xref: /aosp_15_r20/external/eigen/Eigen/src/Cholesky/LDLT.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2009 Keir Mierle <[email protected]>
6 // Copyright (C) 2009 Benoit Jacob <[email protected]>
7 // Copyright (C) 2011 Timothy E. Holy <[email protected] >
8 //
9 // This Source Code Form is subject to the terms of the Mozilla
10 // Public License v. 2.0. If a copy of the MPL was not distributed
11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
12 
13 #ifndef EIGEN_LDLT_H
14 #define EIGEN_LDLT_H
15 
16 namespace Eigen {
17 
18 namespace internal {
19   template<typename _MatrixType, int _UpLo> struct traits<LDLT<_MatrixType, _UpLo> >
20    : traits<_MatrixType>
21   {
22     typedef MatrixXpr XprKind;
23     typedef SolverStorage StorageKind;
24     typedef int StorageIndex;
25     enum { Flags = 0 };
26   };
27 
28   template<typename MatrixType, int UpLo> struct LDLT_Traits;
29 
30   // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
31   enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
32 }
33 
34 /** \ingroup Cholesky_Module
35   *
36   * \class LDLT
37   *
38   * \brief Robust Cholesky decomposition of a matrix with pivoting
39   *
40   * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
41   * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
42   *             The other triangular part won't be read.
43   *
44   * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
45   * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
46   * is lower triangular with a unit diagonal and D is a diagonal matrix.
47   *
48   * The decomposition uses pivoting to ensure stability, so that D will have
49   * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
50   * on D also stabilizes the computation.
51   *
52   * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
53   * decomposition to determine whether a system of equations has a solution.
54   *
55   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
56   *
57   * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
58   */
59 template<typename _MatrixType, int _UpLo> class LDLT
60         : public SolverBase<LDLT<_MatrixType, _UpLo> >
61 {
62   public:
63     typedef _MatrixType MatrixType;
64     typedef SolverBase<LDLT> Base;
65     friend class SolverBase<LDLT>;
66 
67     EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT)
68     enum {
69       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
70       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
71       UpLo = _UpLo
72     };
73     typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
74 
75     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
76     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
77 
78     typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
79 
80     /** \brief Default Constructor.
81       *
82       * The default constructor is useful in cases in which the user intends to
83       * perform decompositions via LDLT::compute(const MatrixType&).
84       */
85     LDLT()
86       : m_matrix(),
87         m_transpositions(),
88         m_sign(internal::ZeroSign),
89         m_isInitialized(false)
90     {}
91 
92     /** \brief Default Constructor with memory preallocation
93       *
94       * Like the default constructor but with preallocation of the internal data
95       * according to the specified problem \a size.
96       * \sa LDLT()
97       */
98     explicit LDLT(Index size)
99       : m_matrix(size, size),
100         m_transpositions(size),
101         m_temporary(size),
102         m_sign(internal::ZeroSign),
103         m_isInitialized(false)
104     {}
105 
106     /** \brief Constructor with decomposition
107       *
108       * This calculates the decomposition for the input \a matrix.
109       *
110       * \sa LDLT(Index size)
111       */
112     template<typename InputType>
113     explicit LDLT(const EigenBase<InputType>& matrix)
114       : m_matrix(matrix.rows(), matrix.cols()),
115         m_transpositions(matrix.rows()),
116         m_temporary(matrix.rows()),
117         m_sign(internal::ZeroSign),
118         m_isInitialized(false)
119     {
120       compute(matrix.derived());
121     }
122 
123     /** \brief Constructs a LDLT factorization from a given matrix
124       *
125       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
126       *
127       * \sa LDLT(const EigenBase&)
128       */
129     template<typename InputType>
130     explicit LDLT(EigenBase<InputType>& matrix)
131       : m_matrix(matrix.derived()),
132         m_transpositions(matrix.rows()),
133         m_temporary(matrix.rows()),
134         m_sign(internal::ZeroSign),
135         m_isInitialized(false)
136     {
137       compute(matrix.derived());
138     }
139 
140     /** Clear any existing decomposition
141      * \sa rankUpdate(w,sigma)
142      */
143     void setZero()
144     {
145       m_isInitialized = false;
146     }
147 
148     /** \returns a view of the upper triangular matrix U */
149     inline typename Traits::MatrixU matrixU() const
150     {
151       eigen_assert(m_isInitialized && "LDLT is not initialized.");
152       return Traits::getU(m_matrix);
153     }
154 
155     /** \returns a view of the lower triangular matrix L */
156     inline typename Traits::MatrixL matrixL() const
157     {
158       eigen_assert(m_isInitialized && "LDLT is not initialized.");
159       return Traits::getL(m_matrix);
160     }
161 
162     /** \returns the permutation matrix P as a transposition sequence.
163       */
164     inline const TranspositionType& transpositionsP() const
165     {
166       eigen_assert(m_isInitialized && "LDLT is not initialized.");
167       return m_transpositions;
168     }
169 
170     /** \returns the coefficients of the diagonal matrix D */
171     inline Diagonal<const MatrixType> vectorD() const
172     {
173       eigen_assert(m_isInitialized && "LDLT is not initialized.");
174       return m_matrix.diagonal();
175     }
176 
177     /** \returns true if the matrix is positive (semidefinite) */
178     inline bool isPositive() const
179     {
180       eigen_assert(m_isInitialized && "LDLT is not initialized.");
181       return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
182     }
183 
184     /** \returns true if the matrix is negative (semidefinite) */
185     inline bool isNegative(void) const
186     {
187       eigen_assert(m_isInitialized && "LDLT is not initialized.");
188       return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
189     }
190 
191     #ifdef EIGEN_PARSED_BY_DOXYGEN
192     /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
193       *
194       * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
195       *
196       * \note_about_checking_solutions
197       *
198       * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
199       * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
200       * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
201       * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
202       * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
203       * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular.
204       *
205       * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
206       */
207     template<typename Rhs>
208     inline const Solve<LDLT, Rhs>
209     solve(const MatrixBase<Rhs>& b) const;
210     #endif
211 
212     template<typename Derived>
213     bool solveInPlace(MatrixBase<Derived> &bAndX) const;
214 
215     template<typename InputType>
216     LDLT& compute(const EigenBase<InputType>& matrix);
217 
218     /** \returns an estimate of the reciprocal condition number of the matrix of
219      *  which \c *this is the LDLT decomposition.
220      */
221     RealScalar rcond() const
222     {
223       eigen_assert(m_isInitialized && "LDLT is not initialized.");
224       return internal::rcond_estimate_helper(m_l1_norm, *this);
225     }
226 
227     template <typename Derived>
228     LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
229 
230     /** \returns the internal LDLT decomposition matrix
231       *
232       * TODO: document the storage layout
233       */
234     inline const MatrixType& matrixLDLT() const
235     {
236       eigen_assert(m_isInitialized && "LDLT is not initialized.");
237       return m_matrix;
238     }
239 
240     MatrixType reconstructedMatrix() const;
241 
242     /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
243       *
244       * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
245       * \code x = decomposition.adjoint().solve(b) \endcode
246       */
247     const LDLT& adjoint() const { return *this; };
248 
249     EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
250     EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
251 
252     /** \brief Reports whether previous computation was successful.
253       *
254       * \returns \c Success if computation was successful,
255       *          \c NumericalIssue if the factorization failed because of a zero pivot.
256       */
257     ComputationInfo info() const
258     {
259       eigen_assert(m_isInitialized && "LDLT is not initialized.");
260       return m_info;
261     }
262 
263     #ifndef EIGEN_PARSED_BY_DOXYGEN
264     template<typename RhsType, typename DstType>
265     void _solve_impl(const RhsType &rhs, DstType &dst) const;
266 
267     template<bool Conjugate, typename RhsType, typename DstType>
268     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
269     #endif
270 
271   protected:
272 
273     static void check_template_parameters()
274     {
275       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
276     }
277 
278     /** \internal
279       * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
280       * The strict upper part is used during the decomposition, the strict lower
281       * part correspond to the coefficients of L (its diagonal is equal to 1 and
282       * is not stored), and the diagonal entries correspond to D.
283       */
284     MatrixType m_matrix;
285     RealScalar m_l1_norm;
286     TranspositionType m_transpositions;
287     TmpMatrixType m_temporary;
288     internal::SignMatrix m_sign;
289     bool m_isInitialized;
290     ComputationInfo m_info;
291 };
292 
293 namespace internal {
294 
295 template<int UpLo> struct ldlt_inplace;
296 
297 template<> struct ldlt_inplace<Lower>
298 {
299   template<typename MatrixType, typename TranspositionType, typename Workspace>
300   static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
301   {
302     using std::abs;
303     typedef typename MatrixType::Scalar Scalar;
304     typedef typename MatrixType::RealScalar RealScalar;
305     typedef typename TranspositionType::StorageIndex IndexType;
306     eigen_assert(mat.rows()==mat.cols());
307     const Index size = mat.rows();
308     bool found_zero_pivot = false;
309     bool ret = true;
310 
311     if (size <= 1)
312     {
313       transpositions.setIdentity();
314       if(size==0) sign = ZeroSign;
315       else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
316       else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
317       else sign = ZeroSign;
318       return true;
319     }
320 
321     for (Index k = 0; k < size; ++k)
322     {
323       // Find largest diagonal element
324       Index index_of_biggest_in_corner;
325       mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
326       index_of_biggest_in_corner += k;
327 
328       transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
329       if(k != index_of_biggest_in_corner)
330       {
331         // apply the transposition while taking care to consider only
332         // the lower triangular part
333         Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
334         mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
335         mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
336         std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
337         for(Index i=k+1;i<index_of_biggest_in_corner;++i)
338         {
339           Scalar tmp = mat.coeffRef(i,k);
340           mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
341           mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
342         }
343         if(NumTraits<Scalar>::IsComplex)
344           mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
345       }
346 
347       // partition the matrix:
348       //       A00 |  -  |  -
349       // lu  = A10 | A11 |  -
350       //       A20 | A21 | A22
351       Index rs = size - k - 1;
352       Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
353       Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
354       Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
355 
356       if(k>0)
357       {
358         temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
359         mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
360         if(rs>0)
361           A21.noalias() -= A20 * temp.head(k);
362       }
363 
364       // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
365       // was smaller than the cutoff value. However, since LDLT is not rank-revealing
366       // we should only make sure that we do not introduce INF or NaN values.
367       // Remark that LAPACK also uses 0 as the cutoff value.
368       RealScalar realAkk = numext::real(mat.coeffRef(k,k));
369       bool pivot_is_valid = (abs(realAkk) > RealScalar(0));
370 
371       if(k==0 && !pivot_is_valid)
372       {
373         // The entire diagonal is zero, there is nothing more to do
374         // except filling the transpositions, and checking whether the matrix is zero.
375         sign = ZeroSign;
376         for(Index j = 0; j<size; ++j)
377         {
378           transpositions.coeffRef(j) = IndexType(j);
379           ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all();
380         }
381         return ret;
382       }
383 
384       if((rs>0) && pivot_is_valid)
385         A21 /= realAkk;
386       else if(rs>0)
387         ret = ret && (A21.array()==Scalar(0)).all();
388 
389       if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
390       else if(!pivot_is_valid) found_zero_pivot = true;
391 
392       if (sign == PositiveSemiDef) {
393         if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite;
394       } else if (sign == NegativeSemiDef) {
395         if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite;
396       } else if (sign == ZeroSign) {
397         if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef;
398         else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
399       }
400     }
401 
402     return ret;
403   }
404 
405   // Reference for the algorithm: Davis and Hager, "Multiple Rank
406   // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
407   // Trivial rearrangements of their computations (Timothy E. Holy)
408   // allow their algorithm to work for rank-1 updates even if the
409   // original matrix is not of full rank.
410   // Here only rank-1 updates are implemented, to reduce the
411   // requirement for intermediate storage and improve accuracy
412   template<typename MatrixType, typename WDerived>
413   static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
414   {
415     using numext::isfinite;
416     typedef typename MatrixType::Scalar Scalar;
417     typedef typename MatrixType::RealScalar RealScalar;
418 
419     const Index size = mat.rows();
420     eigen_assert(mat.cols() == size && w.size()==size);
421 
422     RealScalar alpha = 1;
423 
424     // Apply the update
425     for (Index j = 0; j < size; j++)
426     {
427       // Check for termination due to an original decomposition of low-rank
428       if (!(isfinite)(alpha))
429         break;
430 
431       // Update the diagonal terms
432       RealScalar dj = numext::real(mat.coeff(j,j));
433       Scalar wj = w.coeff(j);
434       RealScalar swj2 = sigma*numext::abs2(wj);
435       RealScalar gamma = dj*alpha + swj2;
436 
437       mat.coeffRef(j,j) += swj2/alpha;
438       alpha += swj2/dj;
439 
440 
441       // Update the terms of L
442       Index rs = size-j-1;
443       w.tail(rs) -= wj * mat.col(j).tail(rs);
444       if(gamma != 0)
445         mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
446     }
447     return true;
448   }
449 
450   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
451   static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
452   {
453     // Apply the permutation to the input w
454     tmp = transpositions * w;
455 
456     return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
457   }
458 };
459 
460 template<> struct ldlt_inplace<Upper>
461 {
462   template<typename MatrixType, typename TranspositionType, typename Workspace>
463   static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
464   {
465     Transpose<MatrixType> matt(mat);
466     return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
467   }
468 
469   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
470   static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
471   {
472     Transpose<MatrixType> matt(mat);
473     return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
474   }
475 };
476 
477 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
478 {
479   typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
480   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
481   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
482   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
483 };
484 
485 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
486 {
487   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
488   typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
489   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
490   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
491 };
492 
493 } // end namespace internal
494 
495 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
496   */
497 template<typename MatrixType, int _UpLo>
498 template<typename InputType>
499 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
500 {
501   check_template_parameters();
502 
503   eigen_assert(a.rows()==a.cols());
504   const Index size = a.rows();
505 
506   m_matrix = a.derived();
507 
508   // Compute matrix L1 norm = max abs column sum.
509   m_l1_norm = RealScalar(0);
510   // TODO move this code to SelfAdjointView
511   for (Index col = 0; col < size; ++col) {
512     RealScalar abs_col_sum;
513     if (_UpLo == Lower)
514       abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
515     else
516       abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
517     if (abs_col_sum > m_l1_norm)
518       m_l1_norm = abs_col_sum;
519   }
520 
521   m_transpositions.resize(size);
522   m_isInitialized = false;
523   m_temporary.resize(size);
524   m_sign = internal::ZeroSign;
525 
526   m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue;
527 
528   m_isInitialized = true;
529   return *this;
530 }
531 
532 /** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
533  * \param w a vector to be incorporated into the decomposition.
534  * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
535  * \sa setZero()
536   */
537 template<typename MatrixType, int _UpLo>
538 template<typename Derived>
539 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
540 {
541   typedef typename TranspositionType::StorageIndex IndexType;
542   const Index size = w.rows();
543   if (m_isInitialized)
544   {
545     eigen_assert(m_matrix.rows()==size);
546   }
547   else
548   {
549     m_matrix.resize(size,size);
550     m_matrix.setZero();
551     m_transpositions.resize(size);
552     for (Index i = 0; i < size; i++)
553       m_transpositions.coeffRef(i) = IndexType(i);
554     m_temporary.resize(size);
555     m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
556     m_isInitialized = true;
557   }
558 
559   internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
560 
561   return *this;
562 }
563 
564 #ifndef EIGEN_PARSED_BY_DOXYGEN
565 template<typename _MatrixType, int _UpLo>
566 template<typename RhsType, typename DstType>
567 void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
568 {
569   _solve_impl_transposed<true>(rhs, dst);
570 }
571 
572 template<typename _MatrixType,int _UpLo>
573 template<bool Conjugate, typename RhsType, typename DstType>
574 void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
575 {
576   // dst = P b
577   dst = m_transpositions * rhs;
578 
579   // dst = L^-1 (P b)
580   // dst = L^-*T (P b)
581   matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst);
582 
583   // dst = D^-* (L^-1 P b)
584   // dst = D^-1 (L^-*T P b)
585   // more precisely, use pseudo-inverse of D (see bug 241)
586   using std::abs;
587   const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
588   // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min())
589   // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS:
590   // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
591   // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
592   // diagonal element is not well justified and leads to numerical issues in some cases.
593   // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
594   // Using numeric_limits::min() gives us more robustness to denormals.
595   RealScalar tolerance = (std::numeric_limits<RealScalar>::min)();
596   for (Index i = 0; i < vecD.size(); ++i)
597   {
598     if(abs(vecD(i)) > tolerance)
599       dst.row(i) /= vecD(i);
600     else
601       dst.row(i).setZero();
602   }
603 
604   // dst = L^-* (D^-* L^-1 P b)
605   // dst = L^-T (D^-1 L^-*T P b)
606   matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst);
607 
608   // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b
609   // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b
610   dst = m_transpositions.transpose() * dst;
611 }
612 #endif
613 
614 /** \internal use x = ldlt_object.solve(x);
615   *
616   * This is the \em in-place version of solve().
617   *
618   * \param bAndX represents both the right-hand side matrix b and result x.
619   *
620   * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
621   *
622   * This version avoids a copy when the right hand side matrix b is not
623   * needed anymore.
624   *
625   * \sa LDLT::solve(), MatrixBase::ldlt()
626   */
627 template<typename MatrixType,int _UpLo>
628 template<typename Derived>
629 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
630 {
631   eigen_assert(m_isInitialized && "LDLT is not initialized.");
632   eigen_assert(m_matrix.rows() == bAndX.rows());
633 
634   bAndX = this->solve(bAndX);
635 
636   return true;
637 }
638 
639 /** \returns the matrix represented by the decomposition,
640  * i.e., it returns the product: P^T L D L^* P.
641  * This function is provided for debug purpose. */
642 template<typename MatrixType, int _UpLo>
643 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
644 {
645   eigen_assert(m_isInitialized && "LDLT is not initialized.");
646   const Index size = m_matrix.rows();
647   MatrixType res(size,size);
648 
649   // P
650   res.setIdentity();
651   res = transpositionsP() * res;
652   // L^* P
653   res = matrixU() * res;
654   // D(L^*P)
655   res = vectorD().real().asDiagonal() * res;
656   // L(DL^*P)
657   res = matrixL() * res;
658   // P^T (LDL^*P)
659   res = transpositionsP().transpose() * res;
660 
661   return res;
662 }
663 
664 /** \cholesky_module
665   * \returns the Cholesky decomposition with full pivoting without square root of \c *this
666   * \sa MatrixBase::ldlt()
667   */
668 template<typename MatrixType, unsigned int UpLo>
669 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
670 SelfAdjointView<MatrixType, UpLo>::ldlt() const
671 {
672   return LDLT<PlainObject,UpLo>(m_matrix);
673 }
674 
675 /** \cholesky_module
676   * \returns the Cholesky decomposition with full pivoting without square root of \c *this
677   * \sa SelfAdjointView::ldlt()
678   */
679 template<typename Derived>
680 inline const LDLT<typename MatrixBase<Derived>::PlainObject>
681 MatrixBase<Derived>::ldlt() const
682 {
683   return LDLT<PlainObject>(derived());
684 }
685 
686 } // end namespace Eigen
687 
688 #endif // EIGEN_LDLT_H
689