // Compute the eigenvector of the most distinct eigenvalue 691 Scalar d0 = eivals(2) - eivals(1); 692 Scalar d1 = eivals(1) - eivals(0); 693 Index k(0), l(2); 694 if(d0 > d1) 695 { 696 numext::swap(k,l); 697 d0 = d1; 698 } 699 700 // Compute the eigenvector of index k 701 { 702 tmp.diagonal().array () -= eivals(k); 703 // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. 704 extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); 705 } 706 707 // Compute eigenvector of index l 708 if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1) 709 { 710 // If d0 is too small, then the two other eigenvalues are numerically the same, 711 // and thus we only have to ortho-normalize the near orthogonal vector we saved above. 712 eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); 713 eivecs.col(l).normalize(); 714 } 715 else 716 { 717 tmp = scaledMat; 718 tmp.diagonal().array () -= eivals(l); 719 720 VectorType dummy; 721 extract_kernel(tmp, eivecs.col(l), dummy); 722 } 723 724 // Compute last eigenvector from the other two 725 eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); 726 } 727 } 728 729 // Rescale back to the original size. 730 eivals *= scale; 731 eivals.array() += shift; 732 733 solver.m_info = Success; 734 solver.m_isInitialized = true; 735 solver.m_eigenvectorsOk = computeEigenvectors; 736 } 737 }; 738 739 // 2x2 direct eigenvalues decomposition, code from Hauke Heibel 740 template<typename SolverType> 741 struct direct_selfadjoint_eigenvalues<SolverType,2,false> 742 { 743 typedef typename SolverType::MatrixType MatrixType; 744 typedef typename SolverType::RealVectorType VectorType; 745 typedef typename SolverType::Scalar Scalar; 746 typedef typename SolverType::EigenvectorsType EigenvectorsType; 747 748 EIGEN_DEVICE_FUNC 749 static inline void computeRoots(const MatrixType& m, VectorType& roots) 750 { 751 EIGEN_USING_STD(sqrt); 752 const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); 753 const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); 754 roots(0) = t1 - t0; 755 roots(1) = t1 + t0; 756 } 757 758 EIGEN_DEVICE_FUNC 759 static inline void run(SolverType& solver, const MatrixType& mat, int options) 760 { 761 EIGEN_USING_STD(sqrt); 762 EIGEN_USING_STD(abs); 763 764 eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); 765 eigen_assert((options&~(EigVecMask|GenEigMask))==0 766 && (options&EigVecMask)!=EigVecMask 767 && "invalid option parameter"); 768 bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; 769 770 EigenvectorsType& eivecs = solver.m_eivec; 771 VectorType& eivals = solver.m_eivalues; 772 773 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. 774 Scalar shift = mat.trace() / Scalar(2); 775 MatrixType scaledMat = mat; 776 scaledMat.coeffRef(0,1) = mat.coeff(1,0); 777 scaledMat.diagonal().array() -= shift; 778 Scalar scale = scaledMat.cwiseAbs().maxCoeff(); 779 if(scale > Scalar(0)) 780 scaledMat /= scale; 781 782 // Compute the eigenvalues 783 computeRoots(scaledMat,eivals); 784 785 // compute the eigen vectors 786 if(computeEigenvectors) 787 { 788 if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon()) 789 { 790 eivecs.setIdentity(); 791 } 792 else 793 { 794 scaledMat.diagonal().array () -= eivals(1); 795 Scalar a2 = numext::abs2(scaledMat(0,0)); 796 Scalar c2 = numext::abs2(scaledMat(1,1)); 797 Scalar b2 = numext::abs2(scaledMat(1,0)); 798 if(a2>c2) 799 { 800 eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); 801 eivecs.col(1) /= sqrt(a2+b2); 802 } 803 else 804 { 805 eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); 806 eivecs.col(1) /= sqrt(c2+b2); 807 } 808 809 eivecs.col(0) << eivecs.col(1).unitOrthogonal(); 810 } 811 } 812 813 // Rescale back to the original size. 814 eivals *= scale; 815 eivals.array() += shift; 816 817 solver.m_info = Success; 818 solver.m_isInitialized = true; 819 solver.m_eigenvectorsOk = computeEigenvectors; 820 } 821 }; 822 823 } 824 825 template<typename MatrixType> 826 EIGEN_DEVICE_FUNC 827 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> 828 ::computeDirect(const MatrixType& matrix, int options) 829 { 830 internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options); 831 return *this; 832 } 833 834 namespace internal { 835 836 // Francis implicit QR step. 837 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> 838 EIGEN_DEVICE_FUNC 839 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) 840 { 841 // Wilkinson Shift. 842 RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); 843 RealScalar e = subdiag[end-1]; 844 // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still 845 // underflow thus leading to inf/NaN values when using the following commented code: 846 // RealScalar e2 = numext::abs2(subdiag[end-1]); 847 // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); 848 // This explain the following, somewhat more complicated, version: 849 RealScalar mu = diag[end]; 850 if(td==RealScalar(0)) { 851 mu -= numext::abs(e); 852 } else if (e != RealScalar(0)) { 853 const RealScalar e2 = numext::abs2(e); 854 const RealScalar h = numext::hypot(td,e); 855 if(e2 == RealScalar(0)) { 856 mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e); 857 } else { 858 mu -= e2 / (td + (td>RealScalar(0) ? h : -h)); 859 } 860 } 861 862 RealScalar x = diag[start] - mu; 863 RealScalar z = subdiag[start]; 864 // If z ever becomes zero, the Givens rotation will be the identity and 865 // z will stay zero for all future iterations. 866 for (Index k = start; k < end && z != RealScalar(0); ++k) 867 { 868 JacobiRotation<RealScalar> rot; 869 rot.makeGivens(x, z); 870 871 // do T = G' T G 872 RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; 873 RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; 874 875 diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); 876 diag[k+1] = rot.s() * sdk + rot.c() * dkp1; 877 subdiag[k] = rot.c() * sdk - rot.s() * dkp1; 878 879 if (k > start) 880 subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; 881 882 // "Chasing the bulge" to return to triangular form. 883 x = subdiag[k]; 884 if (k < end - 1) 885 { 886 z = -rot.s() * subdiag[k+1]; 887 subdiag[k + 1] = rot.c() * subdiag[k+1]; 888 } 889 890 // apply the givens rotation to the unit matrix Q = Q * G 891 if (matrixQ) 892 { 893 // FIXME if StorageOrder == RowMajor this operation is not very efficient 894 Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n); 895 q.applyOnTheRight(k,k+1,rot); 896 } 897 } 898 } 899 900 } // end namespace internal 901 902 } // end namespace Eigen 903 904 #endif // EIGEN_SELFADJOINTEIGENSOLVER_H 905