xref: /aosp_15_r20/external/crosvm/src/sys/windows/control_server.rs (revision bb4ee6a4ae7042d18b07a98463b9c8b875e44b39)
1 // Copyright 2023 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 //! Implements the CrosVM control socket on Windows. Unlike on unix, this is a bit involved because
6 //! we can't process the raw named pipe in line inside `run_control` (named pipes aren't directly
7 //! waitable). In theory, AF_UNIX can be made waitable, but AF_UNIX is very slow, and we already
8 //! have significant prior art for using named pipes in a waitable fashion (`base::StreamChannel`).
9 
10 use std::io;
11 use std::sync::mpsc;
12 use std::sync::Arc;
13 
14 use base::named_pipes;
15 use base::named_pipes::OverlappedWrapper;
16 use base::named_pipes::PipeConnection;
17 use base::BlockingMode;
18 use base::Event;
19 use base::EventExt;
20 use base::EventToken;
21 use base::FlushOnDropTube;
22 use base::FramingMode;
23 use base::ReadNotifier;
24 use base::RecvTube;
25 use base::SendTube;
26 use base::StreamChannel;
27 use base::Tube;
28 use base::TubeError;
29 use base::WaitContext;
30 use base::WorkerThread;
31 use libc::EIO;
32 use log::error;
33 use log::info;
34 use log::warn;
35 use sync::Mutex;
36 use vm_control::VmRequest;
37 use vm_control::VmResponse;
38 use winapi::shared::winerror::ERROR_MORE_DATA;
39 
40 /// Windows named pipes don't fit in well with the control loop (`run_control`) the way sockets do
41 /// on unix, so this struct provides a compatibility layer (named pipe server) that functions very
42 /// similarly to how a socket server would on unix.
43 ///
44 /// Terminology:
45 ///     * The `ControlServer` is a socket server compatibility layer.
46 ///     * The "control loop" is the VMM's main loop (`run_control`). It uses the `ControlServer` to
47 ///       accept & service connections from clients that want to control the VMM (e.g. press the
48 ///       power button, etc).
49 pub struct ControlServer {
50     server_listener_worker: WorkerThread<(io::Result<()>, ClientWorker)>,
51     /// Signaled when a client has connected and can be accepted without blocking.
52     client_waiting: Event,
53     /// Provides the accepted Tube every time a client connects.
54     client_tube_channel: mpsc::Receiver<FlushOnDropTube>,
55 }
56 
57 #[derive(EventToken)]
58 enum Token {
59     Exit,
60     Readable,
61 }
62 
63 impl ControlServer {
64     /// Creates a named pipe server on `pipe_name` that forwards Tube messages between the connected
65     /// client on that pipe, and the Tube returned by `ControlServer::accept`.
new(pipe_name: &str) -> anyhow::Result<Self>66     pub fn new(pipe_name: &str) -> anyhow::Result<Self> {
67         let client_pipe_read = named_pipes::create_server_pipe(
68             pipe_name,
69             &named_pipes::FramingMode::Message,
70             &named_pipes::BlockingMode::Wait,
71             /* timeout= */ 0,
72             /* buffer_size= */ 1024 * 1024,
73             /* overlapped= */ true,
74         )?;
75         let client_pipe_write = client_pipe_read.try_clone()?;
76         let mut client_worker = ClientWorker::new(client_pipe_write);
77         let client_waiting = Event::new_auto_reset()?;
78         let client_waiting_for_worker = client_waiting.try_clone()?;
79         let (client_tube_channel_send, client_tube_channel_recv) = mpsc::channel();
80 
81         Ok(Self {
82             server_listener_worker: WorkerThread::start("ctrl_srv_listen_loop", move |exit_evt| {
83                 let res = Self::server_listener_loop(
84                     exit_evt,
85                     &mut client_worker,
86                     client_waiting_for_worker,
87                     client_tube_channel_send,
88                     client_pipe_read,
89                 );
90                 if let Err(e) = res.as_ref() {
91                     error!("server_listener_worker failed with error: {:?}", e)
92                 }
93                 (res, client_worker)
94             }),
95             client_waiting,
96             client_tube_channel: client_tube_channel_recv,
97         })
98     }
99 
100     /// Gets the client waiting event. If a client is waiting, [ControlServer::accept] can be called
101     /// and will return a [base::Tube] without blocking.
client_waiting(&self) -> &Event102     pub fn client_waiting(&self) -> &Event {
103         &self.client_waiting
104     }
105 
106     /// Accepts a connection (if one is waiting), returning a [base::Tube] connected to the client.
107     /// If [ControlServer::client_waiting] has not been signaled, this will block until a client
108     /// connects.
accept(&mut self) -> FlushOnDropTube109     pub fn accept(&mut self) -> FlushOnDropTube {
110         self.client_tube_channel
111             .recv()
112             .expect("client worker has done away")
113     }
114 
115     /// Shuts down the control server, disconnecting any connected clients.
shutdown(self) -> base::Result<()>116     pub fn shutdown(self) -> base::Result<()> {
117         let (listen_res, client_worker) = self.server_listener_worker.stop();
118         match listen_res {
119             Err(e) if e.kind() == io::ErrorKind::Interrupted => (),
120             Err(e) => return Err(base::Error::from(e)),
121             Ok(()) => (),
122         };
123         client_worker.shutdown()
124     }
125 
126     /// Listen loop for the control server. Handles waiting for new connections, creates the
127     /// forwarding thread for control loop -> client data, and forwards client -> control loop
128     /// data.
server_listener_loop( exit_evt: Event, client_worker: &mut ClientWorker, client_waiting: Event, client_tube_send_channel: mpsc::Sender<FlushOnDropTube>, mut client_pipe_read: PipeConnection, ) -> io::Result<()>129     fn server_listener_loop(
130         exit_evt: Event,
131         client_worker: &mut ClientWorker,
132         client_waiting: Event,
133         client_tube_send_channel: mpsc::Sender<FlushOnDropTube>,
134         mut client_pipe_read: PipeConnection,
135     ) -> io::Result<()> {
136         loop {
137             info!("control server: started, waiting for clients.");
138             client_pipe_read.wait_for_client_connection_overlapped_blocking(&exit_evt)?;
139 
140             let mut read_overlapped = OverlappedWrapper::new(true)?;
141             let control_send = client_worker.connect_client(&client_tube_send_channel)?;
142             client_waiting.signal()?;
143             info!("control server: accepted client");
144 
145             loop {
146                 let recv_result = base::deserialize_and_recv::<VmRequest, _>(|buf| {
147                     client_pipe_read.read_overlapped_blocking(
148                         buf,
149                         &mut read_overlapped,
150                         &exit_evt,
151                     )?;
152                     Ok(buf.len())
153                 });
154 
155                 match recv_result {
156                     Ok(msg) => {
157                         control_send.send(&msg).map_err(|e| {
158                             error!("unexpected error in control server recv loop: {}", e);
159                             io::Error::new(io::ErrorKind::Other, e)
160                         })?;
161                     }
162                     Err(TubeError::Disconnected) => break,
163                     Err(e) => {
164                         error!("unexpected error in control server recv loop: {}", e);
165                         return Err(io::Error::new(io::ErrorKind::Other, e));
166                     }
167                 };
168             }
169             // Current client has disconnected. Now we can reuse the server pipe for a new client.
170             match client_pipe_read.disconnect_clients() {
171                 Ok(()) => (),
172                 // If the pipe is already broken/closed, we'll get an error about trying to close
173                 // a pipe that has already been closed. Discard that error.
174                 Err(e) if e.kind() == io::ErrorKind::BrokenPipe => (),
175                 Err(e) => return Err(e),
176             }
177             client_worker.stop_control_to_client_worker()?;
178             info!("control server: disconnected client");
179         }
180         unreachable!("loop exits by returning an error");
181     }
182 }
183 
184 /// Handles connecting clients & forwarding data from client -> control server.
185 struct ClientWorker {
186     control_to_client_worker: Option<WorkerThread<(base::Result<()>, PipeConnection)>>,
187     client_pipe_write: Option<PipeConnection>,
188 }
189 
190 impl ClientWorker {
new(client_pipe_write: PipeConnection) -> Self191     fn new(client_pipe_write: PipeConnection) -> Self {
192         Self {
193             control_to_client_worker: None,
194             client_pipe_write: Some(client_pipe_write),
195         }
196     }
197 
connect_client( &mut self, client_tube_send_channel: &mpsc::Sender<FlushOnDropTube>, ) -> base::Result<SendTube>198     fn connect_client(
199         &mut self,
200         client_tube_send_channel: &mpsc::Sender<FlushOnDropTube>,
201     ) -> base::Result<SendTube> {
202         // It is critical that the server end of the pipe is returned as the Tube in
203         // ControlServer::accept (tube_for_control_loop here). This way, we can ensure data is
204         // flushed before the pipe is dropped. In short, the order of Tubes returned by the pair
205         // matters.
206         let (tube_for_control_loop, tube_to_control_loop) = Tube::pair().map_err(|e| match e {
207             TubeError::Pair(io_err) => base::Error::from(io_err),
208             _ => base::Error::new(EIO),
209         })?;
210 
211         let (control_send, control_recv) =
212             Tube::split_to_send_recv(tube_to_control_loop).map_err(|e| match e {
213                 TubeError::Clone(io_err) => base::Error::from(io_err),
214                 _ => base::Error::new(EIO),
215             })?;
216 
217         let client_pipe_write = self.client_pipe_write.take().expect("loop already running");
218         self.control_to_client_worker = Some(WorkerThread::start(
219             "ctrl_srv_client_to_ctrl",
220             move |exit_evt| {
221                 let res =
222                     Self::control_to_client_worker(exit_evt, &client_pipe_write, control_recv);
223                 if let Err(e) = res.as_ref() {
224                     error!("control_to_client_worker exited with error: {:?}", res);
225                 }
226                 (res, client_pipe_write)
227             },
228         ));
229         client_tube_send_channel
230             .send(FlushOnDropTube::from(tube_for_control_loop))
231             .expect("control server has gone away");
232         Ok(control_send)
233     }
234 
stop_control_to_client_worker(&mut self) -> base::Result<()>235     fn stop_control_to_client_worker(&mut self) -> base::Result<()> {
236         let (res, pipe) = self
237             .control_to_client_worker
238             .take()
239             .expect("loop must be running")
240             .stop();
241         self.client_pipe_write = Some(pipe);
242         res
243     }
244 
shutdown(self) -> base::Result<()>245     fn shutdown(self) -> base::Result<()> {
246         if let Some(worker) = self.control_to_client_worker {
247             worker.stop().0
248         } else {
249             Ok(())
250         }
251     }
252 
253     /// Worker that forwards data from the control loop -> client pipe.
control_to_client_worker( exit_evt: Event, client_pipe_write: &PipeConnection, control_recv: RecvTube, ) -> base::Result<()>254     fn control_to_client_worker(
255         exit_evt: Event,
256         client_pipe_write: &PipeConnection,
257         control_recv: RecvTube,
258     ) -> base::Result<()> {
259         let wait_ctx = WaitContext::new()?;
260         wait_ctx.add(&exit_evt, Token::Exit)?;
261         wait_ctx.add(control_recv.get_read_notifier(), Token::Readable)?;
262 
263         'poll: loop {
264             let events = wait_ctx.wait()?;
265             for event in events {
266                 match event.token {
267                     Token::Exit => {
268                         break 'poll;
269                     }
270                     Token::Readable => {
271                         let msg = match control_recv.recv::<VmResponse>() {
272                             Ok(msg) => Ok(msg),
273                             Err(TubeError::Disconnected) => {
274                                 return Ok(());
275                             }
276                             Err(TubeError::Recv(e)) => Err(base::Error::from(e)),
277                             Err(tube_error) => {
278                                 error!(
279                                     "unexpected error in control server recv loop: {}",
280                                     tube_error
281                                 );
282                                 Err(base::Error::new(EIO))
283                             }
284                         }?;
285                         base::serialize_and_send(|buf| client_pipe_write.write(buf), &msg, None)
286                             .map_err(|e| match e {
287                                 TubeError::Send(e) => base::Error::from(e),
288                                 tube_error => {
289                                     error!(
290                                         "unexpected error in control server recv loop: {}",
291                                         tube_error
292                                     );
293                                     base::Error::new(EIO)
294                                 }
295                             })?;
296                     }
297                 }
298             }
299         }
300         Ok(())
301     }
302 }
303 
304 #[cfg(test)]
305 mod tests {
306     use std::thread;
307     use std::time::Duration;
308 
309     use base::PipeTube;
310     use rand::Rng;
311 
312     use super::*;
313 
generate_pipe_name() -> String314     fn generate_pipe_name() -> String {
315         format!(
316             r"\\.\pipe\test-ipc-pipe-name.rand{}",
317             rand::thread_rng().gen::<u64>(),
318         )
319     }
320 
321     #[track_caller]
create_client(pipe_name: &str) -> PipeTube322     fn create_client(pipe_name: &str) -> PipeTube {
323         let mut last_error: Option<io::Error> = None;
324         for _ in 0..5 {
325             match named_pipes::create_client_pipe(
326                 pipe_name,
327                 &named_pipes::FramingMode::Message,
328                 &named_pipes::BlockingMode::Wait,
329                 /* overlapped= */ false,
330             ) {
331                 Ok(pipe) => return PipeTube::from(pipe, None),
332                 Err(e) => {
333                     last_error = Some(e);
334                     println!("failed client connection");
335                     thread::sleep(Duration::from_millis(100))
336                 }
337             }
338         }
339         panic!(
340             "failed to connect to control server: {:?}",
341             last_error.unwrap()
342         )
343     }
344 
345     #[test]
test_smoke()346     fn test_smoke() {
347         // There are several threads, so run many iterations to exercise any possible race
348         // conditions.
349         for i in 0..100 {
350             println!("starting iteration {}", i);
351             let pipe_name = generate_pipe_name();
352 
353             let mut control_server = ControlServer::new(&pipe_name).unwrap();
354             let fake_control_loop = base::thread::spawn_with_timeout(move || {
355                 // First client.
356                 {
357                     println!("server: starting client 1");
358                     control_server.client_waiting().wait().unwrap();
359                     let client1 = control_server.accept();
360                     let req: VmRequest = client1.0.recv().unwrap();
361                     assert!(matches!(req, VmRequest::Powerbtn));
362                     client1.0.send(&VmResponse::Ok).unwrap();
363                 }
364                 println!("server: finished client 1");
365 
366                 // Second client.
367                 {
368                     println!("server: starting client 2");
369                     control_server.client_waiting().wait().unwrap();
370                     let client2 = control_server.accept();
371                     let req: VmRequest = client2.0.recv().unwrap();
372                     assert!(matches!(req, VmRequest::Exit));
373                     client2
374                         .0
375                         .send(&VmResponse::ErrString("err".to_owned()))
376                         .unwrap();
377                 }
378                 println!("server: finished client 2");
379                 control_server
380             });
381 
382             {
383                 println!("client: starting client 1");
384                 let client1 = create_client(&pipe_name);
385                 client1.send(&VmRequest::Powerbtn).unwrap();
386                 assert!(matches!(client1.recv().unwrap(), VmResponse::Ok));
387                 println!("client: finished client 1");
388             }
389 
390             {
391                 println!("client: starting client 2");
392                 let client2 = create_client(&pipe_name);
393                 client2.send(&VmRequest::Exit).unwrap();
394                 let resp = VmResponse::ErrString("err".to_owned());
395                 assert!(matches!(client2.recv::<VmResponse>().unwrap(), resp,));
396                 println!("client: finished client 2");
397             }
398 
399             let control_server = fake_control_loop.try_join(Duration::from_secs(2)).unwrap();
400             control_server.shutdown().unwrap();
401             println!("completed iteration {}", i);
402         }
403     }
404 }
405