xref: /aosp_15_r20/external/eigen/Eigen/src/Core/Transpositions.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010-2011 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_TRANSPOSITIONS_H
11 #define EIGEN_TRANSPOSITIONS_H
12 
13 namespace Eigen {
14 
15 template<typename Derived>
16 class TranspositionsBase
17 {
18     typedef internal::traits<Derived> Traits;
19 
20   public:
21 
22     typedef typename Traits::IndicesType IndicesType;
23     typedef typename IndicesType::Scalar StorageIndex;
24     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
25 
26     EIGEN_DEVICE_FUNC
derived()27     Derived& derived() { return *static_cast<Derived*>(this); }
28     EIGEN_DEVICE_FUNC
derived()29     const Derived& derived() const { return *static_cast<const Derived*>(this); }
30 
31     /** Copies the \a other transpositions into \c *this */
32     template<typename OtherDerived>
33     Derived& operator=(const TranspositionsBase<OtherDerived>& other)
34     {
35       indices() = other.indices();
36       return derived();
37     }
38 
39     /** \returns the number of transpositions */
40     EIGEN_DEVICE_FUNC
size()41     Index size() const { return indices().size(); }
42     /** \returns the number of rows of the equivalent permutation matrix */
43     EIGEN_DEVICE_FUNC
rows()44     Index rows() const { return indices().size(); }
45     /** \returns the number of columns of the equivalent permutation matrix */
46     EIGEN_DEVICE_FUNC
cols()47     Index cols() const { return indices().size(); }
48 
49     /** Direct access to the underlying index vector */
50     EIGEN_DEVICE_FUNC
coeff(Index i)51     inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); }
52     /** Direct access to the underlying index vector */
coeffRef(Index i)53     inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); }
54     /** Direct access to the underlying index vector */
operator()55     inline const StorageIndex& operator()(Index i) const { return indices()(i); }
56     /** Direct access to the underlying index vector */
operator()57     inline StorageIndex& operator()(Index i) { return indices()(i); }
58     /** Direct access to the underlying index vector */
59     inline const StorageIndex& operator[](Index i) const { return indices()(i); }
60     /** Direct access to the underlying index vector */
61     inline StorageIndex& operator[](Index i) { return indices()(i); }
62 
63     /** const version of indices(). */
64     EIGEN_DEVICE_FUNC
indices()65     const IndicesType& indices() const { return derived().indices(); }
66     /** \returns a reference to the stored array representing the transpositions. */
67     EIGEN_DEVICE_FUNC
indices()68     IndicesType& indices() { return derived().indices(); }
69 
70     /** Resizes to given size. */
resize(Index newSize)71     inline void resize(Index newSize)
72     {
73       indices().resize(newSize);
74     }
75 
76     /** Sets \c *this to represents an identity transformation */
setIdentity()77     void setIdentity()
78     {
79       for(StorageIndex i = 0; i < indices().size(); ++i)
80         coeffRef(i) = i;
81     }
82 
83     // FIXME: do we want such methods ?
84     // might be useful when the target matrix expression is complex, e.g.:
85     // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
86     /*
87     template<typename MatrixType>
88     void applyForwardToRows(MatrixType& mat) const
89     {
90       for(Index k=0 ; k<size() ; ++k)
91         if(m_indices(k)!=k)
92           mat.row(k).swap(mat.row(m_indices(k)));
93     }
94 
95     template<typename MatrixType>
96     void applyBackwardToRows(MatrixType& mat) const
97     {
98       for(Index k=size()-1 ; k>=0 ; --k)
99         if(m_indices(k)!=k)
100           mat.row(k).swap(mat.row(m_indices(k)));
101     }
102     */
103 
104     /** \returns the inverse transformation */
inverse()105     inline Transpose<TranspositionsBase> inverse() const
106     { return Transpose<TranspositionsBase>(derived()); }
107 
108     /** \returns the tranpose transformation */
transpose()109     inline Transpose<TranspositionsBase> transpose() const
110     { return Transpose<TranspositionsBase>(derived()); }
111 
112   protected:
113 };
114 
115 namespace internal {
116 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
117 struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
118  : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
119 {
120   typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
121   typedef TranspositionsStorage StorageKind;
122 };
123 }
124 
125 /** \class Transpositions
126   * \ingroup Core_Module
127   *
128   * \brief Represents a sequence of transpositions (row/column interchange)
129   *
130   * \tparam SizeAtCompileTime the number of transpositions, or Dynamic
131   * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
132   *
133   * This class represents a permutation transformation as a sequence of \em n transpositions
134   * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
135   * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
136   * the rows \c i and \c indices[i] of the matrix \c M.
137   * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
138   *
139   * Compared to the class PermutationMatrix, such a sequence of transpositions is what is
140   * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
141   *
142   * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
143   * \code
144   * Transpositions tr;
145   * MatrixXf mat;
146   * mat = tr * mat;
147   * \endcode
148   * In this example, we detect that the matrix appears on both side, and so the transpositions
149   * are applied in-place without any temporary or extra copy.
150   *
151   * \sa class PermutationMatrix
152   */
153 
154 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
155 class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
156 {
157     typedef internal::traits<Transpositions> Traits;
158   public:
159 
160     typedef TranspositionsBase<Transpositions> Base;
161     typedef typename Traits::IndicesType IndicesType;
162     typedef typename IndicesType::Scalar StorageIndex;
163 
164     inline Transpositions() {}
165 
166     /** Copy constructor. */
167     template<typename OtherDerived>
168     inline Transpositions(const TranspositionsBase<OtherDerived>& other)
169       : m_indices(other.indices()) {}
170 
171     /** Generic constructor from expression of the transposition indices. */
172     template<typename Other>
173     explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
174     {}
175 
176     /** Copies the \a other transpositions into \c *this */
177     template<typename OtherDerived>
178     Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
179     {
180       return Base::operator=(other);
181     }
182 
183     /** Constructs an uninitialized permutation matrix of given size.
184       */
185     inline Transpositions(Index size) : m_indices(size)
186     {}
187 
188     /** const version of indices(). */
189     EIGEN_DEVICE_FUNC
190     const IndicesType& indices() const { return m_indices; }
191     /** \returns a reference to the stored array representing the transpositions. */
192     EIGEN_DEVICE_FUNC
193     IndicesType& indices() { return m_indices; }
194 
195   protected:
196 
197     IndicesType m_indices;
198 };
199 
200 
201 namespace internal {
202 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
203 struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> >
204  : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
205 {
206   typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
207   typedef _StorageIndex StorageIndex;
208   typedef TranspositionsStorage StorageKind;
209 };
210 }
211 
212 template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess>
213 class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess>
214  : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> >
215 {
216     typedef internal::traits<Map> Traits;
217   public:
218 
219     typedef TranspositionsBase<Map> Base;
220     typedef typename Traits::IndicesType IndicesType;
221     typedef typename IndicesType::Scalar StorageIndex;
222 
223     explicit inline Map(const StorageIndex* indicesPtr)
224       : m_indices(indicesPtr)
225     {}
226 
227     inline Map(const StorageIndex* indicesPtr, Index size)
228       : m_indices(indicesPtr,size)
229     {}
230 
231     /** Copies the \a other transpositions into \c *this */
232     template<typename OtherDerived>
233     Map& operator=(const TranspositionsBase<OtherDerived>& other)
234     {
235       return Base::operator=(other);
236     }
237 
238     #ifndef EIGEN_PARSED_BY_DOXYGEN
239     /** This is a special case of the templated operator=. Its purpose is to
240       * prevent a default operator= from hiding the templated operator=.
241       */
242     Map& operator=(const Map& other)
243     {
244       m_indices = other.m_indices;
245       return *this;
246     }
247     #endif
248 
249     /** const version of indices(). */
250     EIGEN_DEVICE_FUNC
251     const IndicesType& indices() const { return m_indices; }
252 
253     /** \returns a reference to the stored array representing the transpositions. */
254     EIGEN_DEVICE_FUNC
255     IndicesType& indices() { return m_indices; }
256 
257   protected:
258 
259     IndicesType m_indices;
260 };
261 
262 namespace internal {
263 template<typename _IndicesType>
264 struct traits<TranspositionsWrapper<_IndicesType> >
265  : traits<PermutationWrapper<_IndicesType> >
266 {
267   typedef TranspositionsStorage StorageKind;
268 };
269 }
270 
271 template<typename _IndicesType>
272 class TranspositionsWrapper
273  : public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
274 {
275     typedef internal::traits<TranspositionsWrapper> Traits;
276   public:
277 
278     typedef TranspositionsBase<TranspositionsWrapper> Base;
279     typedef typename Traits::IndicesType IndicesType;
280     typedef typename IndicesType::Scalar StorageIndex;
281 
282     explicit inline TranspositionsWrapper(IndicesType& indices)
283       : m_indices(indices)
284     {}
285 
286     /** Copies the \a other transpositions into \c *this */
287     template<typename OtherDerived>
288     TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
289     {
290       return Base::operator=(other);
291     }
292 
293     /** const version of indices(). */
294     EIGEN_DEVICE_FUNC
295     const IndicesType& indices() const { return m_indices; }
296 
297     /** \returns a reference to the stored array representing the transpositions. */
298     EIGEN_DEVICE_FUNC
299     IndicesType& indices() { return m_indices; }
300 
301   protected:
302 
303     typename IndicesType::Nested m_indices;
304 };
305 
306 
307 
308 /** \returns the \a matrix with the \a transpositions applied to the columns.
309   */
310 template<typename MatrixDerived, typename TranspositionsDerived>
311 EIGEN_DEVICE_FUNC
312 const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>
313 operator*(const MatrixBase<MatrixDerived> &matrix,
314           const TranspositionsBase<TranspositionsDerived>& transpositions)
315 {
316   return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>
317             (matrix.derived(), transpositions.derived());
318 }
319 
320 /** \returns the \a matrix with the \a transpositions applied to the rows.
321   */
322 template<typename TranspositionsDerived, typename MatrixDerived>
323 EIGEN_DEVICE_FUNC
324 const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>
325 operator*(const TranspositionsBase<TranspositionsDerived> &transpositions,
326           const MatrixBase<MatrixDerived>& matrix)
327 {
328   return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>
329             (transpositions.derived(), matrix.derived());
330 }
331 
332 // Template partial specialization for transposed/inverse transpositions
333 
334 namespace internal {
335 
336 template<typename Derived>
337 struct traits<Transpose<TranspositionsBase<Derived> > >
338  : traits<Derived>
339 {};
340 
341 } // end namespace internal
342 
343 template<typename TranspositionsDerived>
344 class Transpose<TranspositionsBase<TranspositionsDerived> >
345 {
346     typedef TranspositionsDerived TranspositionType;
347     typedef typename TranspositionType::IndicesType IndicesType;
348   public:
349 
350     explicit Transpose(const TranspositionType& t) : m_transpositions(t) {}
351 
352     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
353     Index size() const EIGEN_NOEXCEPT { return m_transpositions.size(); }
354     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
355     Index rows() const EIGEN_NOEXCEPT { return m_transpositions.size(); }
356     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
357     Index cols() const EIGEN_NOEXCEPT { return m_transpositions.size(); }
358 
359     /** \returns the \a matrix with the inverse transpositions applied to the columns.
360       */
361     template<typename OtherDerived> friend
362     const Product<OtherDerived, Transpose, AliasFreeProduct>
363     operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt)
364     {
365       return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt);
366     }
367 
368     /** \returns the \a matrix with the inverse transpositions applied to the rows.
369       */
370     template<typename OtherDerived>
371     const Product<Transpose, OtherDerived, AliasFreeProduct>
372     operator*(const MatrixBase<OtherDerived>& matrix) const
373     {
374       return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived());
375     }
376 
377     EIGEN_DEVICE_FUNC
378     const TranspositionType& nestedExpression() const { return m_transpositions; }
379 
380   protected:
381     const TranspositionType& m_transpositions;
382 };
383 
384 } // end namespace Eigen
385 
386 #endif // EIGEN_TRANSPOSITIONS_H
387