1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <[email protected]> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_LLT_H 11 #define EIGEN_LLT_H 12 13 namespace Eigen { 14 15 namespace internal{ 16 17 template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> > 18 : traits<_MatrixType> 19 { 20 typedef MatrixXpr XprKind; 21 typedef SolverStorage StorageKind; 22 typedef int StorageIndex; 23 enum { Flags = 0 }; 24 }; 25 26 template<typename MatrixType, int UpLo> struct LLT_Traits; 27 } 28 29 /** \ingroup Cholesky_Module 30 * 31 * \class LLT 32 * 33 * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features 34 * 35 * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition 36 * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. 37 * The other triangular part won't be read. 38 * 39 * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite 40 * matrix A such that A = LL^* = U^*U, where L is lower triangular. 41 * 42 * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, 43 * for that purpose, we recommend the Cholesky decomposition without square root which is more stable 44 * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other 45 * situations like generalised eigen problems with hermitian matrices. 46 * 47 * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, 48 * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations 49 * has a solution. 50 * 51 * Example: \include LLT_example.cpp 52 * Output: \verbinclude LLT_example.out 53 * 54 * \b Performance: for best performance, it is recommended to use a column-major storage format 55 * with the Lower triangular part (the default), or, equivalently, a row-major storage format 56 * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization 57 * step, and rank-updates can be up to 3 times slower. 58 * 59 * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. 60 * 61 * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. 62 * Therefore, the strict lower part does not have to store correct values. 63 * 64 * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT 65 */ 66 template<typename _MatrixType, int _UpLo> class LLT 67 : public SolverBase<LLT<_MatrixType, _UpLo> > 68 { 69 public: 70 typedef _MatrixType MatrixType; 71 typedef SolverBase<LLT> Base; 72 friend class SolverBase<LLT>; 73 74 EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) 75 enum { 76 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 77 }; 78 79 enum { 80 PacketSize = internal::packet_traits<Scalar>::size, 81 AlignmentMask = int(PacketSize)-1, 82 UpLo = _UpLo 83 }; 84 85 typedef internal::LLT_Traits<MatrixType,UpLo> Traits; 86 87 /** 88 * \brief Default Constructor. 89 * 90 * The default constructor is useful in cases in which the user intends to 91 * perform decompositions via LLT::compute(const MatrixType&). 92 */ 93 LLT() : m_matrix(), m_isInitialized(false) {} 94 95 /** \brief Default Constructor with memory preallocation 96 * 97 * Like the default constructor but with preallocation of the internal data 98 * according to the specified problem \a size. 99 * \sa LLT() 100 */ 101 explicit LLT(Index size) : m_matrix(size, size), 102 m_isInitialized(false) {} 103 104 template<typename InputType> 105 explicit LLT(const EigenBase<InputType>& matrix) 106 : m_matrix(matrix.rows(), matrix.cols()), 107 m_isInitialized(false) 108 { 109 compute(matrix.derived()); 110 } 111 112 /** \brief Constructs a LLT factorization from a given matrix 113 * 114 * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when 115 * \c MatrixType is a Eigen::Ref. 116 * 117 * \sa LLT(const EigenBase&) 118 */ 119 template<typename InputType> 120 explicit LLT(EigenBase<InputType>& matrix) 121 : m_matrix(matrix.derived()), 122 m_isInitialized(false) 123 { 124 compute(matrix.derived()); 125 } 126 127 /** \returns a view of the upper triangular matrix U */ 128 inline typename Traits::MatrixU matrixU() const 129 { 130 eigen_assert(m_isInitialized && "LLT is not initialized."); 131 return Traits::getU(m_matrix); 132 } 133 134 /** \returns a view of the lower triangular matrix L */ 135 inline typename Traits::MatrixL matrixL() const 136 { 137 eigen_assert(m_isInitialized && "LLT is not initialized."); 138 return Traits::getL(m_matrix); 139 } 140 141 #ifdef EIGEN_PARSED_BY_DOXYGEN 142 /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. 143 * 144 * Since this LLT class assumes anyway that the matrix A is invertible, the solution 145 * theoretically exists and is unique regardless of b. 146 * 147 * Example: \include LLT_solve.cpp 148 * Output: \verbinclude LLT_solve.out 149 * 150 * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() 151 */ 152 template<typename Rhs> 153 inline const Solve<LLT, Rhs> 154 solve(const MatrixBase<Rhs>& b) const; 155 #endif 156 157 template<typename Derived> 158 void solveInPlace(const MatrixBase<Derived> &bAndX) const; 159 160 template<typename InputType> 161 LLT& compute(const EigenBase<InputType>& matrix); 162 163 /** \returns an estimate of the reciprocal condition number of the matrix of 164 * which \c *this is the Cholesky decomposition. 165 */ 166 RealScalar rcond() const 167 { 168 eigen_assert(m_isInitialized && "LLT is not initialized."); 169 eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); 170 return internal::rcond_estimate_helper(m_l1_norm, *this); 171 } 172 173 /** \returns the LLT decomposition matrix 174 * 175 * TODO: document the storage layout 176 */ 177 inline const MatrixType& matrixLLT() const 178 { 179 eigen_assert(m_isInitialized && "LLT is not initialized."); 180 return m_matrix; 181 } 182 183 MatrixType reconstructedMatrix() const; 184 185 186 /** \brief Reports whether previous computation was successful. 187 * 188 * \returns \c Success if computation was successful, 189 * \c NumericalIssue if the matrix.appears not to be positive definite. 190 */ 191 ComputationInfo info() const 192 { 193 eigen_assert(m_isInitialized && "LLT is not initialized."); 194 return m_info; 195 } 196 197 /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. 198 * 199 * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: 200 * \code x = decomposition.adjoint().solve(b) \endcode 201 */ 202 const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }; 203 204 inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } 205 inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } 206 207 template<typename VectorType> 208 LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); 209 210 #ifndef EIGEN_PARSED_BY_DOXYGEN 211 template<typename RhsType, typename DstType> 212 void _solve_impl(const RhsType &rhs, DstType &dst) const; 213 214 template<bool Conjugate, typename RhsType, typename DstType> 215 void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; 216 #endif 217 218 protected: 219 220 static void check_template_parameters() 221 { 222 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 223 } 224 225 /** \internal 226 * Used to compute and store L 227 * The strict upper part is not used and even not initialized. 228 */ 229 MatrixType m_matrix; 230 RealScalar m_l1_norm; 231 bool m_isInitialized; 232 ComputationInfo m_info; 233 }; 234 235 namespace internal { 236 237 template<typename Scalar, int UpLo> struct llt_inplace; 238 239 template<typename MatrixType, typename VectorType> 240 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) 241 { 242 using std::sqrt; 243 typedef typename MatrixType::Scalar Scalar; 244 typedef typename MatrixType::RealScalar RealScalar; 245 typedef typename MatrixType::ColXpr ColXpr; 246 typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; 247 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; 248 typedef Matrix<Scalar,Dynamic,1> TempVectorType; 249 typedef typename TempVectorType::SegmentReturnType TempVecSegment; 250 251 Index n = mat.cols(); 252 eigen_assert(mat.rows()==n && vec.size()==n); 253 254 TempVectorType temp; 255 256 if(sigma>0) 257 { 258 // This version is based on Givens rotations. 259 // It is faster than the other one below, but only works for updates, 260 // i.e., for sigma > 0 261 temp = sqrt(sigma) * vec; 262 263 for(Index i=0; i<n; ++i) 264 { 265 JacobiRotation<Scalar> g; 266 g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); 267 268 Index rs = n-i-1; 269 if(rs>0) 270 { 271 ColXprSegment x(mat.col(i).tail(rs)); 272 TempVecSegment y(temp.tail(rs)); 273 apply_rotation_in_the_plane(x, y, g); 274 } 275 } 276 } 277 else 278 { 279 temp = vec; 280 RealScalar beta = 1; 281 for(Index j=0; j<n; ++j) 282 { 283 RealScalar Ljj = numext::real(mat.coeff(j,j)); 284 RealScalar dj = numext::abs2(Ljj); 285 Scalar wj = temp.coeff(j); 286 RealScalar swj2 = sigma*numext::abs2(wj); 287 RealScalar gamma = dj*beta + swj2; 288 289 RealScalar x = dj + swj2/beta; 290 if (x<=RealScalar(0)) 291 return j; 292 RealScalar nLjj = sqrt(x); 293 mat.coeffRef(j,j) = nLjj; 294 beta += swj2/dj; 295 296 // Update the terms of L 297 Index rs = n-j-1; 298 if(rs) 299 { 300 temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); 301 if(gamma != 0) 302 mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); 303 } 304 } 305 } 306 return -1; 307 } 308 309 template<typename Scalar> struct llt_inplace<Scalar, Lower> 310 { 311 typedef typename NumTraits<Scalar>::Real RealScalar; 312 template<typename MatrixType> 313 static Index unblocked(MatrixType& mat) 314 { 315 using std::sqrt; 316 317 eigen_assert(mat.rows()==mat.cols()); 318 const Index size = mat.rows(); 319 for(Index k = 0; k < size; ++k) 320 { 321 Index rs = size-k-1; // remaining size 322 323 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); 324 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); 325 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); 326 327 RealScalar x = numext::real(mat.coeff(k,k)); 328 if (k>0) x -= A10.squaredNorm(); 329 if (x<=RealScalar(0)) 330 return k; 331 mat.coeffRef(k,k) = x = sqrt(x); 332 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); 333 if (rs>0) A21 /= x; 334 } 335 return -1; 336 } 337 338 template<typename MatrixType> 339 static Index blocked(MatrixType& m) 340 { 341 eigen_assert(m.rows()==m.cols()); 342 Index size = m.rows(); 343 if(size<32) 344 return unblocked(m); 345 346 Index blockSize = size/8; 347 blockSize = (blockSize/16)*16; 348 blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); 349 350 for (Index k=0; k<size; k+=blockSize) 351 { 352 // partition the matrix: 353 // A00 | - | - 354 // lu = A10 | A11 | - 355 // A20 | A21 | A22 356 Index bs = (std::min)(blockSize, size-k); 357 Index rs = size - k - bs; 358 Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); 359 Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); 360 Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); 361 362 Index ret; 363 if((ret=unblocked(A11))>=0) return k+ret; 364 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); 365 if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck 366 } 367 return -1; 368 } 369 370 template<typename MatrixType, typename VectorType> 371 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) 372 { 373 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); 374 } 375 }; 376 377 template<typename Scalar> struct llt_inplace<Scalar, Upper> 378 { 379 typedef typename NumTraits<Scalar>::Real RealScalar; 380 381 template<typename MatrixType> 382 static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) 383 { 384 Transpose<MatrixType> matt(mat); 385 return llt_inplace<Scalar, Lower>::unblocked(matt); 386 } 387 template<typename MatrixType> 388 static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) 389 { 390 Transpose<MatrixType> matt(mat); 391 return llt_inplace<Scalar, Lower>::blocked(matt); 392 } 393 template<typename MatrixType, typename VectorType> 394 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) 395 { 396 Transpose<MatrixType> matt(mat); 397 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); 398 } 399 }; 400 401 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> 402 { 403 typedef const TriangularView<const MatrixType, Lower> MatrixL; 404 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; 405 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } 406 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } 407 static bool inplace_decomposition(MatrixType& m) 408 { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } 409 }; 410 411 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> 412 { 413 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; 414 typedef const TriangularView<const MatrixType, Upper> MatrixU; 415 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } 416 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } 417 static bool inplace_decomposition(MatrixType& m) 418 { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } 419 }; 420 421 } // end namespace internal 422 423 /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix 424 * 425 * \returns a reference to *this 426 * 427 * Example: \include TutorialLinAlgComputeTwice.cpp 428 * Output: \verbinclude TutorialLinAlgComputeTwice.out 429 */ 430 template<typename MatrixType, int _UpLo> 431 template<typename InputType> 432 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) 433 { 434 check_template_parameters(); 435 436 eigen_assert(a.rows()==a.cols()); 437 const Index size = a.rows(); 438 m_matrix.resize(size, size); 439 if (!internal::is_same_dense(m_matrix, a.derived())) 440 m_matrix = a.derived(); 441 442 // Compute matrix L1 norm = max abs column sum. 443 m_l1_norm = RealScalar(0); 444 // TODO move this code to SelfAdjointView 445 for (Index col = 0; col < size; ++col) { 446 RealScalar abs_col_sum; 447 if (_UpLo == Lower) 448 abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); 449 else 450 abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); 451 if (abs_col_sum > m_l1_norm) 452 m_l1_norm = abs_col_sum; 453 } 454 455 m_isInitialized = true; 456 bool ok = Traits::inplace_decomposition(m_matrix); 457 m_info = ok ? Success : NumericalIssue; 458 459 return *this; 460 } 461 462 /** Performs a rank one update (or dowdate) of the current decomposition. 463 * If A = LL^* before the rank one update, 464 * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector 465 * of same dimension. 466 */ 467 template<typename _MatrixType, int _UpLo> 468 template<typename VectorType> 469 LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) 470 { 471 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); 472 eigen_assert(v.size()==m_matrix.cols()); 473 eigen_assert(m_isInitialized); 474 if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) 475 m_info = NumericalIssue; 476 else 477 m_info = Success; 478 479 return *this; 480 } 481 482 #ifndef EIGEN_PARSED_BY_DOXYGEN 483 template<typename _MatrixType,int _UpLo> 484 template<typename RhsType, typename DstType> 485 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const 486 { 487 _solve_impl_transposed<true>(rhs, dst); 488 } 489 490 template<typename _MatrixType,int _UpLo> 491 template<bool Conjugate, typename RhsType, typename DstType> 492 void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const 493 { 494 dst = rhs; 495 496 matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); 497 matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); 498 } 499 #endif 500 501 /** \internal use x = llt_object.solve(x); 502 * 503 * This is the \em in-place version of solve(). 504 * 505 * \param bAndX represents both the right-hand side matrix b and result x. 506 * 507 * This version avoids a copy when the right hand side matrix b is not needed anymore. 508 * 509 * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. 510 * This function will const_cast it, so constness isn't honored here. 511 * 512 * \sa LLT::solve(), MatrixBase::llt() 513 */ 514 template<typename MatrixType, int _UpLo> 515 template<typename Derived> 516 void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const 517 { 518 eigen_assert(m_isInitialized && "LLT is not initialized."); 519 eigen_assert(m_matrix.rows()==bAndX.rows()); 520 matrixL().solveInPlace(bAndX); 521 matrixU().solveInPlace(bAndX); 522 } 523 524 /** \returns the matrix represented by the decomposition, 525 * i.e., it returns the product: L L^*. 526 * This function is provided for debug purpose. */ 527 template<typename MatrixType, int _UpLo> 528 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const 529 { 530 eigen_assert(m_isInitialized && "LLT is not initialized."); 531 return matrixL() * matrixL().adjoint().toDenseMatrix(); 532 } 533 534 /** \cholesky_module 535 * \returns the LLT decomposition of \c *this 536 * \sa SelfAdjointView::llt() 537 */ 538 template<typename Derived> 539 inline const LLT<typename MatrixBase<Derived>::PlainObject> 540 MatrixBase<Derived>::llt() const 541 { 542 return LLT<PlainObject>(derived()); 543 } 544 545 /** \cholesky_module 546 * \returns the LLT decomposition of \c *this 547 * \sa SelfAdjointView::llt() 548 */ 549 template<typename MatrixType, unsigned int UpLo> 550 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> 551 SelfAdjointView<MatrixType, UpLo>::llt() const 552 { 553 return LLT<PlainObject,UpLo>(m_matrix); 554 } 555 556 } // end namespace Eigen 557 558 #endif // EIGEN_LLT_H 559