1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesImageSparseBinding.cpp
21  * \brief Sparse fully resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 class ImageSparseBindingCase : public TestCase
59 {
60 public:
61     ImageSparseBindingCase(tcu::TestContext &testCtx, const std::string &name, const ImageType imageType,
62                            const tcu::UVec3 &imageSize, const VkFormat format, const bool useDeviceGroups = false);
63 
64     TestInstance *createInstance(Context &context) const;
65     virtual void checkSupport(Context &context) const;
66 
67 private:
68     const bool m_useDeviceGroups;
69     const ImageType m_imageType;
70     const tcu::UVec3 m_imageSize;
71     const VkFormat m_format;
72 };
73 
ImageSparseBindingCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)74 ImageSparseBindingCase::ImageSparseBindingCase(tcu::TestContext &testCtx, const std::string &name,
75                                                const ImageType imageType, const tcu::UVec3 &imageSize,
76                                                const VkFormat format, const bool useDeviceGroups)
77 
78     : TestCase(testCtx, name)
79     , m_useDeviceGroups(useDeviceGroups)
80     , m_imageType(imageType)
81     , m_imageSize(imageSize)
82     , m_format(format)
83 {
84 }
85 
checkSupport(Context & context) const86 void ImageSparseBindingCase::checkSupport(Context &context) const
87 {
88     context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
89 
90 #ifndef CTS_USES_VULKANSC
91     if (m_format == VK_FORMAT_A8_UNORM_KHR)
92         context.requireDeviceFunctionality("VK_KHR_maintenance5");
93 #endif // CTS_USES_VULKANSC
94 
95     if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize))
96         TCU_THROW(NotSupportedError, "Image size not supported for device");
97 
98     if (formatIsR64(m_format))
99     {
100         context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
101 
102         if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
103         {
104             TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
105         }
106     }
107 }
108 
109 class ImageSparseBindingInstance : public SparseResourcesBaseInstance
110 {
111 public:
112     ImageSparseBindingInstance(Context &context, const ImageType imageType, const tcu::UVec3 &imageSize,
113                                const VkFormat format, const bool useDeviceGroups);
114 
115     tcu::TestStatus iterate(void);
116 
117 private:
118     const bool m_useDeviceGroups;
119     const ImageType m_imageType;
120     const tcu::UVec3 m_imageSize;
121     const VkFormat m_format;
122 };
123 
ImageSparseBindingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)124 ImageSparseBindingInstance::ImageSparseBindingInstance(Context &context, const ImageType imageType,
125                                                        const tcu::UVec3 &imageSize, const VkFormat format,
126                                                        const bool useDeviceGroups)
127 
128     : SparseResourcesBaseInstance(context, useDeviceGroups)
129     , m_useDeviceGroups(useDeviceGroups)
130     , m_imageType(imageType)
131     , m_imageSize(imageSize)
132     , m_format(format)
133 {
134 }
135 
iterate(void)136 tcu::TestStatus ImageSparseBindingInstance::iterate(void)
137 {
138     const InstanceInterface &instance = m_context.getInstanceInterface();
139 
140     {
141         // Create logical device supporting both sparse and compute queues
142         QueueRequirementsVec queueRequirements;
143         queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
144         queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
145 
146         createDeviceSupportingQueues(queueRequirements, false, m_format == VK_FORMAT_A8_UNORM_KHR);
147     }
148 
149     const VkPhysicalDevice physicalDevice = getPhysicalDevice();
150     VkImageCreateInfo imageSparseInfo;
151     std::vector<DeviceMemorySp> deviceMemUniquePtrVec;
152 
153     const DeviceInterface &deviceInterface          = getDeviceInterface();
154     const Queue &sparseQueue                        = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
155     const Queue &computeQueue                       = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
156     const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format);
157 
158     // Go through all physical devices
159     for (uint32_t physDevID = 0; physDevID < m_numPhysicalDevices; ++physDevID)
160     {
161         const uint32_t firstDeviceID  = physDevID;
162         const uint32_t secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
163 
164         imageSparseInfo.sType         = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; //VkStructureType sType;
165         imageSparseInfo.pNext         = DE_NULL;                             //const void* pNext;
166         imageSparseInfo.flags         = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;  //VkImageCreateFlags flags;
167         imageSparseInfo.imageType     = mapImageType(m_imageType);           //VkImageType imageType;
168         imageSparseInfo.format        = m_format;                            //VkFormat format;
169         imageSparseInfo.extent        = makeExtent3D(getLayerSize(m_imageType, m_imageSize)); //VkExtent3D extent;
170         imageSparseInfo.arrayLayers   = getNumLayers(m_imageType, m_imageSize);               //uint32_t arrayLayers;
171         imageSparseInfo.samples       = VK_SAMPLE_COUNT_1_BIT;     //VkSampleCountFlagBits samples;
172         imageSparseInfo.tiling        = VK_IMAGE_TILING_OPTIMAL;   //VkImageTiling tiling;
173         imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //VkImageLayout initialLayout;
174         imageSparseInfo.usage =
175             VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; //VkImageUsageFlags usage;
176         imageSparseInfo.sharingMode           = VK_SHARING_MODE_EXCLUSIVE;     //VkSharingMode sharingMode;
177         imageSparseInfo.queueFamilyIndexCount = 0u;                            //uint32_t queueFamilyIndexCount;
178         imageSparseInfo.pQueueFamilyIndices   = DE_NULL;                       //const uint32_t* pQueueFamilyIndices;
179 
180         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
181         {
182             imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
183         }
184 
185         {
186             VkImageFormatProperties imageFormatProperties;
187             if (instance.getPhysicalDeviceImageFormatProperties(
188                     physicalDevice, imageSparseInfo.format, imageSparseInfo.imageType, imageSparseInfo.tiling,
189                     imageSparseInfo.usage, imageSparseInfo.flags,
190                     &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
191             {
192                 TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations");
193             }
194 
195             imageSparseInfo.mipLevels =
196                 getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
197         }
198 
199         // Create sparse image
200         const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
201 
202         // Create sparse image memory bind semaphore
203         const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
204 
205         // Get sparse image general memory requirements
206         const VkMemoryRequirements imageMemoryRequirements =
207             getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
208 
209         // Check if required image memory size does not exceed device limits
210         if (imageMemoryRequirements.size >
211             getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize)
212             TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
213 
214         DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
215 
216         {
217             std::vector<VkSparseMemoryBind> sparseMemoryBinds;
218             const uint32_t numSparseBinds =
219                 static_cast<uint32_t>(imageMemoryRequirements.size / imageMemoryRequirements.alignment);
220             const uint32_t memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID),
221                                                                imageMemoryRequirements, MemoryRequirement::Any);
222 
223             if (memoryType == NO_MATCH_FOUND)
224                 return tcu::TestStatus::fail("No matching memory type found");
225 
226             if (firstDeviceID != secondDeviceID)
227             {
228                 VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
229                 const uint32_t heapIndex =
230                     getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
231                 deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID,
232                                                                  &peerMemoryFeatureFlags);
233 
234                 if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
235                     ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
236                 {
237                     TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
238                 }
239             }
240 
241             for (uint32_t sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
242             {
243                 const VkSparseMemoryBind sparseMemoryBind =
244                     makeSparseMemoryBind(deviceInterface, getDevice(), imageMemoryRequirements.alignment, memoryType,
245                                          imageMemoryRequirements.alignment * sparseBindNdx);
246 
247                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(
248                     Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory),
249                                          Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
250 
251                 sparseMemoryBinds.push_back(sparseMemoryBind);
252             }
253 
254             const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(
255                 *imageSparse, static_cast<uint32_t>(sparseMemoryBinds.size()), sparseMemoryBinds.data());
256 
257             const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo = {
258                 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType;
259                 DE_NULL,                                         //const void* pNext;
260                 firstDeviceID,                                   //uint32_t resourceDeviceIndex;
261                 secondDeviceID,                                  //uint32_t memoryDeviceIndex;
262             };
263 
264             const VkBindSparseInfo bindSparseInfo = {
265                 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,                    //VkStructureType sType;
266                 m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
267                 0u,                                                    //uint32_t waitSemaphoreCount;
268                 DE_NULL,                                               //const VkSemaphore* pWaitSemaphores;
269                 0u,                                                    //uint32_t bufferBindCount;
270                 DE_NULL,                        //const VkSparseBufferMemoryBindInfo* pBufferBinds;
271                 1u,                             //uint32_t imageOpaqueBindCount;
272                 &opaqueBindInfo,                //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
273                 0u,                             //uint32_t imageBindCount;
274                 DE_NULL,                        //const VkSparseImageMemoryBindInfo* pImageBinds;
275                 1u,                             //uint32_t signalSemaphoreCount;
276                 &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
277             };
278 
279             // Submit sparse bind commands for execution
280             VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
281         }
282 
283         uint32_t imageSizeInBytes = 0;
284 
285         for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
286             for (uint32_t mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
287                 imageSizeInBytes +=
288                     getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription,
289                                                 planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
290 
291         std::vector<VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels);
292         {
293             uint32_t bufferOffset = 0;
294             for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
295             {
296                 const VkImageAspectFlags aspect =
297                     (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
298 
299                 for (uint32_t mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
300                 {
301                     bufferImageCopy[planeNdx * imageSparseInfo.mipLevels + mipmapNdx] = {
302                         bufferOffset, // VkDeviceSize bufferOffset;
303                         0u,           // uint32_t bufferRowLength;
304                         0u,           // uint32_t bufferImageHeight;
305                         makeImageSubresourceLayers(
306                             aspect, mipmapNdx, 0u,
307                             imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource;
308                         makeOffset3D(0, 0, 0),            // VkOffset3D imageOffset;
309                         vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx,
310                                            mipmapNdx) // VkExtent3D imageExtent;
311                     };
312                     bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers,
313                                                                 formatDescription, planeNdx, mipmapNdx,
314                                                                 BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
315                 }
316             }
317         }
318 
319         // Create command buffer for compute and transfer operations
320         const Unique<VkCommandPool> commandPool(
321             makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
322         const Unique<VkCommandBuffer> commandBuffer(
323             allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
324 
325         // Start recording commands
326         beginCommandBuffer(deviceInterface, *commandBuffer);
327 
328         const VkBufferCreateInfo inputBufferCreateInfo =
329             makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
330         const Unique<VkBuffer> inputBuffer(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
331         const de::UniquePtr<Allocation> inputBufferAlloc(
332             bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
333 
334         std::vector<uint8_t> referenceData(imageSizeInBytes);
335         for (uint32_t valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
336         {
337             referenceData[valueNdx] = static_cast<uint8_t>((valueNdx % imageMemoryRequirements.alignment) + 1u);
338         }
339 
340         {
341             deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
342             flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
343 
344             const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier(
345                 VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, *inputBuffer, 0u, imageSizeInBytes);
346             deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT,
347                                                VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier,
348                                                0u, DE_NULL);
349         }
350 
351         {
352             std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
353 
354             for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
355             {
356                 const VkImageAspectFlags aspect =
357                     (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
358 
359                 imageSparseTransferDstBarriers.push_back(makeImageMemoryBarrier(
360                     0u, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
361                     *imageSparse,
362                     makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
363                     sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex :
364                                                                                     VK_QUEUE_FAMILY_IGNORED,
365                     sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex :
366                                                                                     VK_QUEUE_FAMILY_IGNORED));
367             }
368             deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
369                                                VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL,
370                                                static_cast<uint32_t>(imageSparseTransferDstBarriers.size()),
371                                                imageSparseTransferDstBarriers.data());
372         }
373 
374         deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse,
375                                              VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
376                                              static_cast<uint32_t>(bufferImageCopy.size()), bufferImageCopy.data());
377 
378         {
379             std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
380 
381             for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
382             {
383                 const VkImageAspectFlags aspect =
384                     (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
385 
386                 imageSparseTransferSrcBarriers.push_back(makeImageMemoryBarrier(
387                     VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
388                     VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *imageSparse,
389                     makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)));
390             }
391 
392             deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
393                                                VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL,
394                                                static_cast<uint32_t>(imageSparseTransferSrcBarriers.size()),
395                                                imageSparseTransferSrcBarriers.data());
396         }
397 
398         const VkBufferCreateInfo outputBufferCreateInfo =
399             makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
400         const Unique<VkBuffer> outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
401         const de::UniquePtr<Allocation> outputBufferAlloc(
402             bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
403 
404         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
405                                              *outputBuffer, static_cast<uint32_t>(bufferImageCopy.size()),
406                                              bufferImageCopy.data());
407 
408         {
409             const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier(
410                 VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, *outputBuffer, 0u, imageSizeInBytes);
411 
412             deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
413                                                VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier,
414                                                0u, DE_NULL);
415         }
416 
417         // End recording commands
418         endCommandBuffer(deviceInterface, *commandBuffer);
419 
420         const VkPipelineStageFlags stageBits[] = {VK_PIPELINE_STAGE_TRANSFER_BIT};
421 
422         // Submit commands for execution and wait for completion
423         submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u,
424                               &imageMemoryBindSemaphore.get(), stageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
425 
426         // Retrieve data from buffer to host memory
427         invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
428 
429         // Wait for sparse queue to become idle
430         deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
431 
432         const uint8_t *outputData = static_cast<const uint8_t *>(outputBufferAlloc->getHostPtr());
433         bool ignoreLsb6Bits       = areLsb6BitsDontCare(imageSparseInfo.format);
434         bool ignoreLsb4Bits       = areLsb4BitsDontCare(imageSparseInfo.format);
435 
436         for (uint32_t planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
437         {
438             for (uint32_t mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
439             {
440                 const uint32_t mipLevelSizeInBytes = getImageMipLevelSizeInBytes(
441                     imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
442                 const uint32_t bufferOffset = static_cast<uint32_t>(
443                     bufferImageCopy[planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
444 
445                 // Validate results
446                 for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++)
447                 {
448                     const uint8_t res = *(outputData + bufferOffset + byteNdx);
449                     const uint8_t ref = referenceData[bufferOffset + byteNdx];
450 
451                     uint8_t mask = 0xFF;
452 
453                     if (!(byteNdx & 0x01) && (ignoreLsb6Bits))
454                         mask = 0xC0;
455                     else if (!(byteNdx & 0x01) && (ignoreLsb4Bits))
456                         mask = 0xF0;
457 
458                     if ((res & mask) != (ref & mask))
459                     {
460                         return tcu::TestStatus::fail("Failed");
461                     }
462                 }
463             }
464         }
465     }
466 
467     return tcu::TestStatus::pass("Passed");
468 }
469 
createInstance(Context & context) const470 TestInstance *ImageSparseBindingCase::createInstance(Context &context) const
471 {
472     return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
473 }
474 
getSparseBindingTestFormats(ImageType imageType,bool addExtraFormat)475 std::vector<TestFormat> getSparseBindingTestFormats(ImageType imageType, bool addExtraFormat)
476 {
477     auto formats = getTestFormats(imageType);
478 #ifndef CTS_USES_VULKANSC
479     if (addExtraFormat)
480         formats.push_back(TestFormat{VK_FORMAT_A8_UNORM_KHR});
481 #endif // CTS_USES_VULKANSC
482     return formats;
483 }
484 
485 } // namespace
486 
createImageSparseBindingTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)487 tcu::TestCaseGroup *createImageSparseBindingTestsCommon(tcu::TestContext &testCtx,
488                                                         de::MovePtr<tcu::TestCaseGroup> testGroup,
489                                                         const bool useDeviceGroup = false)
490 {
491     const std::vector<TestImageParameters> imageParameters{
492         {IMAGE_TYPE_1D,
493          {tcu::UVec3(512u, 1u, 1u), tcu::UVec3(1024u, 1u, 1u), tcu::UVec3(11u, 1u, 1u)},
494          getSparseBindingTestFormats(IMAGE_TYPE_1D, !useDeviceGroup)},
495         {IMAGE_TYPE_1D_ARRAY,
496          {tcu::UVec3(512u, 1u, 64u), tcu::UVec3(1024u, 1u, 8u), tcu::UVec3(11u, 1u, 3u)},
497          getSparseBindingTestFormats(IMAGE_TYPE_1D_ARRAY, !useDeviceGroup)},
498         {IMAGE_TYPE_2D,
499          {tcu::UVec3(512u, 256u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u)},
500          getSparseBindingTestFormats(IMAGE_TYPE_2D, !useDeviceGroup)},
501         {IMAGE_TYPE_2D_ARRAY,
502          {tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u)},
503          getSparseBindingTestFormats(IMAGE_TYPE_2D_ARRAY, !useDeviceGroup)},
504         {IMAGE_TYPE_3D,
505          {tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u)},
506          getSparseBindingTestFormats(IMAGE_TYPE_3D, !useDeviceGroup)},
507         {IMAGE_TYPE_CUBE,
508          {tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u)},
509          getSparseBindingTestFormats(IMAGE_TYPE_CUBE, !useDeviceGroup)},
510         {IMAGE_TYPE_CUBE_ARRAY,
511          {tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u)},
512          getSparseBindingTestFormats(IMAGE_TYPE_CUBE_ARRAY, !useDeviceGroup)}};
513 
514     for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
515     {
516         const ImageType imageType = imageParameters[imageTypeNdx].imageType;
517         de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(
518             new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
519 
520         for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
521         {
522             VkFormat format               = imageParameters[imageTypeNdx].formats[formatNdx].format;
523             tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format);
524             de::MovePtr<tcu::TestCaseGroup> formatGroup(
525                 new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
526 
527             for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size();
528                  ++imageSizeNdx)
529             {
530                 const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
531 
532                 // skip test for images with odd sizes for some YCbCr formats
533                 if ((imageSize.x() % imageSizeAlignment.x()) != 0)
534                     continue;
535                 if ((imageSize.y() % imageSizeAlignment.y()) != 0)
536                     continue;
537 
538                 std::ostringstream stream;
539                 stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
540 
541                 formatGroup->addChild(
542                     new ImageSparseBindingCase(testCtx, stream.str(), imageType, imageSize, format, useDeviceGroup));
543             }
544             imageTypeGroup->addChild(formatGroup.release());
545         }
546         testGroup->addChild(imageTypeGroup.release());
547     }
548 
549     return testGroup.release();
550 }
551 
createImageSparseBindingTests(tcu::TestContext & testCtx)552 tcu::TestCaseGroup *createImageSparseBindingTests(tcu::TestContext &testCtx)
553 {
554     de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding"));
555     return createImageSparseBindingTestsCommon(testCtx, testGroup);
556 }
557 
createDeviceGroupImageSparseBindingTests(tcu::TestContext & testCtx)558 tcu::TestCaseGroup *createDeviceGroupImageSparseBindingTests(tcu::TestContext &testCtx)
559 {
560     de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding"));
561     return createImageSparseBindingTestsCommon(testCtx, testGroup, true);
562 }
563 
564 } // namespace sparse
565 } // namespace vkt
566