xref: /aosp_15_r20/external/eigen/Eigen/src/Cholesky/LLT.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LLT_H
11 #define EIGEN_LLT_H
12 
13 namespace Eigen {
14 
15 namespace internal{
16 
17 template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> >
18  : traits<_MatrixType>
19 {
20   typedef MatrixXpr XprKind;
21   typedef SolverStorage StorageKind;
22   typedef int StorageIndex;
23   enum { Flags = 0 };
24 };
25 
26 template<typename MatrixType, int UpLo> struct LLT_Traits;
27 }
28 
29 /** \ingroup Cholesky_Module
30   *
31   * \class LLT
32   *
33   * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
34   *
35   * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
36   * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
37   *               The other triangular part won't be read.
38   *
39   * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
40   * matrix A such that A = LL^* = U^*U, where L is lower triangular.
41   *
42   * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b,
43   * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
44   * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
45   * situations like generalised eigen problems with hermitian matrices.
46   *
47   * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
48   * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
49   * has a solution.
50   *
51   * Example: \include LLT_example.cpp
52   * Output: \verbinclude LLT_example.out
53   *
54   * \b Performance: for best performance, it is recommended to use a column-major storage format
55   * with the Lower triangular part (the default), or, equivalently, a row-major storage format
56   * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization
57   * step, and rank-updates can be up to 3 times slower.
58   *
59   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
60   *
61   * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
62   * Therefore, the strict lower part does not have to store correct values.
63   *
64   * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
65   */
66 template<typename _MatrixType, int _UpLo> class LLT
67         : public SolverBase<LLT<_MatrixType, _UpLo> >
68 {
69   public:
70     typedef _MatrixType MatrixType;
71     typedef SolverBase<LLT> Base;
72     friend class SolverBase<LLT>;
73 
74     EIGEN_GENERIC_PUBLIC_INTERFACE(LLT)
75     enum {
76       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77     };
78 
79     enum {
80       PacketSize = internal::packet_traits<Scalar>::size,
81       AlignmentMask = int(PacketSize)-1,
82       UpLo = _UpLo
83     };
84 
85     typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
86 
87     /**
88       * \brief Default Constructor.
89       *
90       * The default constructor is useful in cases in which the user intends to
91       * perform decompositions via LLT::compute(const MatrixType&).
92       */
93     LLT() : m_matrix(), m_isInitialized(false) {}
94 
95     /** \brief Default Constructor with memory preallocation
96       *
97       * Like the default constructor but with preallocation of the internal data
98       * according to the specified problem \a size.
99       * \sa LLT()
100       */
101     explicit LLT(Index size) : m_matrix(size, size),
102                     m_isInitialized(false) {}
103 
104     template<typename InputType>
105     explicit LLT(const EigenBase<InputType>& matrix)
106       : m_matrix(matrix.rows(), matrix.cols()),
107         m_isInitialized(false)
108     {
109       compute(matrix.derived());
110     }
111 
112     /** \brief Constructs a LLT factorization from a given matrix
113       *
114       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
115       * \c MatrixType is a Eigen::Ref.
116       *
117       * \sa LLT(const EigenBase&)
118       */
119     template<typename InputType>
120     explicit LLT(EigenBase<InputType>& matrix)
121       : m_matrix(matrix.derived()),
122         m_isInitialized(false)
123     {
124       compute(matrix.derived());
125     }
126 
127     /** \returns a view of the upper triangular matrix U */
128     inline typename Traits::MatrixU matrixU() const
129     {
130       eigen_assert(m_isInitialized && "LLT is not initialized.");
131       return Traits::getU(m_matrix);
132     }
133 
134     /** \returns a view of the lower triangular matrix L */
135     inline typename Traits::MatrixL matrixL() const
136     {
137       eigen_assert(m_isInitialized && "LLT is not initialized.");
138       return Traits::getL(m_matrix);
139     }
140 
141     #ifdef EIGEN_PARSED_BY_DOXYGEN
142     /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
143       *
144       * Since this LLT class assumes anyway that the matrix A is invertible, the solution
145       * theoretically exists and is unique regardless of b.
146       *
147       * Example: \include LLT_solve.cpp
148       * Output: \verbinclude LLT_solve.out
149       *
150       * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
151       */
152     template<typename Rhs>
153     inline const Solve<LLT, Rhs>
154     solve(const MatrixBase<Rhs>& b) const;
155     #endif
156 
157     template<typename Derived>
158     void solveInPlace(const MatrixBase<Derived> &bAndX) const;
159 
160     template<typename InputType>
161     LLT& compute(const EigenBase<InputType>& matrix);
162 
163     /** \returns an estimate of the reciprocal condition number of the matrix of
164       *  which \c *this is the Cholesky decomposition.
165       */
166     RealScalar rcond() const
167     {
168       eigen_assert(m_isInitialized && "LLT is not initialized.");
169       eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
170       return internal::rcond_estimate_helper(m_l1_norm, *this);
171     }
172 
173     /** \returns the LLT decomposition matrix
174       *
175       * TODO: document the storage layout
176       */
177     inline const MatrixType& matrixLLT() const
178     {
179       eigen_assert(m_isInitialized && "LLT is not initialized.");
180       return m_matrix;
181     }
182 
183     MatrixType reconstructedMatrix() const;
184 
185 
186     /** \brief Reports whether previous computation was successful.
187       *
188       * \returns \c Success if computation was successful,
189       *          \c NumericalIssue if the matrix.appears not to be positive definite.
190       */
191     ComputationInfo info() const
192     {
193       eigen_assert(m_isInitialized && "LLT is not initialized.");
194       return m_info;
195     }
196 
197     /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
198       *
199       * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
200       * \code x = decomposition.adjoint().solve(b) \endcode
201       */
202     const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; };
203 
204     inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
205     inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
206 
207     template<typename VectorType>
208     LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
209 
210     #ifndef EIGEN_PARSED_BY_DOXYGEN
211     template<typename RhsType, typename DstType>
212     void _solve_impl(const RhsType &rhs, DstType &dst) const;
213 
214     template<bool Conjugate, typename RhsType, typename DstType>
215     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
216     #endif
217 
218   protected:
219 
220     static void check_template_parameters()
221     {
222       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
223     }
224 
225     /** \internal
226       * Used to compute and store L
227       * The strict upper part is not used and even not initialized.
228       */
229     MatrixType m_matrix;
230     RealScalar m_l1_norm;
231     bool m_isInitialized;
232     ComputationInfo m_info;
233 };
234 
235 namespace internal {
236 
237 template<typename Scalar, int UpLo> struct llt_inplace;
238 
239 template<typename MatrixType, typename VectorType>
240 static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
241 {
242   using std::sqrt;
243   typedef typename MatrixType::Scalar Scalar;
244   typedef typename MatrixType::RealScalar RealScalar;
245   typedef typename MatrixType::ColXpr ColXpr;
246   typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
247   typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
248   typedef Matrix<Scalar,Dynamic,1> TempVectorType;
249   typedef typename TempVectorType::SegmentReturnType TempVecSegment;
250 
251   Index n = mat.cols();
252   eigen_assert(mat.rows()==n && vec.size()==n);
253 
254   TempVectorType temp;
255 
256   if(sigma>0)
257   {
258     // This version is based on Givens rotations.
259     // It is faster than the other one below, but only works for updates,
260     // i.e., for sigma > 0
261     temp = sqrt(sigma) * vec;
262 
263     for(Index i=0; i<n; ++i)
264     {
265       JacobiRotation<Scalar> g;
266       g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
267 
268       Index rs = n-i-1;
269       if(rs>0)
270       {
271         ColXprSegment x(mat.col(i).tail(rs));
272         TempVecSegment y(temp.tail(rs));
273         apply_rotation_in_the_plane(x, y, g);
274       }
275     }
276   }
277   else
278   {
279     temp = vec;
280     RealScalar beta = 1;
281     for(Index j=0; j<n; ++j)
282     {
283       RealScalar Ljj = numext::real(mat.coeff(j,j));
284       RealScalar dj = numext::abs2(Ljj);
285       Scalar wj = temp.coeff(j);
286       RealScalar swj2 = sigma*numext::abs2(wj);
287       RealScalar gamma = dj*beta + swj2;
288 
289       RealScalar x = dj + swj2/beta;
290       if (x<=RealScalar(0))
291         return j;
292       RealScalar nLjj = sqrt(x);
293       mat.coeffRef(j,j) = nLjj;
294       beta += swj2/dj;
295 
296       // Update the terms of L
297       Index rs = n-j-1;
298       if(rs)
299       {
300         temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
301         if(gamma != 0)
302           mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
303       }
304     }
305   }
306   return -1;
307 }
308 
309 template<typename Scalar> struct llt_inplace<Scalar, Lower>
310 {
311   typedef typename NumTraits<Scalar>::Real RealScalar;
312   template<typename MatrixType>
313   static Index unblocked(MatrixType& mat)
314   {
315     using std::sqrt;
316 
317     eigen_assert(mat.rows()==mat.cols());
318     const Index size = mat.rows();
319     for(Index k = 0; k < size; ++k)
320     {
321       Index rs = size-k-1; // remaining size
322 
323       Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
324       Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
325       Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
326 
327       RealScalar x = numext::real(mat.coeff(k,k));
328       if (k>0) x -= A10.squaredNorm();
329       if (x<=RealScalar(0))
330         return k;
331       mat.coeffRef(k,k) = x = sqrt(x);
332       if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
333       if (rs>0) A21 /= x;
334     }
335     return -1;
336   }
337 
338   template<typename MatrixType>
339   static Index blocked(MatrixType& m)
340   {
341     eigen_assert(m.rows()==m.cols());
342     Index size = m.rows();
343     if(size<32)
344       return unblocked(m);
345 
346     Index blockSize = size/8;
347     blockSize = (blockSize/16)*16;
348     blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
349 
350     for (Index k=0; k<size; k+=blockSize)
351     {
352       // partition the matrix:
353       //       A00 |  -  |  -
354       // lu  = A10 | A11 |  -
355       //       A20 | A21 | A22
356       Index bs = (std::min)(blockSize, size-k);
357       Index rs = size - k - bs;
358       Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs);
359       Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs);
360       Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
361 
362       Index ret;
363       if((ret=unblocked(A11))>=0) return k+ret;
364       if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
365       if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
366     }
367     return -1;
368   }
369 
370   template<typename MatrixType, typename VectorType>
371   static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
372   {
373     return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
374   }
375 };
376 
377 template<typename Scalar> struct llt_inplace<Scalar, Upper>
378 {
379   typedef typename NumTraits<Scalar>::Real RealScalar;
380 
381   template<typename MatrixType>
382   static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
383   {
384     Transpose<MatrixType> matt(mat);
385     return llt_inplace<Scalar, Lower>::unblocked(matt);
386   }
387   template<typename MatrixType>
388   static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
389   {
390     Transpose<MatrixType> matt(mat);
391     return llt_inplace<Scalar, Lower>::blocked(matt);
392   }
393   template<typename MatrixType, typename VectorType>
394   static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
395   {
396     Transpose<MatrixType> matt(mat);
397     return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
398   }
399 };
400 
401 template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
402 {
403   typedef const TriangularView<const MatrixType, Lower> MatrixL;
404   typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
405   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
406   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
407   static bool inplace_decomposition(MatrixType& m)
408   { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
409 };
410 
411 template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
412 {
413   typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
414   typedef const TriangularView<const MatrixType, Upper> MatrixU;
415   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
416   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
417   static bool inplace_decomposition(MatrixType& m)
418   { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
419 };
420 
421 } // end namespace internal
422 
423 /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
424   *
425   * \returns a reference to *this
426   *
427   * Example: \include TutorialLinAlgComputeTwice.cpp
428   * Output: \verbinclude TutorialLinAlgComputeTwice.out
429   */
430 template<typename MatrixType, int _UpLo>
431 template<typename InputType>
432 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
433 {
434   check_template_parameters();
435 
436   eigen_assert(a.rows()==a.cols());
437   const Index size = a.rows();
438   m_matrix.resize(size, size);
439   if (!internal::is_same_dense(m_matrix, a.derived()))
440     m_matrix = a.derived();
441 
442   // Compute matrix L1 norm = max abs column sum.
443   m_l1_norm = RealScalar(0);
444   // TODO move this code to SelfAdjointView
445   for (Index col = 0; col < size; ++col) {
446     RealScalar abs_col_sum;
447     if (_UpLo == Lower)
448       abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
449     else
450       abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
451     if (abs_col_sum > m_l1_norm)
452       m_l1_norm = abs_col_sum;
453   }
454 
455   m_isInitialized = true;
456   bool ok = Traits::inplace_decomposition(m_matrix);
457   m_info = ok ? Success : NumericalIssue;
458 
459   return *this;
460 }
461 
462 /** Performs a rank one update (or dowdate) of the current decomposition.
463   * If A = LL^* before the rank one update,
464   * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
465   * of same dimension.
466   */
467 template<typename _MatrixType, int _UpLo>
468 template<typename VectorType>
469 LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
470 {
471   EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
472   eigen_assert(v.size()==m_matrix.cols());
473   eigen_assert(m_isInitialized);
474   if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
475     m_info = NumericalIssue;
476   else
477     m_info = Success;
478 
479   return *this;
480 }
481 
482 #ifndef EIGEN_PARSED_BY_DOXYGEN
483 template<typename _MatrixType,int _UpLo>
484 template<typename RhsType, typename DstType>
485 void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
486 {
487   _solve_impl_transposed<true>(rhs, dst);
488 }
489 
490 template<typename _MatrixType,int _UpLo>
491 template<bool Conjugate, typename RhsType, typename DstType>
492 void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
493 {
494     dst = rhs;
495 
496     matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst);
497     matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst);
498 }
499 #endif
500 
501 /** \internal use x = llt_object.solve(x);
502   *
503   * This is the \em in-place version of solve().
504   *
505   * \param bAndX represents both the right-hand side matrix b and result x.
506   *
507   * This version avoids a copy when the right hand side matrix b is not needed anymore.
508   *
509   * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
510   * This function will const_cast it, so constness isn't honored here.
511   *
512   * \sa LLT::solve(), MatrixBase::llt()
513   */
514 template<typename MatrixType, int _UpLo>
515 template<typename Derived>
516 void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
517 {
518   eigen_assert(m_isInitialized && "LLT is not initialized.");
519   eigen_assert(m_matrix.rows()==bAndX.rows());
520   matrixL().solveInPlace(bAndX);
521   matrixU().solveInPlace(bAndX);
522 }
523 
524 /** \returns the matrix represented by the decomposition,
525  * i.e., it returns the product: L L^*.
526  * This function is provided for debug purpose. */
527 template<typename MatrixType, int _UpLo>
528 MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
529 {
530   eigen_assert(m_isInitialized && "LLT is not initialized.");
531   return matrixL() * matrixL().adjoint().toDenseMatrix();
532 }
533 
534 /** \cholesky_module
535   * \returns the LLT decomposition of \c *this
536   * \sa SelfAdjointView::llt()
537   */
538 template<typename Derived>
539 inline const LLT<typename MatrixBase<Derived>::PlainObject>
540 MatrixBase<Derived>::llt() const
541 {
542   return LLT<PlainObject>(derived());
543 }
544 
545 /** \cholesky_module
546   * \returns the LLT decomposition of \c *this
547   * \sa SelfAdjointView::llt()
548   */
549 template<typename MatrixType, unsigned int UpLo>
550 inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
551 SelfAdjointView<MatrixType, UpLo>::llt() const
552 {
553   return LLT<PlainObject,UpLo>(m_matrix);
554 }
555 
556 } // end namespace Eigen
557 
558 #endif // EIGEN_LLT_H
559