1 // Copyright 2023 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 use std::sync::Arc;
6
7 use base::error;
8 use base::Error;
9 use base::Event;
10 use base::Result;
11 use hypervisor::geniezone::geniezone_sys::*;
12 use hypervisor::geniezone::GeniezoneVcpu;
13 use hypervisor::geniezone::GeniezoneVm;
14 use hypervisor::DeviceKind;
15 use hypervisor::IrqRoute;
16 use hypervisor::MPState;
17 use hypervisor::Vcpu;
18 use hypervisor::Vm;
19 use resources::SystemAllocator;
20 use sync::Mutex;
21
22 use crate::Bus;
23 use crate::IrqChip;
24 use crate::IrqChipAArch64;
25 use crate::IrqChipCap;
26 use crate::IrqEdgeEvent;
27 use crate::IrqEventIndex;
28 use crate::IrqEventSource;
29 use crate::IrqLevelEvent;
30 use crate::VcpuRunState;
31
32 /// Default ARM routing table. AARCH64_GIC_NR_SPIS pins go to VGIC.
default_irq_routing_table() -> Vec<IrqRoute>33 fn default_irq_routing_table() -> Vec<IrqRoute> {
34 let mut routes: Vec<IrqRoute> = Vec::new();
35
36 for i in 0..AARCH64_GIC_NR_SPIS {
37 routes.push(IrqRoute::gic_irq_route(i));
38 }
39
40 routes
41 }
42
43 /// IrqChip implementation where the entire IrqChip is emulated by GZVM.
44 ///
45 /// This implementation will use the GZVM API to create and configure the in-kernel irqchip.
46 pub struct GeniezoneKernelIrqChip {
47 pub(super) vm: GeniezoneVm,
48 pub(super) vcpus: Arc<Mutex<Vec<Option<GeniezoneVcpu>>>>,
49 device_kind: DeviceKind,
50 pub(super) routes: Arc<Mutex<Vec<IrqRoute>>>,
51 }
52
53 // These constants indicate the address space used by the ARM vGIC.
54 const AARCH64_GIC_DIST_SIZE: u64 = 0x10000;
55
56 // These constants indicate the placement of the GIC registers in the physical
57 // address space.
58 const AARCH64_GIC_DIST_BASE: u64 = 0x40000000 - AARCH64_GIC_DIST_SIZE;
59 const AARCH64_GIC_REDIST_SIZE: u64 = 0x20000;
60
61 // This is the minimum number of SPI interrupts aligned to 32 + 32 for the
62 // PPI (16) and GSI (16).
63 // pub const AARCH64_GIC_NR_IRQS: u32 = 64;
64 // Number of SPIs (32), which is the NR_IRQS (64) minus the number of PPIs (16) and GSIs (16)
65 pub const AARCH64_GIC_NR_SPIS: u32 = 32;
66
67 impl GeniezoneKernelIrqChip {
68 /// Construct a new GzvmKernelIrqchip.
new(vm: GeniezoneVm, num_vcpus: usize) -> Result<GeniezoneKernelIrqChip>69 pub fn new(vm: GeniezoneVm, num_vcpus: usize) -> Result<GeniezoneKernelIrqChip> {
70 let dist_if_addr: u64 = AARCH64_GIC_DIST_BASE;
71 let redist_addr: u64 = dist_if_addr - (AARCH64_GIC_REDIST_SIZE * num_vcpus as u64);
72 let device_kind = DeviceKind::ArmVgicV3;
73
74 // prepare gzvm_create_device and call ioctl
75 let device_dis = gzvm_create_device {
76 dev_type: gzvm_device_type_GZVM_DEV_TYPE_ARM_VGIC_V3_DIST,
77 id: 0,
78 flags: 0,
79 dev_addr: dist_if_addr,
80 dev_reg_size: AARCH64_GIC_DIST_SIZE,
81 attr_addr: 0_u64,
82 attr_size: 0_u64,
83 };
84
85 match vm.create_geniezone_device(device_dis) {
86 Ok(()) => {}
87 Err(e) => {
88 error!("failed to create geniezone device with err: {}", e);
89 return Err(e);
90 }
91 };
92
93 let device_redis = gzvm_create_device {
94 dev_type: gzvm_device_type_GZVM_DEV_TYPE_ARM_VGIC_V3_REDIST,
95 id: 0,
96 flags: 0,
97 dev_addr: redist_addr,
98 dev_reg_size: AARCH64_GIC_REDIST_SIZE,
99 attr_addr: 0_u64,
100 attr_size: 0_u64,
101 };
102
103 match vm.create_geniezone_device(device_redis) {
104 Ok(()) => {}
105 Err(e) => {
106 error!("failed to create geniezone device with err: {}", e);
107 return Err(e);
108 }
109 };
110
111 Ok(GeniezoneKernelIrqChip {
112 vm,
113 vcpus: Arc::new(Mutex::new((0..num_vcpus).map(|_| None).collect())),
114 device_kind,
115 routes: Arc::new(Mutex::new(default_irq_routing_table())),
116 })
117 }
118 /// Attempt to create a shallow clone of this aarch64 GzvmKernelIrqChip instance.
arch_try_clone(&self) -> Result<Self>119 pub(super) fn arch_try_clone(&self) -> Result<Self> {
120 Ok(GeniezoneKernelIrqChip {
121 vm: self.vm.try_clone()?,
122 vcpus: self.vcpus.clone(),
123 device_kind: self.device_kind,
124 routes: self.routes.clone(),
125 })
126 }
127 }
128
129 impl IrqChipAArch64 for GeniezoneKernelIrqChip {
try_box_clone(&self) -> Result<Box<dyn IrqChipAArch64>>130 fn try_box_clone(&self) -> Result<Box<dyn IrqChipAArch64>> {
131 Ok(Box::new(self.try_clone()?))
132 }
133
as_irq_chip(&self) -> &dyn IrqChip134 fn as_irq_chip(&self) -> &dyn IrqChip {
135 self
136 }
137
as_irq_chip_mut(&mut self) -> &mut dyn IrqChip138 fn as_irq_chip_mut(&mut self) -> &mut dyn IrqChip {
139 self
140 }
141
get_vgic_version(&self) -> DeviceKind142 fn get_vgic_version(&self) -> DeviceKind {
143 self.device_kind
144 }
145
finalize(&self) -> Result<()>146 fn finalize(&self) -> Result<()> {
147 Ok(())
148 }
149 }
150
151 /// This IrqChip only works with Geniezone so we only implement it for GeniezoneVcpu.
152 impl IrqChip for GeniezoneKernelIrqChip {
153 /// Add a vcpu to the irq chip.
add_vcpu(&mut self, vcpu_id: usize, vcpu: &dyn Vcpu) -> Result<()>154 fn add_vcpu(&mut self, vcpu_id: usize, vcpu: &dyn Vcpu) -> Result<()> {
155 let vcpu: &GeniezoneVcpu = vcpu
156 .downcast_ref()
157 .expect("GeniezoneKernelIrqChip::add_vcpu called with non-GeniezoneVcpu");
158 self.vcpus.lock()[vcpu_id] = Some(vcpu.try_clone()?);
159 Ok(())
160 }
161
162 /// Register an event with edge-trigger semantic that can trigger an interrupt
163 /// for a particular GSI.
register_edge_irq_event( &mut self, irq: u32, irq_event: &IrqEdgeEvent, _source: IrqEventSource, ) -> Result<Option<IrqEventIndex>>164 fn register_edge_irq_event(
165 &mut self,
166 irq: u32,
167 irq_event: &IrqEdgeEvent,
168 _source: IrqEventSource,
169 ) -> Result<Option<IrqEventIndex>> {
170 self.vm.register_irqfd(irq, irq_event.get_trigger(), None)?;
171 Ok(None)
172 }
173
174 /// Unregister an event with edge-trigger semantic for a particular GSI.
unregister_edge_irq_event(&mut self, irq: u32, irq_event: &IrqEdgeEvent) -> Result<()>175 fn unregister_edge_irq_event(&mut self, irq: u32, irq_event: &IrqEdgeEvent) -> Result<()> {
176 self.vm.unregister_irqfd(irq, irq_event.get_trigger())
177 }
178
179 /// Register an event with level-trigger semantic that can trigger an interrupt
180 /// for a particular GSI.
register_level_irq_event( &mut self, irq: u32, irq_event: &IrqLevelEvent, _source: IrqEventSource, ) -> Result<Option<IrqEventIndex>>181 fn register_level_irq_event(
182 &mut self,
183 irq: u32,
184 irq_event: &IrqLevelEvent,
185 _source: IrqEventSource,
186 ) -> Result<Option<IrqEventIndex>> {
187 self.vm
188 .register_irqfd(irq, irq_event.get_trigger(), Some(irq_event.get_resample()))?;
189 Ok(None)
190 }
191
192 /// Unregister an event with level-trigger semantic for a particular GSI.
unregister_level_irq_event(&mut self, irq: u32, irq_event: &IrqLevelEvent) -> Result<()>193 fn unregister_level_irq_event(&mut self, irq: u32, irq_event: &IrqLevelEvent) -> Result<()> {
194 self.vm.unregister_irqfd(irq, irq_event.get_trigger())
195 }
196
197 /// Route an IRQ line to an interrupt controller, or to a particular MSI vector.
route_irq(&mut self, route: IrqRoute) -> Result<()>198 fn route_irq(&mut self, route: IrqRoute) -> Result<()> {
199 let mut routes = self.routes.lock();
200 routes.retain(|r| r.gsi != route.gsi);
201
202 routes.push(route);
203 Ok(())
204 }
205
206 /// Replace all irq routes with the supplied routes
set_irq_routes(&mut self, routes: &[IrqRoute]) -> Result<()>207 fn set_irq_routes(&mut self, routes: &[IrqRoute]) -> Result<()> {
208 let mut current_routes = self.routes.lock();
209 *current_routes = routes.to_vec();
210 Ok(())
211 }
212
213 /// Return a vector of all registered irq numbers and their associated events and event
214 /// indices. These should be used by the main thread to wait for irq events.
215 /// For the GeniezoneKernelIrqChip, the kernel handles listening to irq events being triggered
216 /// by devices, so this function always returns an empty Vec.
irq_event_tokens(&self) -> Result<Vec<(IrqEventIndex, IrqEventSource, Event)>>217 fn irq_event_tokens(&self) -> Result<Vec<(IrqEventIndex, IrqEventSource, Event)>> {
218 Ok(Vec::new())
219 }
220
221 /// Either assert or deassert an IRQ line. Sends to either an interrupt controller, or does
222 /// a send_msi if the irq is associated with an MSI.
223 /// For the GeniezoneKernelIrqChip this simply calls the GZVM_SET_IRQ_LINE ioctl.
service_irq(&mut self, irq: u32, level: bool) -> Result<()>224 fn service_irq(&mut self, irq: u32, level: bool) -> Result<()> {
225 self.vm.set_irq_line(irq, level)
226 }
227
228 /// Service an IRQ event by asserting then deasserting an IRQ line. The associated Event
229 /// that triggered the irq event will be read from. If the irq is associated with a resample
230 /// Event, then the deassert will only happen after an EOI is broadcast for a vector
231 /// associated with the irq line.
232 /// This function should never be called on GeniezoneKernelIrqChip.
service_irq_event(&mut self, _event_index: IrqEventIndex) -> Result<()>233 fn service_irq_event(&mut self, _event_index: IrqEventIndex) -> Result<()> {
234 error!("service_irq_event should never be called for GeniezoneKernelIrqChip");
235 Ok(())
236 }
237
238 /// Broadcast an end of interrupt.
239 /// This should never be called on a GeniezoneKernelIrqChip because a Geniezone vcpu should
240 /// never exit with the GZVM_EXIT_EOI_BROADCAST reason when an in-kernel irqchip exists.
broadcast_eoi(&self, _vector: u8) -> Result<()>241 fn broadcast_eoi(&self, _vector: u8) -> Result<()> {
242 error!("broadcast_eoi should never be called for GeniezoneKernelIrqChip");
243 Ok(())
244 }
245
246 /// Injects any pending interrupts for `vcpu`.
247 /// For GeniezoneKernelIrqChip this is a no-op because Geniezone is responsible for injecting
248 /// all interrupts.
inject_interrupts(&self, _vcpu: &dyn Vcpu) -> Result<()>249 fn inject_interrupts(&self, _vcpu: &dyn Vcpu) -> Result<()> {
250 Ok(())
251 }
252
253 /// Notifies the irq chip that the specified VCPU has executed a halt instruction.
254 /// For GeniezoneKernelIrqChip this is a no-op because Geniezone handles VCPU blocking.
halted(&self, _vcpu_id: usize)255 fn halted(&self, _vcpu_id: usize) {}
256
257 /// Blocks until `vcpu` is in a runnable state or until interrupted by
258 /// `IrqChip::kick_halted_vcpus`. Returns `VcpuRunState::Runnable if vcpu is runnable, or
259 /// `VcpuRunState::Interrupted` if the wait was interrupted.
260 /// For GeniezoneKernelIrqChip this is a no-op and always returns Runnable because Geniezone
261 /// handles VCPU blocking.
wait_until_runnable(&self, _vcpu: &dyn Vcpu) -> Result<VcpuRunState>262 fn wait_until_runnable(&self, _vcpu: &dyn Vcpu) -> Result<VcpuRunState> {
263 Ok(VcpuRunState::Runnable)
264 }
265
266 /// Makes unrunnable VCPUs return immediately from `wait_until_runnable`.
267 /// For GeniezoneKernelIrqChip this is a no-op because Geniezone handles VCPU blocking.
kick_halted_vcpus(&self)268 fn kick_halted_vcpus(&self) {}
269
270 /// Get the current MP state of the specified VCPU.
get_mp_state(&self, _vcpu_id: usize) -> Result<MPState>271 fn get_mp_state(&self, _vcpu_id: usize) -> Result<MPState> {
272 Err(Error::new(libc::ENOENT))
273 }
274
275 /// Set the current MP state of the specified VCPU.
set_mp_state(&mut self, _vcpu_id: usize, _state: &MPState) -> Result<()>276 fn set_mp_state(&mut self, _vcpu_id: usize, _state: &MPState) -> Result<()> {
277 Err(Error::new(libc::ENOENT))
278 }
279
280 /// Attempt to clone this IrqChip instance.
try_clone(&self) -> Result<Self>281 fn try_clone(&self) -> Result<Self> {
282 // Because the GeniezoneKernelIrqChip struct contains arch-specific fields we leave the
283 // cloning to arch-specific implementations
284 self.arch_try_clone()
285 }
286
287 /// Finalize irqchip setup. Should be called once all devices have registered irq events and
288 /// been added to the io_bus and mmio_bus.
289 /// GeniezoneKernelIrqChip does not need to do anything here.
finalize_devices( &mut self, _resources: &mut SystemAllocator, _io_bus: &Bus, _mmio_bus: &Bus, ) -> Result<()>290 fn finalize_devices(
291 &mut self,
292 _resources: &mut SystemAllocator,
293 _io_bus: &Bus,
294 _mmio_bus: &Bus,
295 ) -> Result<()> {
296 Ok(())
297 }
298
299 /// The GeniezoneKernelIrqChip doesn't process irq events itself so this function does nothing.
process_delayed_irq_events(&mut self) -> Result<()>300 fn process_delayed_irq_events(&mut self) -> Result<()> {
301 Ok(())
302 }
303
irq_delayed_event_token(&self) -> Result<Option<Event>>304 fn irq_delayed_event_token(&self) -> Result<Option<Event>> {
305 Ok(None)
306 }
307
check_capability(&self, _c: IrqChipCap) -> bool308 fn check_capability(&self, _c: IrqChipCap) -> bool {
309 false
310 }
311 }
312