1 // Copyright (c) 2015-2020 The Khronos Group Inc.
2 // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
3 // reserved.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 
17 #ifndef INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
18 #define INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
19 
20 #ifdef __cplusplus
21 extern "C" {
22 #else
23 #include <stdbool.h>
24 #endif
25 
26 #include <stddef.h>
27 #include <stdint.h>
28 
29 #if defined(SPIRV_TOOLS_SHAREDLIB)
30 #if defined(_WIN32)
31 #if defined(SPIRV_TOOLS_IMPLEMENTATION)
32 #define SPIRV_TOOLS_EXPORT __declspec(dllexport)
33 #else
34 #define SPIRV_TOOLS_EXPORT __declspec(dllimport)
35 #endif
36 #else
37 #if defined(SPIRV_TOOLS_IMPLEMENTATION)
38 #define SPIRV_TOOLS_EXPORT __attribute__((visibility("default")))
39 #else
40 #define SPIRV_TOOLS_EXPORT
41 #endif
42 #endif
43 #else
44 #define SPIRV_TOOLS_EXPORT
45 #endif
46 
47 // Helpers
48 
49 #define SPV_BIT(shift) (1 << (shift))
50 
51 #define SPV_FORCE_16_BIT_ENUM(name) SPV_FORCE_16BIT_##name = 0x7fff
52 #define SPV_FORCE_32_BIT_ENUM(name) SPV_FORCE_32BIT_##name = 0x7fffffff
53 
54 // Enumerations
55 
56 typedef enum spv_result_t {
57   SPV_SUCCESS = 0,
58   SPV_UNSUPPORTED = 1,
59   SPV_END_OF_STREAM = 2,
60   SPV_WARNING = 3,
61   SPV_FAILED_MATCH = 4,
62   SPV_REQUESTED_TERMINATION = 5,  // Success, but signals early termination.
63   SPV_ERROR_INTERNAL = -1,
64   SPV_ERROR_OUT_OF_MEMORY = -2,
65   SPV_ERROR_INVALID_POINTER = -3,
66   SPV_ERROR_INVALID_BINARY = -4,
67   SPV_ERROR_INVALID_TEXT = -5,
68   SPV_ERROR_INVALID_TABLE = -6,
69   SPV_ERROR_INVALID_VALUE = -7,
70   SPV_ERROR_INVALID_DIAGNOSTIC = -8,
71   SPV_ERROR_INVALID_LOOKUP = -9,
72   SPV_ERROR_INVALID_ID = -10,
73   SPV_ERROR_INVALID_CFG = -11,
74   SPV_ERROR_INVALID_LAYOUT = -12,
75   SPV_ERROR_INVALID_CAPABILITY = -13,
76   SPV_ERROR_INVALID_DATA = -14,  // Indicates data rules validation failure.
77   SPV_ERROR_MISSING_EXTENSION = -15,
78   SPV_ERROR_WRONG_VERSION = -16,  // Indicates wrong SPIR-V version
79   SPV_FORCE_32_BIT_ENUM(spv_result_t)
80 } spv_result_t;
81 
82 // Severity levels of messages communicated to the consumer.
83 typedef enum spv_message_level_t {
84   SPV_MSG_FATAL,           // Unrecoverable error due to environment.
85                            // Will exit the program immediately. E.g.,
86                            // out of memory.
87   SPV_MSG_INTERNAL_ERROR,  // Unrecoverable error due to SPIRV-Tools
88                            // internals.
89                            // Will exit the program immediately. E.g.,
90                            // unimplemented feature.
91   SPV_MSG_ERROR,           // Normal error due to user input.
92   SPV_MSG_WARNING,         // Warning information.
93   SPV_MSG_INFO,            // General information.
94   SPV_MSG_DEBUG,           // Debug information.
95 } spv_message_level_t;
96 
97 typedef enum spv_endianness_t {
98   SPV_ENDIANNESS_LITTLE,
99   SPV_ENDIANNESS_BIG,
100   SPV_FORCE_32_BIT_ENUM(spv_endianness_t)
101 } spv_endianness_t;
102 
103 // The kinds of operands that an instruction may have.
104 //
105 // Some operand types are "concrete".  The binary parser uses a concrete
106 // operand type to describe an operand of a parsed instruction.
107 //
108 // The assembler uses all operand types.  In addition to determining what
109 // kind of value an operand may be, non-concrete operand types capture the
110 // fact that an operand might be optional (may be absent, or present exactly
111 // once), or might occur zero or more times.
112 //
113 // Sometimes we also need to be able to express the fact that an operand
114 // is a member of an optional tuple of values.  In that case the first member
115 // would be optional, and the subsequent members would be required.
116 //
117 // NOTE: Although we don't promise binary compatibility, as a courtesy, please
118 // add new enum values at the end.
119 typedef enum spv_operand_type_t {
120   // A sentinel value.
121   SPV_OPERAND_TYPE_NONE = 0,
122 
123   // Set 1:  Operands that are IDs.
124   SPV_OPERAND_TYPE_ID,
125   SPV_OPERAND_TYPE_TYPE_ID,
126   SPV_OPERAND_TYPE_RESULT_ID,
127   SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID,  // SPIR-V Sec 3.25
128   SPV_OPERAND_TYPE_SCOPE_ID,             // SPIR-V Sec 3.27
129 
130   // Set 2:  Operands that are literal numbers.
131   SPV_OPERAND_TYPE_LITERAL_INTEGER,  // Always unsigned 32-bits.
132   // The Instruction argument to OpExtInst. It's an unsigned 32-bit literal
133   // number indicating which instruction to use from an extended instruction
134   // set.
135   SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
136   // The Opcode argument to OpSpecConstantOp. It determines the operation
137   // to be performed on constant operands to compute a specialization constant
138   // result.
139   SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
140   // A literal number whose format and size are determined by a previous operand
141   // in the same instruction.  It's a signed integer, an unsigned integer, or a
142   // floating point number.  It also has a specified bit width.  The width
143   // may be larger than 32, which would require such a typed literal value to
144   // occupy multiple SPIR-V words.
145   SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
146   SPV_OPERAND_TYPE_LITERAL_FLOAT,  // Always 32-bit float.
147 
148   // Set 3:  The literal string operand type.
149   SPV_OPERAND_TYPE_LITERAL_STRING,
150 
151   // Set 4:  Operands that are a single word enumerated value.
152   SPV_OPERAND_TYPE_SOURCE_LANGUAGE,               // SPIR-V Sec 3.2
153   SPV_OPERAND_TYPE_EXECUTION_MODEL,               // SPIR-V Sec 3.3
154   SPV_OPERAND_TYPE_ADDRESSING_MODEL,              // SPIR-V Sec 3.4
155   SPV_OPERAND_TYPE_MEMORY_MODEL,                  // SPIR-V Sec 3.5
156   SPV_OPERAND_TYPE_EXECUTION_MODE,                // SPIR-V Sec 3.6
157   SPV_OPERAND_TYPE_STORAGE_CLASS,                 // SPIR-V Sec 3.7
158   SPV_OPERAND_TYPE_DIMENSIONALITY,                // SPIR-V Sec 3.8
159   SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE,       // SPIR-V Sec 3.9
160   SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE,           // SPIR-V Sec 3.10
161   SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT,          // SPIR-V Sec 3.11
162   SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER,           // SPIR-V Sec 3.12
163   SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE,       // SPIR-V Sec 3.13
164   SPV_OPERAND_TYPE_FP_ROUNDING_MODE,              // SPIR-V Sec 3.16
165   SPV_OPERAND_TYPE_LINKAGE_TYPE,                  // SPIR-V Sec 3.17
166   SPV_OPERAND_TYPE_ACCESS_QUALIFIER,              // SPIR-V Sec 3.18
167   SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE,  // SPIR-V Sec 3.19
168   SPV_OPERAND_TYPE_DECORATION,                    // SPIR-V Sec 3.20
169   SPV_OPERAND_TYPE_BUILT_IN,                      // SPIR-V Sec 3.21
170   SPV_OPERAND_TYPE_GROUP_OPERATION,               // SPIR-V Sec 3.28
171   SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS,              // SPIR-V Sec 3.29
172   SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO,         // SPIR-V Sec 3.30
173   SPV_OPERAND_TYPE_CAPABILITY,                    // SPIR-V Sec 3.31
174 
175   // NOTE: New concrete enum values should be added at the end.
176 
177   // Set 5:  Operands that are a single word bitmask.
178   // Sometimes a set bit indicates the instruction requires still more operands.
179   SPV_OPERAND_TYPE_IMAGE,                  // SPIR-V Sec 3.14
180   SPV_OPERAND_TYPE_FP_FAST_MATH_MODE,      // SPIR-V Sec 3.15
181   SPV_OPERAND_TYPE_SELECTION_CONTROL,      // SPIR-V Sec 3.22
182   SPV_OPERAND_TYPE_LOOP_CONTROL,           // SPIR-V Sec 3.23
183   SPV_OPERAND_TYPE_FUNCTION_CONTROL,       // SPIR-V Sec 3.24
184   SPV_OPERAND_TYPE_MEMORY_ACCESS,          // SPIR-V Sec 3.26
185   SPV_OPERAND_TYPE_FRAGMENT_SHADING_RATE,  // SPIR-V Sec 3.FSR
186 
187 // NOTE: New concrete enum values should be added at the end.
188 
189 // The "optional" and "variable"  operand types are only used internally by
190 // the assembler and the binary parser.
191 // There are two categories:
192 //    Optional : expands to 0 or 1 operand, like ? in regular expressions.
193 //    Variable : expands to 0, 1 or many operands or pairs of operands.
194 //               This is similar to * in regular expressions.
195 
196 // NOTE: These FIRST_* and LAST_* enum values are DEPRECATED.
197 // The concept of "optional" and "variable" operand types are only intended
198 // for use as an implementation detail of parsing SPIR-V, either in text or
199 // binary form.  Instead of using enum ranges, use characteristic function
200 // spvOperandIsConcrete.
201 // The use of enum value ranges in a public API makes it difficult to insert
202 // new values into a range without also breaking binary compatibility.
203 //
204 // Macros for defining bounds on optional and variable operand types.
205 // Any variable operand type is also optional.
206 // TODO(dneto): Remove SPV_OPERAND_TYPE_FIRST_* and SPV_OPERAND_TYPE_LAST_*
207 #define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM
208 #define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM
209 #define LAST_VARIABLE(ENUM)                         \
210   ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \
211         SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM
212 
213   // An optional operand represents zero or one logical operands.
214   // In an instruction definition, this may only appear at the end of the
215   // operand types.
216   FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID),
217   // An optional image operand type.
218   SPV_OPERAND_TYPE_OPTIONAL_IMAGE,
219   // An optional memory access type.
220   SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS,
221   // An optional literal integer.
222   SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER,
223   // An optional literal number, which may be either integer or floating point.
224   SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER,
225   // Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral.
226   SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER,
227   // An optional literal string.
228   SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
229   // An optional access qualifier
230   SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER,
231   // An optional context-independent value, or CIV.  CIVs are tokens that we can
232   // assemble regardless of where they occur -- literals, IDs, immediate
233   // integers, etc.
234   SPV_OPERAND_TYPE_OPTIONAL_CIV,
235 
236   // A variable operand represents zero or more logical operands.
237   // In an instruction definition, this may only appear at the end of the
238   // operand types.
239   FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID),
240   SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER,
241   // A sequence of zero or more pairs of (typed literal integer, Id).
242   // Expands to zero or more:
243   //  (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID)
244   // where the literal number must always be an integer of some sort.
245   SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID,
246   // A sequence of zero or more pairs of (Id, Literal integer)
247   LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER),
248 
249   // The following are concrete enum types from the DebugInfo extended
250   // instruction set.
251   SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS,  // DebugInfo Sec 3.2.  A mask.
252   SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING,  // DebugInfo Sec 3.3
253   SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE,                // DebugInfo Sec 3.4
254   SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER,                // DebugInfo Sec 3.5
255   SPV_OPERAND_TYPE_DEBUG_OPERATION,                     // DebugInfo Sec 3.6
256 
257   // The following are concrete enum types from the OpenCL.DebugInfo.100
258   // extended instruction set.
259   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS,  // Sec 3.2. A Mask
260   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING,  // Sec 3.3
261   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE,                // Sec 3.4
262   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER,                // Sec 3.5
263   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION,                     // Sec 3.6
264   SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY,               // Sec 3.7
265 
266   // The following are concrete enum types from SPV_INTEL_float_controls2
267   // https://github.com/intel/llvm/blob/39fa9b0cbfbae88327118990a05c5b387b56d2ef/sycl/doc/extensions/SPIRV/SPV_INTEL_float_controls2.asciidoc
268   SPV_OPERAND_TYPE_FPDENORM_MODE,     // Sec 3.17 FP Denorm Mode
269   SPV_OPERAND_TYPE_FPOPERATION_MODE,  // Sec 3.18 FP Operation Mode
270   // A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
271   SPV_OPERAND_TYPE_QUANTIZATION_MODES,
272   // A value enum from https://github.com/KhronosGroup/SPIRV-Headers/pull/177
273   SPV_OPERAND_TYPE_OVERFLOW_MODES,
274 
275   // Concrete operand types for the provisional Vulkan ray tracing feature.
276   SPV_OPERAND_TYPE_RAY_FLAGS,               // SPIR-V Sec 3.RF
277   SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION,  // SPIR-V Sec 3.RQIntersection
278   SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE,  // SPIR-V Sec
279                                                            // 3.RQCommitted
280   SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE,  // SPIR-V Sec
281                                                            // 3.RQCandidate
282 
283   // Concrete operand types for integer dot product.
284   // Packed vector format
285   SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT,  // SPIR-V Sec 3.x
286   // An optional packed vector format
287   SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT,
288 
289   // Concrete operand types for cooperative matrix.
290   SPV_OPERAND_TYPE_COOPERATIVE_MATRIX_OPERANDS,
291   // An optional cooperative matrix operands
292   SPV_OPERAND_TYPE_OPTIONAL_COOPERATIVE_MATRIX_OPERANDS,
293   SPV_OPERAND_TYPE_COOPERATIVE_MATRIX_LAYOUT,
294   SPV_OPERAND_TYPE_COOPERATIVE_MATRIX_USE,
295 
296   // Enum type from SPV_INTEL_global_variable_fpga_decorations
297   SPV_OPERAND_TYPE_INITIALIZATION_MODE_QUALIFIER,
298   // Enum type from SPV_INTEL_global_variable_host_access
299   SPV_OPERAND_TYPE_HOST_ACCESS_QUALIFIER,
300   // Enum type from SPV_INTEL_cache_controls
301   SPV_OPERAND_TYPE_LOAD_CACHE_CONTROL,
302   // Enum type from SPV_INTEL_cache_controls
303   SPV_OPERAND_TYPE_STORE_CACHE_CONTROL,
304 
305   // This is a sentinel value, and does not represent an operand type.
306   // It should come last.
307   SPV_OPERAND_TYPE_NUM_OPERAND_TYPES,
308 
309   SPV_FORCE_32_BIT_ENUM(spv_operand_type_t)
310 } spv_operand_type_t;
311 
312 // Returns true if the given type is concrete.
313 bool spvOperandIsConcrete(spv_operand_type_t type);
314 
315 // Returns true if the given type is concrete and also a mask.
316 bool spvOperandIsConcreteMask(spv_operand_type_t type);
317 
318 typedef enum spv_ext_inst_type_t {
319   SPV_EXT_INST_TYPE_NONE = 0,
320   SPV_EXT_INST_TYPE_GLSL_STD_450,
321   SPV_EXT_INST_TYPE_OPENCL_STD,
322   SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
323   SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
324   SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
325   SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
326   SPV_EXT_INST_TYPE_DEBUGINFO,
327   SPV_EXT_INST_TYPE_OPENCL_DEBUGINFO_100,
328   SPV_EXT_INST_TYPE_NONSEMANTIC_CLSPVREFLECTION,
329   SPV_EXT_INST_TYPE_NONSEMANTIC_SHADER_DEBUGINFO_100,
330 
331   // Multiple distinct extended instruction set types could return this
332   // value, if they are prefixed with NonSemantic. and are otherwise
333   // unrecognised
334   SPV_EXT_INST_TYPE_NONSEMANTIC_UNKNOWN,
335 
336   SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t)
337 } spv_ext_inst_type_t;
338 
339 // This determines at a high level the kind of a binary-encoded literal
340 // number, but not the bit width.
341 // In principle, these could probably be folded into new entries in
342 // spv_operand_type_t.  But then we'd have some special case differences
343 // between the assembler and disassembler.
344 typedef enum spv_number_kind_t {
345   SPV_NUMBER_NONE = 0,  // The default for value initialization.
346   SPV_NUMBER_UNSIGNED_INT,
347   SPV_NUMBER_SIGNED_INT,
348   SPV_NUMBER_FLOATING,
349 } spv_number_kind_t;
350 
351 typedef enum spv_text_to_binary_options_t {
352   SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0),
353   // Numeric IDs in the binary will have the same values as in the source.
354   // Non-numeric IDs are allocated by filling in the gaps, starting with 1
355   // and going up.
356   SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1),
357   SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t)
358 } spv_text_to_binary_options_t;
359 
360 typedef enum spv_binary_to_text_options_t {
361   SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0),
362   SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1),
363   SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2),
364   SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3),
365   SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4),
366   // Do not output the module header as leading comments in the assembly.
367   SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5),
368   // Use friendly names where possible.  The heuristic may expand over
369   // time, but will use common names for scalar types, and debug names from
370   // OpName instructions.
371   SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6),
372   // Add some comments to the generated assembly
373   SPV_BINARY_TO_TEXT_OPTION_COMMENT = SPV_BIT(7),
374   SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t)
375 } spv_binary_to_text_options_t;
376 
377 // Constants
378 
379 // The default id bound is to the minimum value for the id limit
380 // in the spir-v specification under the section "Universal Limits".
381 const uint32_t kDefaultMaxIdBound = 0x3FFFFF;
382 
383 // Structures
384 
385 // Information about an operand parsed from a binary SPIR-V module.
386 // Note that the values are not included.  You still need access to the binary
387 // to extract the values.
388 typedef struct spv_parsed_operand_t {
389   // Location of the operand, in words from the start of the instruction.
390   uint16_t offset;
391   // Number of words occupied by this operand.
392   uint16_t num_words;
393   // The "concrete" operand type.  See the definition of spv_operand_type_t
394   // for details.
395   spv_operand_type_t type;
396   // If type is a literal number type, then number_kind says whether it's
397   // a signed integer, an unsigned integer, or a floating point number.
398   spv_number_kind_t number_kind;
399   // The number of bits for a literal number type.
400   uint32_t number_bit_width;
401 } spv_parsed_operand_t;
402 
403 // An instruction parsed from a binary SPIR-V module.
404 typedef struct spv_parsed_instruction_t {
405   // An array of words for this instruction, in native endianness.
406   const uint32_t* words;
407   // The number of words in this instruction.
408   uint16_t num_words;
409   uint16_t opcode;
410   // The extended instruction type, if opcode is OpExtInst.  Otherwise
411   // this is the "none" value.
412   spv_ext_inst_type_t ext_inst_type;
413   // The type id, or 0 if this instruction doesn't have one.
414   uint32_t type_id;
415   // The result id, or 0 if this instruction doesn't have one.
416   uint32_t result_id;
417   // The array of parsed operands.
418   const spv_parsed_operand_t* operands;
419   uint16_t num_operands;
420 } spv_parsed_instruction_t;
421 
422 typedef struct spv_parsed_header_t {
423   // The magic number of the SPIR-V module.
424   uint32_t magic;
425   // Version number.
426   uint32_t version;
427   // Generator's magic number.
428   uint32_t generator;
429   // IDs bound for this module (0 < id < bound).
430   uint32_t bound;
431   // reserved.
432   uint32_t reserved;
433 } spv_parsed_header_t;
434 
435 typedef struct spv_const_binary_t {
436   const uint32_t* code;
437   const size_t wordCount;
438 } spv_const_binary_t;
439 
440 typedef struct spv_binary_t {
441   uint32_t* code;
442   size_t wordCount;
443 } spv_binary_t;
444 
445 typedef struct spv_text_t {
446   const char* str;
447   size_t length;
448 } spv_text_t;
449 
450 typedef struct spv_position_t {
451   size_t line;
452   size_t column;
453   size_t index;
454 } spv_position_t;
455 
456 typedef struct spv_diagnostic_t {
457   spv_position_t position;
458   char* error;
459   bool isTextSource;
460 } spv_diagnostic_t;
461 
462 // Opaque struct containing the context used to operate on a SPIR-V module.
463 // Its object is used by various translation API functions.
464 typedef struct spv_context_t spv_context_t;
465 
466 typedef struct spv_validator_options_t spv_validator_options_t;
467 
468 typedef struct spv_optimizer_options_t spv_optimizer_options_t;
469 
470 typedef struct spv_reducer_options_t spv_reducer_options_t;
471 
472 typedef struct spv_fuzzer_options_t spv_fuzzer_options_t;
473 
474 typedef struct spv_optimizer_t spv_optimizer_t;
475 
476 // Type Definitions
477 
478 typedef spv_const_binary_t* spv_const_binary;
479 typedef spv_binary_t* spv_binary;
480 typedef spv_text_t* spv_text;
481 typedef spv_position_t* spv_position;
482 typedef spv_diagnostic_t* spv_diagnostic;
483 typedef const spv_context_t* spv_const_context;
484 typedef spv_context_t* spv_context;
485 typedef spv_validator_options_t* spv_validator_options;
486 typedef const spv_validator_options_t* spv_const_validator_options;
487 typedef spv_optimizer_options_t* spv_optimizer_options;
488 typedef const spv_optimizer_options_t* spv_const_optimizer_options;
489 typedef spv_reducer_options_t* spv_reducer_options;
490 typedef const spv_reducer_options_t* spv_const_reducer_options;
491 typedef spv_fuzzer_options_t* spv_fuzzer_options;
492 typedef const spv_fuzzer_options_t* spv_const_fuzzer_options;
493 
494 // Platform API
495 
496 // Returns the SPIRV-Tools software version as a null-terminated string.
497 // The contents of the underlying storage is valid for the remainder of
498 // the process.
499 SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString(void);
500 // Returns a null-terminated string containing the name of the project,
501 // the software version string, and commit details.
502 // The contents of the underlying storage is valid for the remainder of
503 // the process.
504 SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString(void);
505 
506 // Certain target environments impose additional restrictions on SPIR-V, so it's
507 // often necessary to specify which one applies.  SPV_ENV_UNIVERSAL_* implies an
508 // environment-agnostic SPIR-V.
509 //
510 // When an API method needs to derive a SPIR-V version from a target environment
511 // (from the spv_context object), the method will choose the highest version of
512 // SPIR-V supported by the target environment.  Examples:
513 //    SPV_ENV_VULKAN_1_0           ->  SPIR-V 1.0
514 //    SPV_ENV_VULKAN_1_1           ->  SPIR-V 1.3
515 //    SPV_ENV_VULKAN_1_1_SPIRV_1_4 ->  SPIR-V 1.4
516 //    SPV_ENV_VULKAN_1_2           ->  SPIR-V 1.5
517 //    SPV_ENV_VULKAN_1_3           ->  SPIR-V 1.6
518 // Consult the description of API entry points for specific rules.
519 typedef enum {
520   SPV_ENV_UNIVERSAL_1_0,  // SPIR-V 1.0 latest revision, no other restrictions.
521   SPV_ENV_VULKAN_1_0,     // Vulkan 1.0 latest revision.
522   SPV_ENV_UNIVERSAL_1_1,  // SPIR-V 1.1 latest revision, no other restrictions.
523   SPV_ENV_OPENCL_2_1,     // OpenCL Full Profile 2.1 latest revision.
524   SPV_ENV_OPENCL_2_2,     // OpenCL Full Profile 2.2 latest revision.
525   SPV_ENV_OPENGL_4_0,     // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions.
526   SPV_ENV_OPENGL_4_1,     // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions.
527   SPV_ENV_OPENGL_4_2,     // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions.
528   SPV_ENV_OPENGL_4_3,     // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions.
529   // There is no variant for OpenGL 4.4.
530   SPV_ENV_OPENGL_4_5,     // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions.
531   SPV_ENV_UNIVERSAL_1_2,  // SPIR-V 1.2, latest revision, no other restrictions.
532   SPV_ENV_OPENCL_1_2,     // OpenCL Full Profile 1.2 plus cl_khr_il_program,
533                           // latest revision.
534   SPV_ENV_OPENCL_EMBEDDED_1_2,  // OpenCL Embedded Profile 1.2 plus
535                                 // cl_khr_il_program, latest revision.
536   SPV_ENV_OPENCL_2_0,  // OpenCL Full Profile 2.0 plus cl_khr_il_program,
537                        // latest revision.
538   SPV_ENV_OPENCL_EMBEDDED_2_0,  // OpenCL Embedded Profile 2.0 plus
539                                 // cl_khr_il_program, latest revision.
540   SPV_ENV_OPENCL_EMBEDDED_2_1,  // OpenCL Embedded Profile 2.1 latest revision.
541   SPV_ENV_OPENCL_EMBEDDED_2_2,  // OpenCL Embedded Profile 2.2 latest revision.
542   SPV_ENV_UNIVERSAL_1_3,  // SPIR-V 1.3 latest revision, no other restrictions.
543   SPV_ENV_VULKAN_1_1,     // Vulkan 1.1 latest revision.
544   SPV_ENV_WEBGPU_0,       // DEPRECATED, may be removed in the future.
545   SPV_ENV_UNIVERSAL_1_4,  // SPIR-V 1.4 latest revision, no other restrictions.
546 
547   // Vulkan 1.1 with VK_KHR_spirv_1_4, i.e. SPIR-V 1.4 binary.
548   SPV_ENV_VULKAN_1_1_SPIRV_1_4,
549 
550   SPV_ENV_UNIVERSAL_1_5,  // SPIR-V 1.5 latest revision, no other restrictions.
551   SPV_ENV_VULKAN_1_2,     // Vulkan 1.2 latest revision.
552 
553   SPV_ENV_UNIVERSAL_1_6,  // SPIR-V 1.6 latest revision, no other restrictions.
554   SPV_ENV_VULKAN_1_3,     // Vulkan 1.3 latest revision.
555 
556   SPV_ENV_MAX  // Keep this as the last enum value.
557 } spv_target_env;
558 
559 // SPIR-V Validator can be parameterized with the following Universal Limits.
560 typedef enum {
561   spv_validator_limit_max_struct_members,
562   spv_validator_limit_max_struct_depth,
563   spv_validator_limit_max_local_variables,
564   spv_validator_limit_max_global_variables,
565   spv_validator_limit_max_switch_branches,
566   spv_validator_limit_max_function_args,
567   spv_validator_limit_max_control_flow_nesting_depth,
568   spv_validator_limit_max_access_chain_indexes,
569   spv_validator_limit_max_id_bound,
570 } spv_validator_limit;
571 
572 // Returns a string describing the given SPIR-V target environment.
573 SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env);
574 
575 // Parses s into *env and returns true if successful.  If unparsable, returns
576 // false and sets *env to SPV_ENV_UNIVERSAL_1_0.
577 SPIRV_TOOLS_EXPORT bool spvParseTargetEnv(const char* s, spv_target_env* env);
578 
579 // Determines the target env value with the least features but which enables
580 // the given Vulkan and SPIR-V versions. If such a target is supported, returns
581 // true and writes the value to |env|, otherwise returns false.
582 //
583 // The Vulkan version is given as an unsigned 32-bit number as specified in
584 // Vulkan section "29.2.1 Version Numbers": the major version number appears
585 // in bits 22 to 21, and the minor version is in bits 12 to 21.  The SPIR-V
586 // version is given in the SPIR-V version header word: major version in bits
587 // 16 to 23, and minor version in bits 8 to 15.
588 SPIRV_TOOLS_EXPORT bool spvParseVulkanEnv(uint32_t vulkan_ver,
589                                           uint32_t spirv_ver,
590                                           spv_target_env* env);
591 
592 // Creates a context object for most of the SPIRV-Tools API.
593 // Returns null if env is invalid.
594 //
595 // See specific API calls for how the target environment is interpreted
596 // (particularly assembly and validation).
597 SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env);
598 
599 // Destroys the given context object.
600 SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context);
601 
602 // Creates a Validator options object with default options. Returns a valid
603 // options object. The object remains valid until it is passed into
604 // spvValidatorOptionsDestroy.
605 SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate(void);
606 
607 // Destroys the given Validator options object.
608 SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy(
609     spv_validator_options options);
610 
611 // Records the maximum Universal Limit that is considered valid in the given
612 // Validator options object. <options> argument must be a valid options object.
613 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit(
614     spv_validator_options options, spv_validator_limit limit_type,
615     uint32_t limit);
616 
617 // Record whether or not the validator should relax the rules on types for
618 // stores to structs.  When relaxed, it will allow a type mismatch as long as
619 // the types are structs with the same layout.  Two structs have the same layout
620 // if
621 //
622 // 1) the members of the structs are either the same type or are structs with
623 // same layout, and
624 //
625 // 2) the decorations that affect the memory layout are identical for both
626 // types.  Other decorations are not relevant.
627 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct(
628     spv_validator_options options, bool val);
629 
630 // Records whether or not the validator should relax the rules on pointer usage
631 // in logical addressing mode.
632 //
633 // When relaxed, it will allow the following usage cases of pointers:
634 // 1) OpVariable allocating an object whose type is a pointer type
635 // 2) OpReturnValue returning a pointer value
636 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer(
637     spv_validator_options options, bool val);
638 
639 // Records whether or not the validator should relax the rules because it is
640 // expected that the optimizations will make the code legal.
641 //
642 // When relaxed, it will allow the following:
643 // 1) It will allow relaxed logical pointers.  Setting this option will also
644 //    set that option.
645 // 2) Pointers that are pass as parameters to function calls do not have to
646 //    match the storage class of the formal parameter.
647 // 3) Pointers that are actual parameters on function calls do not have to point
648 //    to the same type pointed as the formal parameter.  The types just need to
649 //    logically match.
650 // 4) GLSLstd450 Interpolate* instructions can have a load of an interpolant
651 //    for a first argument.
652 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetBeforeHlslLegalization(
653     spv_validator_options options, bool val);
654 
655 // Records whether the validator should use "relaxed" block layout rules.
656 // Relaxed layout rules are described by Vulkan extension
657 // VK_KHR_relaxed_block_layout, and they affect uniform blocks, storage blocks,
658 // and push constants.
659 //
660 // This is enabled by default when targeting Vulkan 1.1 or later.
661 // Relaxed layout is more permissive than the default rules in Vulkan 1.0.
662 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxBlockLayout(
663     spv_validator_options options, bool val);
664 
665 // Records whether the validator should use standard block layout rules for
666 // uniform blocks.
667 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniformBufferStandardLayout(
668     spv_validator_options options, bool val);
669 
670 // Records whether the validator should use "scalar" block layout rules.
671 // Scalar layout rules are more permissive than relaxed block layout.
672 //
673 // See Vulkan extension VK_EXT_scalar_block_layout.  The scalar alignment is
674 // defined as follows:
675 // - scalar alignment of a scalar is the scalar size
676 // - scalar alignment of a vector is the scalar alignment of its component
677 // - scalar alignment of a matrix is the scalar alignment of its component
678 // - scalar alignment of an array is the scalar alignment of its element
679 // - scalar alignment of a struct is the max scalar alignment among its
680 //   members
681 //
682 // For a struct in Uniform, StorageClass, or PushConstant:
683 // - a member Offset must be a multiple of the member's scalar alignment
684 // - ArrayStride or MatrixStride must be a multiple of the array or matrix
685 //   scalar alignment
686 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetScalarBlockLayout(
687     spv_validator_options options, bool val);
688 
689 // Records whether the validator should use "scalar" block layout
690 // rules (as defined above) for Workgroup blocks.  See Vulkan
691 // extension VK_KHR_workgroup_memory_explicit_layout.
692 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetWorkgroupScalarBlockLayout(
693     spv_validator_options options, bool val);
694 
695 // Records whether or not the validator should skip validating standard
696 // uniform/storage block layout.
697 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetSkipBlockLayout(
698     spv_validator_options options, bool val);
699 
700 // Records whether or not the validator should allow the LocalSizeId
701 // decoration where the environment otherwise would not allow it.
702 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetAllowLocalSizeId(
703     spv_validator_options options, bool val);
704 
705 // Whether friendly names should be used in validation error messages.
706 SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetFriendlyNames(
707     spv_validator_options options, bool val);
708 
709 // Creates an optimizer options object with default options. Returns a valid
710 // options object. The object remains valid until it is passed into
711 // |spvOptimizerOptionsDestroy|.
712 SPIRV_TOOLS_EXPORT spv_optimizer_options spvOptimizerOptionsCreate(void);
713 
714 // Destroys the given optimizer options object.
715 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsDestroy(
716     spv_optimizer_options options);
717 
718 // Records whether or not the optimizer should run the validator before
719 // optimizing.  If |val| is true, the validator will be run.
720 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetRunValidator(
721     spv_optimizer_options options, bool val);
722 
723 // Records the validator options that should be passed to the validator if it is
724 // run.
725 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetValidatorOptions(
726     spv_optimizer_options options, spv_validator_options val);
727 
728 // Records the maximum possible value for the id bound.
729 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetMaxIdBound(
730     spv_optimizer_options options, uint32_t val);
731 
732 // Records whether all bindings within the module should be preserved.
733 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveBindings(
734     spv_optimizer_options options, bool val);
735 
736 // Records whether all specialization constants within the module
737 // should be preserved.
738 SPIRV_TOOLS_EXPORT void spvOptimizerOptionsSetPreserveSpecConstants(
739     spv_optimizer_options options, bool val);
740 
741 // Creates a reducer options object with default options. Returns a valid
742 // options object. The object remains valid until it is passed into
743 // |spvReducerOptionsDestroy|.
744 SPIRV_TOOLS_EXPORT spv_reducer_options spvReducerOptionsCreate(void);
745 
746 // Destroys the given reducer options object.
747 SPIRV_TOOLS_EXPORT void spvReducerOptionsDestroy(spv_reducer_options options);
748 
749 // Sets the maximum number of reduction steps that should run before the reducer
750 // gives up.
751 SPIRV_TOOLS_EXPORT void spvReducerOptionsSetStepLimit(
752     spv_reducer_options options, uint32_t step_limit);
753 
754 // Sets the fail-on-validation-error option; if true, the reducer will return
755 // kStateInvalid if a reduction step yields a state that fails SPIR-V
756 // validation. Otherwise, an invalid state is treated as uninteresting and the
757 // reduction backtracks and continues.
758 SPIRV_TOOLS_EXPORT void spvReducerOptionsSetFailOnValidationError(
759     spv_reducer_options options, bool fail_on_validation_error);
760 
761 // Sets the function that the reducer should target.  If set to zero the reducer
762 // will target all functions as well as parts of the module that lie outside
763 // functions.  Otherwise the reducer will restrict reduction to the function
764 // with result id |target_function|, which is required to exist.
765 SPIRV_TOOLS_EXPORT void spvReducerOptionsSetTargetFunction(
766     spv_reducer_options options, uint32_t target_function);
767 
768 // Creates a fuzzer options object with default options. Returns a valid
769 // options object. The object remains valid until it is passed into
770 // |spvFuzzerOptionsDestroy|.
771 SPIRV_TOOLS_EXPORT spv_fuzzer_options spvFuzzerOptionsCreate(void);
772 
773 // Destroys the given fuzzer options object.
774 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsDestroy(spv_fuzzer_options options);
775 
776 // Enables running the validator after every transformation is applied during
777 // a replay.
778 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableReplayValidation(
779     spv_fuzzer_options options);
780 
781 // Sets the seed with which the random number generator used by the fuzzer
782 // should be initialized.
783 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetRandomSeed(
784     spv_fuzzer_options options, uint32_t seed);
785 
786 // Sets the range of transformations that should be applied during replay: 0
787 // means all transformations, +N means the first N transformations, -N means all
788 // except the final N transformations.
789 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetReplayRange(
790     spv_fuzzer_options options, int32_t replay_range);
791 
792 // Sets the maximum number of steps that the shrinker should take before giving
793 // up.
794 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsSetShrinkerStepLimit(
795     spv_fuzzer_options options, uint32_t shrinker_step_limit);
796 
797 // Enables running the validator after every pass is applied during a fuzzing
798 // run.
799 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableFuzzerPassValidation(
800     spv_fuzzer_options options);
801 
802 // Enables all fuzzer passes during a fuzzing run (instead of a random subset
803 // of passes).
804 SPIRV_TOOLS_EXPORT void spvFuzzerOptionsEnableAllPasses(
805     spv_fuzzer_options options);
806 
807 // Encodes the given SPIR-V assembly text to its binary representation. The
808 // length parameter specifies the number of bytes for text. Encoded binary will
809 // be stored into *binary. Any error will be written into *diagnostic if
810 // diagnostic is non-null, otherwise the context's message consumer will be
811 // used. The generated binary is independent of the context and may outlive it.
812 // The SPIR-V binary version is set to the highest version of SPIR-V supported
813 // by the context's target environment.
814 SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context,
815                                                 const char* text,
816                                                 const size_t length,
817                                                 spv_binary* binary,
818                                                 spv_diagnostic* diagnostic);
819 
820 // Encodes the given SPIR-V assembly text to its binary representation. Same as
821 // spvTextToBinary but with options. The options parameter is a bit field of
822 // spv_text_to_binary_options_t.
823 SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions(
824     const spv_const_context context, const char* text, const size_t length,
825     const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic);
826 
827 // Frees an allocated text stream. This is a no-op if the text parameter
828 // is a null pointer.
829 SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text);
830 
831 // Decodes the given SPIR-V binary representation to its assembly text. The
832 // word_count parameter specifies the number of words for binary. The options
833 // parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
834 // be stored into *text. Any error will be written into *diagnostic if
835 // diagnostic is non-null, otherwise the context's message consumer will be
836 // used.
837 SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context,
838                                                 const uint32_t* binary,
839                                                 const size_t word_count,
840                                                 const uint32_t options,
841                                                 spv_text* text,
842                                                 spv_diagnostic* diagnostic);
843 
844 // Frees a binary stream from memory. This is a no-op if binary is a null
845 // pointer.
846 SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary);
847 
848 // Validates a SPIR-V binary for correctness. Any errors will be written into
849 // *diagnostic if diagnostic is non-null, otherwise the context's message
850 // consumer will be used.
851 //
852 // Validate for SPIR-V spec rules for the SPIR-V version named in the
853 // binary's header (at word offset 1).  Additionally, if the context target
854 // environment is a client API (such as Vulkan 1.1), then validate for that
855 // client API version, to the extent that it is verifiable from data in the
856 // binary itself.
857 SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context,
858                                             const spv_const_binary binary,
859                                             spv_diagnostic* diagnostic);
860 
861 // Validates a SPIR-V binary for correctness. Uses the provided Validator
862 // options. Any errors will be written into *diagnostic if diagnostic is
863 // non-null, otherwise the context's message consumer will be used.
864 //
865 // Validate for SPIR-V spec rules for the SPIR-V version named in the
866 // binary's header (at word offset 1).  Additionally, if the context target
867 // environment is a client API (such as Vulkan 1.1), then validate for that
868 // client API version, to the extent that it is verifiable from data in the
869 // binary itself, or in the validator options.
870 SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions(
871     const spv_const_context context, const spv_const_validator_options options,
872     const spv_const_binary binary, spv_diagnostic* diagnostic);
873 
874 // Validates a raw SPIR-V binary for correctness. Any errors will be written
875 // into *diagnostic if diagnostic is non-null, otherwise the context's message
876 // consumer will be used.
877 SPIRV_TOOLS_EXPORT spv_result_t
878 spvValidateBinary(const spv_const_context context, const uint32_t* words,
879                   const size_t num_words, spv_diagnostic* diagnostic);
880 
881 // Creates a diagnostic object. The position parameter specifies the location in
882 // the text/binary stream. The message parameter, copied into the diagnostic
883 // object, contains the error message to display.
884 SPIRV_TOOLS_EXPORT spv_diagnostic
885 spvDiagnosticCreate(const spv_position position, const char* message);
886 
887 // Destroys a diagnostic object.  This is a no-op if diagnostic is a null
888 // pointer.
889 SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic);
890 
891 // Prints the diagnostic to stderr.
892 SPIRV_TOOLS_EXPORT spv_result_t
893 spvDiagnosticPrint(const spv_diagnostic diagnostic);
894 
895 // Gets the name of an instruction, without the "Op" prefix.
896 SPIRV_TOOLS_EXPORT const char* spvOpcodeString(const uint32_t opcode);
897 
898 // The binary parser interface.
899 
900 // A pointer to a function that accepts a parsed SPIR-V header.
901 // The integer arguments are the 32-bit words from the header, as specified
902 // in SPIR-V 1.0 Section 2.3 Table 1.
903 // The function should return SPV_SUCCESS if parsing should continue.
904 typedef spv_result_t (*spv_parsed_header_fn_t)(
905     void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
906     uint32_t generator, uint32_t id_bound, uint32_t reserved);
907 
908 // A pointer to a function that accepts a parsed SPIR-V instruction.
909 // The parsed_instruction value is transient: it may be overwritten
910 // or released immediately after the function has returned.  That also
911 // applies to the words array member of the parsed instruction.  The
912 // function should return SPV_SUCCESS if and only if parsing should
913 // continue.
914 typedef spv_result_t (*spv_parsed_instruction_fn_t)(
915     void* user_data, const spv_parsed_instruction_t* parsed_instruction);
916 
917 // Parses a SPIR-V binary, specified as counted sequence of 32-bit words.
918 // Parsing feedback is provided via two callbacks provided as function
919 // pointers.  Each callback function pointer can be a null pointer, in
920 // which case it is never called.  Otherwise, in a valid parse the
921 // parsed-header callback is called once, and then the parsed-instruction
922 // callback once for each instruction in the stream.  The user_data parameter
923 // is supplied as context to the callbacks.  Returns SPV_SUCCESS on successful
924 // parse where the callbacks always return SPV_SUCCESS.  For an invalid parse,
925 // returns a status code other than SPV_SUCCESS, and if diagnostic is non-null
926 // also emits a diagnostic. If diagnostic is null the context's message consumer
927 // will be used to emit any errors. If a callback returns anything other than
928 // SPV_SUCCESS, then that status code is returned, no further callbacks are
929 // issued, and no additional diagnostics are emitted.
930 SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse(
931     const spv_const_context context, void* user_data, const uint32_t* words,
932     const size_t num_words, spv_parsed_header_fn_t parse_header,
933     spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic);
934 
935 // The optimizer interface.
936 
937 // A pointer to a function that accepts a log message from an optimizer.
938 typedef void (*spv_message_consumer)(
939     spv_message_level_t, const char*, const spv_position_t*, const char*);
940 
941 // Creates and returns an optimizer object.  This object must be passed to
942 // optimizer APIs below and is valid until passed to spvOptimizerDestroy.
943 SPIRV_TOOLS_EXPORT spv_optimizer_t* spvOptimizerCreate(spv_target_env env);
944 
945 // Destroys the given optimizer object.
946 SPIRV_TOOLS_EXPORT void spvOptimizerDestroy(spv_optimizer_t* optimizer);
947 
948 // Sets an spv_message_consumer on an optimizer object.
949 SPIRV_TOOLS_EXPORT void spvOptimizerSetMessageConsumer(
950     spv_optimizer_t* optimizer, spv_message_consumer consumer);
951 
952 // Registers passes that attempt to legalize the generated code.
953 SPIRV_TOOLS_EXPORT void spvOptimizerRegisterLegalizationPasses(
954     spv_optimizer_t* optimizer);
955 
956 // Registers passes that attempt to improve performance of generated code.
957 SPIRV_TOOLS_EXPORT void spvOptimizerRegisterPerformancePasses(
958     spv_optimizer_t* optimizer);
959 
960 // Registers passes that attempt to improve the size of generated code.
961 SPIRV_TOOLS_EXPORT void spvOptimizerRegisterSizePasses(
962     spv_optimizer_t* optimizer);
963 
964 // Registers a pass specified by a flag in an optimizer object.
965 SPIRV_TOOLS_EXPORT bool spvOptimizerRegisterPassFromFlag(
966     spv_optimizer_t* optimizer, const char* flag);
967 
968 // Registers passes specified by length number of flags in an optimizer object.
969 // Passes may remove interface variables that are unused.
970 SPIRV_TOOLS_EXPORT bool spvOptimizerRegisterPassesFromFlags(
971     spv_optimizer_t* optimizer, const char** flags, const size_t flag_count);
972 
973 // Registers passes specified by length number of flags in an optimizer object.
974 // Passes will not remove interface variables.
975 SPIRV_TOOLS_EXPORT bool
976 spvOptimizerRegisterPassesFromFlagsWhilePreservingTheInterface(
977     spv_optimizer_t* optimizer, const char** flags, const size_t flag_count);
978 
979 // Optimizes the SPIR-V code of size |word_count| pointed to by |binary| and
980 // returns an optimized spv_binary in |optimized_binary|.
981 //
982 // Returns SPV_SUCCESS on successful optimization, whether or not the module is
983 // modified.  Returns an SPV_ERROR_* if the module fails to validate or if
984 // errors occur when processing using any of the registered passes.  In that
985 // case, no further passes are executed and the |optimized_binary| contents may
986 // be invalid.
987 //
988 // By default, the binary is validated before any transforms are performed,
989 // and optionally after each transform.  Validation uses SPIR-V spec rules
990 // for the SPIR-V version named in the binary's header (at word offset 1).
991 // Additionally, if the target environment is a client API (such as
992 // Vulkan 1.1), then validate for that client API version, to the extent
993 // that it is verifiable from data in the binary itself, or from the
994 // validator options set on the optimizer options.
995 SPIRV_TOOLS_EXPORT spv_result_t spvOptimizerRun(
996     spv_optimizer_t* optimizer, const uint32_t* binary, const size_t word_count,
997     spv_binary* optimized_binary, const spv_optimizer_options options);
998 
999 #ifdef __cplusplus
1000 }
1001 #endif
1002 
1003 #endif  // INCLUDE_SPIRV_TOOLS_LIBSPIRV_H_
1004