1 /* Copyright 2014 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 /* Brotli bit stream functions to support the low level format. There are no
8 compression algorithms here, just the right ordering of bits to match the
9 specs. */
10
11 #include "brotli_bit_stream.h"
12
13 #include <string.h> /* memcpy, memset */
14
15 #include "../common/constants.h"
16 #include "../common/context.h"
17 #include "../common/platform.h"
18 #include <brotli/types.h>
19 #include "entropy_encode.h"
20 #include "entropy_encode_static.h"
21 #include "fast_log.h"
22 #include "histogram.h"
23 #include "memory.h"
24 #include "write_bits.h"
25
26 #if defined(__cplusplus) || defined(c_plusplus)
27 extern "C" {
28 #endif
29
30 #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
31 /* The maximum size of Huffman dictionary for distances assuming that
32 NPOSTFIX = 0 and NDIRECT = 0. */
33 #define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \
34 BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS)
35 /* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */
36
BlockLengthPrefixCode(uint32_t len)37 static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
38 uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
39 while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
40 len >= _kBrotliPrefixCodeRanges[code + 1].offset) ++code;
41 return code;
42 }
43
GetBlockLengthPrefixCode(uint32_t len,size_t * code,uint32_t * n_extra,uint32_t * extra)44 static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
45 uint32_t* n_extra, uint32_t* extra) {
46 *code = BlockLengthPrefixCode(len);
47 *n_extra = _kBrotliPrefixCodeRanges[*code].nbits;
48 *extra = len - _kBrotliPrefixCodeRanges[*code].offset;
49 }
50
51 typedef struct BlockTypeCodeCalculator {
52 size_t last_type;
53 size_t second_last_type;
54 } BlockTypeCodeCalculator;
55
InitBlockTypeCodeCalculator(BlockTypeCodeCalculator * self)56 static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
57 self->last_type = 1;
58 self->second_last_type = 0;
59 }
60
NextBlockTypeCode(BlockTypeCodeCalculator * calculator,uint8_t type)61 static BROTLI_INLINE size_t NextBlockTypeCode(
62 BlockTypeCodeCalculator* calculator, uint8_t type) {
63 size_t type_code = (type == calculator->last_type + 1) ? 1u :
64 (type == calculator->second_last_type) ? 0u : type + 2u;
65 calculator->second_last_type = calculator->last_type;
66 calculator->last_type = type;
67 return type_code;
68 }
69
70 /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3)
71 REQUIRES: length > 0
72 REQUIRES: length <= (1 << 24) */
BrotliEncodeMlen(size_t length,uint64_t * bits,size_t * numbits,uint64_t * nibblesbits)73 static void BrotliEncodeMlen(size_t length, uint64_t* bits,
74 size_t* numbits, uint64_t* nibblesbits) {
75 size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
76 size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
77 BROTLI_DCHECK(length > 0);
78 BROTLI_DCHECK(length <= (1 << 24));
79 BROTLI_DCHECK(lg <= 24);
80 *nibblesbits = mnibbles - 4;
81 *numbits = mnibbles * 4;
82 *bits = length - 1;
83 }
84
StoreCommandExtra(const Command * cmd,size_t * storage_ix,uint8_t * storage)85 static BROTLI_INLINE void StoreCommandExtra(
86 const Command* cmd, size_t* storage_ix, uint8_t* storage) {
87 uint32_t copylen_code = CommandCopyLenCode(cmd);
88 uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
89 uint16_t copycode = GetCopyLengthCode(copylen_code);
90 uint32_t insnumextra = GetInsertExtra(inscode);
91 uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
92 uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
93 uint64_t bits = (copyextraval << insnumextra) | insextraval;
94 BrotliWriteBits(
95 insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
96 }
97
98 /* Data structure that stores almost everything that is needed to encode each
99 block switch command. */
100 typedef struct BlockSplitCode {
101 BlockTypeCodeCalculator type_code_calculator;
102 uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
103 uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
104 uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
105 uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
106 } BlockSplitCode;
107
108 /* Stores a number between 0 and 255. */
StoreVarLenUint8(size_t n,size_t * storage_ix,uint8_t * storage)109 static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
110 if (n == 0) {
111 BrotliWriteBits(1, 0, storage_ix, storage);
112 } else {
113 size_t nbits = Log2FloorNonZero(n);
114 BrotliWriteBits(1, 1, storage_ix, storage);
115 BrotliWriteBits(3, nbits, storage_ix, storage);
116 BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
117 }
118 }
119
120 /* Stores the compressed meta-block header.
121 REQUIRES: length > 0
122 REQUIRES: length <= (1 << 24) */
StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,size_t length,size_t * storage_ix,uint8_t * storage)123 static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,
124 size_t length,
125 size_t* storage_ix,
126 uint8_t* storage) {
127 uint64_t lenbits;
128 size_t nlenbits;
129 uint64_t nibblesbits;
130
131 /* Write ISLAST bit. */
132 BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
133 /* Write ISEMPTY bit. */
134 if (is_final_block) {
135 BrotliWriteBits(1, 0, storage_ix, storage);
136 }
137
138 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
139 BrotliWriteBits(2, nibblesbits, storage_ix, storage);
140 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
141
142 if (!is_final_block) {
143 /* Write ISUNCOMPRESSED bit. */
144 BrotliWriteBits(1, 0, storage_ix, storage);
145 }
146 }
147
148 /* Stores the uncompressed meta-block header.
149 REQUIRES: length > 0
150 REQUIRES: length <= (1 << 24) */
BrotliStoreUncompressedMetaBlockHeader(size_t length,size_t * storage_ix,uint8_t * storage)151 static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
152 size_t* storage_ix,
153 uint8_t* storage) {
154 uint64_t lenbits;
155 size_t nlenbits;
156 uint64_t nibblesbits;
157
158 /* Write ISLAST bit.
159 Uncompressed block cannot be the last one, so set to 0. */
160 BrotliWriteBits(1, 0, storage_ix, storage);
161 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
162 BrotliWriteBits(2, nibblesbits, storage_ix, storage);
163 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
164 /* Write ISUNCOMPRESSED bit. */
165 BrotliWriteBits(1, 1, storage_ix, storage);
166 }
167
BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(const int num_codes,const uint8_t * code_length_bitdepth,size_t * storage_ix,uint8_t * storage)168 static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
169 const int num_codes, const uint8_t* code_length_bitdepth,
170 size_t* storage_ix, uint8_t* storage) {
171 static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
172 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
173 };
174 /* The bit lengths of the Huffman code over the code length alphabet
175 are compressed with the following static Huffman code:
176 Symbol Code
177 ------ ----
178 0 00
179 1 1110
180 2 110
181 3 01
182 4 10
183 5 1111 */
184 static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
185 0, 7, 3, 2, 1, 15
186 };
187 static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
188 2, 4, 3, 2, 2, 4
189 };
190
191 size_t skip_some = 0; /* skips none. */
192
193 /* Throw away trailing zeros: */
194 size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
195 if (num_codes > 1) {
196 for (; codes_to_store > 0; --codes_to_store) {
197 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
198 break;
199 }
200 }
201 }
202 if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
203 code_length_bitdepth[kStorageOrder[1]] == 0) {
204 skip_some = 2; /* skips two. */
205 if (code_length_bitdepth[kStorageOrder[2]] == 0) {
206 skip_some = 3; /* skips three. */
207 }
208 }
209 BrotliWriteBits(2, skip_some, storage_ix, storage);
210 {
211 size_t i;
212 for (i = skip_some; i < codes_to_store; ++i) {
213 size_t l = code_length_bitdepth[kStorageOrder[i]];
214 BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
215 kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
216 }
217 }
218 }
219
BrotliStoreHuffmanTreeToBitMask(const size_t huffman_tree_size,const uint8_t * huffman_tree,const uint8_t * huffman_tree_extra_bits,const uint8_t * code_length_bitdepth,const uint16_t * code_length_bitdepth_symbols,size_t * BROTLI_RESTRICT storage_ix,uint8_t * BROTLI_RESTRICT storage)220 static void BrotliStoreHuffmanTreeToBitMask(
221 const size_t huffman_tree_size, const uint8_t* huffman_tree,
222 const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
223 const uint16_t* code_length_bitdepth_symbols,
224 size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
225 size_t i;
226 for (i = 0; i < huffman_tree_size; ++i) {
227 size_t ix = huffman_tree[i];
228 BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
229 storage_ix, storage);
230 /* Extra bits */
231 switch (ix) {
232 case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
233 BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
234 break;
235 case BROTLI_REPEAT_ZERO_CODE_LENGTH:
236 BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
237 break;
238 }
239 }
240 }
241
StoreSimpleHuffmanTree(const uint8_t * depths,size_t symbols[4],size_t num_symbols,size_t max_bits,size_t * storage_ix,uint8_t * storage)242 static void StoreSimpleHuffmanTree(const uint8_t* depths,
243 size_t symbols[4],
244 size_t num_symbols,
245 size_t max_bits,
246 size_t* storage_ix, uint8_t* storage) {
247 /* value of 1 indicates a simple Huffman code */
248 BrotliWriteBits(2, 1, storage_ix, storage);
249 BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */
250
251 {
252 /* Sort */
253 size_t i;
254 for (i = 0; i < num_symbols; i++) {
255 size_t j;
256 for (j = i + 1; j < num_symbols; j++) {
257 if (depths[symbols[j]] < depths[symbols[i]]) {
258 BROTLI_SWAP(size_t, symbols, j, i);
259 }
260 }
261 }
262 }
263
264 if (num_symbols == 2) {
265 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
266 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
267 } else if (num_symbols == 3) {
268 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
269 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
270 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
271 } else {
272 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
273 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
274 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
275 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
276 /* tree-select */
277 BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
278 }
279 }
280
281 /* num = alphabet size
282 depths = symbol depths */
BrotliStoreHuffmanTree(const uint8_t * depths,size_t num,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)283 void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
284 HuffmanTree* tree,
285 size_t* storage_ix, uint8_t* storage) {
286 /* Write the Huffman tree into the brotli-representation.
287 The command alphabet is the largest, so this allocation will fit all
288 alphabets. */
289 /* TODO(eustas): fix me */
290 uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
291 uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
292 size_t huffman_tree_size = 0;
293 uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
294 uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
295 uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
296 size_t i;
297 int num_codes = 0;
298 size_t code = 0;
299
300 BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS);
301
302 BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
303 huffman_tree_extra_bits);
304
305 /* Calculate the statistics of the Huffman tree in brotli-representation. */
306 for (i = 0; i < huffman_tree_size; ++i) {
307 ++huffman_tree_histogram[huffman_tree[i]];
308 }
309
310 for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
311 if (huffman_tree_histogram[i]) {
312 if (num_codes == 0) {
313 code = i;
314 num_codes = 1;
315 } else if (num_codes == 1) {
316 num_codes = 2;
317 break;
318 }
319 }
320 }
321
322 /* Calculate another Huffman tree to use for compressing both the
323 earlier Huffman tree with. */
324 BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
325 5, tree, code_length_bitdepth);
326 BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
327 BROTLI_CODE_LENGTH_CODES,
328 code_length_bitdepth_symbols);
329
330 /* Now, we have all the data, let's start storing it */
331 BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
332 storage_ix, storage);
333
334 if (num_codes == 1) {
335 code_length_bitdepth[code] = 0;
336 }
337
338 /* Store the real Huffman tree now. */
339 BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
340 huffman_tree,
341 huffman_tree_extra_bits,
342 code_length_bitdepth,
343 code_length_bitdepth_symbols,
344 storage_ix, storage);
345 }
346
347 /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
348 bits[0:length] and stores the encoded tree to the bit stream. */
BuildAndStoreHuffmanTree(const uint32_t * histogram,const size_t histogram_length,const size_t alphabet_size,HuffmanTree * tree,uint8_t * depth,uint16_t * bits,size_t * storage_ix,uint8_t * storage)349 static void BuildAndStoreHuffmanTree(const uint32_t* histogram,
350 const size_t histogram_length,
351 const size_t alphabet_size,
352 HuffmanTree* tree,
353 uint8_t* depth,
354 uint16_t* bits,
355 size_t* storage_ix,
356 uint8_t* storage) {
357 size_t count = 0;
358 size_t s4[4] = { 0 };
359 size_t i;
360 size_t max_bits = 0;
361 for (i = 0; i < histogram_length; i++) {
362 if (histogram[i]) {
363 if (count < 4) {
364 s4[count] = i;
365 } else if (count > 4) {
366 break;
367 }
368 count++;
369 }
370 }
371
372 {
373 size_t max_bits_counter = alphabet_size - 1;
374 while (max_bits_counter) {
375 max_bits_counter >>= 1;
376 ++max_bits;
377 }
378 }
379
380 if (count <= 1) {
381 BrotliWriteBits(4, 1, storage_ix, storage);
382 BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
383 depth[s4[0]] = 0;
384 bits[s4[0]] = 0;
385 return;
386 }
387
388 memset(depth, 0, histogram_length * sizeof(depth[0]));
389 BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth);
390 BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits);
391
392 if (count <= 4) {
393 StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
394 } else {
395 BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage);
396 }
397 }
398
SortHuffmanTree(const HuffmanTree * v0,const HuffmanTree * v1)399 static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
400 const HuffmanTree* v0, const HuffmanTree* v1) {
401 return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
402 }
403
BrotliBuildAndStoreHuffmanTreeFast(HuffmanTree * tree,const uint32_t * histogram,const size_t histogram_total,const size_t max_bits,uint8_t * depth,uint16_t * bits,size_t * storage_ix,uint8_t * storage)404 void BrotliBuildAndStoreHuffmanTreeFast(HuffmanTree* tree,
405 const uint32_t* histogram,
406 const size_t histogram_total,
407 const size_t max_bits,
408 uint8_t* depth, uint16_t* bits,
409 size_t* storage_ix,
410 uint8_t* storage) {
411 size_t count = 0;
412 size_t symbols[4] = { 0 };
413 size_t length = 0;
414 size_t total = histogram_total;
415 while (total != 0) {
416 if (histogram[length]) {
417 if (count < 4) {
418 symbols[count] = length;
419 }
420 ++count;
421 total -= histogram[length];
422 }
423 ++length;
424 }
425
426 if (count <= 1) {
427 BrotliWriteBits(4, 1, storage_ix, storage);
428 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
429 depth[symbols[0]] = 0;
430 bits[symbols[0]] = 0;
431 return;
432 }
433
434 memset(depth, 0, length * sizeof(depth[0]));
435 {
436 uint32_t count_limit;
437 for (count_limit = 1; ; count_limit *= 2) {
438 HuffmanTree* node = tree;
439 size_t l;
440 for (l = length; l != 0;) {
441 --l;
442 if (histogram[l]) {
443 if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) {
444 InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
445 } else {
446 InitHuffmanTree(node, count_limit, -1, (int16_t)l);
447 }
448 ++node;
449 }
450 }
451 {
452 const int n = (int)(node - tree);
453 HuffmanTree sentinel;
454 int i = 0; /* Points to the next leaf node. */
455 int j = n + 1; /* Points to the next non-leaf node. */
456 int k;
457
458 SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
459 /* The nodes are:
460 [0, n): the sorted leaf nodes that we start with.
461 [n]: we add a sentinel here.
462 [n + 1, 2n): new parent nodes are added here, starting from
463 (n+1). These are naturally in ascending order.
464 [2n]: we add a sentinel at the end as well.
465 There will be (2n+1) elements at the end. */
466 InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
467 *node++ = sentinel;
468 *node++ = sentinel;
469
470 for (k = n - 1; k > 0; --k) {
471 int left, right;
472 if (tree[i].total_count_ <= tree[j].total_count_) {
473 left = i;
474 ++i;
475 } else {
476 left = j;
477 ++j;
478 }
479 if (tree[i].total_count_ <= tree[j].total_count_) {
480 right = i;
481 ++i;
482 } else {
483 right = j;
484 ++j;
485 }
486 /* The sentinel node becomes the parent node. */
487 node[-1].total_count_ =
488 tree[left].total_count_ + tree[right].total_count_;
489 node[-1].index_left_ = (int16_t)left;
490 node[-1].index_right_or_value_ = (int16_t)right;
491 /* Add back the last sentinel node. */
492 *node++ = sentinel;
493 }
494 if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
495 /* We need to pack the Huffman tree in 14 bits. If this was not
496 successful, add fake entities to the lowest values and retry. */
497 break;
498 }
499 }
500 }
501 }
502 BrotliConvertBitDepthsToSymbols(depth, length, bits);
503 if (count <= 4) {
504 size_t i;
505 /* value of 1 indicates a simple Huffman code */
506 BrotliWriteBits(2, 1, storage_ix, storage);
507 BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */
508
509 /* Sort */
510 for (i = 0; i < count; i++) {
511 size_t j;
512 for (j = i + 1; j < count; j++) {
513 if (depth[symbols[j]] < depth[symbols[i]]) {
514 BROTLI_SWAP(size_t, symbols, j, i);
515 }
516 }
517 }
518
519 if (count == 2) {
520 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
521 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
522 } else if (count == 3) {
523 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
524 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
525 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
526 } else {
527 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
528 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
529 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
530 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
531 /* tree-select */
532 BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
533 }
534 } else {
535 uint8_t previous_value = 8;
536 size_t i;
537 /* Complex Huffman Tree */
538 StoreStaticCodeLengthCode(storage_ix, storage);
539
540 /* Actual RLE coding. */
541 for (i = 0; i < length;) {
542 const uint8_t value = depth[i];
543 size_t reps = 1;
544 size_t k;
545 for (k = i + 1; k < length && depth[k] == value; ++k) {
546 ++reps;
547 }
548 i += reps;
549 if (value == 0) {
550 BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
551 storage_ix, storage);
552 } else {
553 if (previous_value != value) {
554 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
555 storage_ix, storage);
556 --reps;
557 }
558 if (reps < 3) {
559 while (reps != 0) {
560 reps--;
561 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
562 storage_ix, storage);
563 }
564 } else {
565 reps -= 3;
566 BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
567 storage_ix, storage);
568 }
569 previous_value = value;
570 }
571 }
572 }
573 }
574
IndexOf(const uint8_t * v,size_t v_size,uint8_t value)575 static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
576 size_t i = 0;
577 for (; i < v_size; ++i) {
578 if (v[i] == value) return i;
579 }
580 return i;
581 }
582
MoveToFront(uint8_t * v,size_t index)583 static void MoveToFront(uint8_t* v, size_t index) {
584 uint8_t value = v[index];
585 size_t i;
586 for (i = index; i != 0; --i) {
587 v[i] = v[i - 1];
588 }
589 v[0] = value;
590 }
591
MoveToFrontTransform(const uint32_t * BROTLI_RESTRICT v_in,const size_t v_size,uint32_t * v_out)592 static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
593 const size_t v_size,
594 uint32_t* v_out) {
595 size_t i;
596 uint8_t mtf[256];
597 uint32_t max_value;
598 if (v_size == 0) {
599 return;
600 }
601 max_value = v_in[0];
602 for (i = 1; i < v_size; ++i) {
603 if (v_in[i] > max_value) max_value = v_in[i];
604 }
605 BROTLI_DCHECK(max_value < 256u);
606 for (i = 0; i <= max_value; ++i) {
607 mtf[i] = (uint8_t)i;
608 }
609 {
610 size_t mtf_size = max_value + 1;
611 for (i = 0; i < v_size; ++i) {
612 size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
613 BROTLI_DCHECK(index < mtf_size);
614 v_out[i] = (uint32_t)index;
615 MoveToFront(mtf, index);
616 }
617 }
618 }
619
620 /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
621 the run length plus extra bits (lower 9 bits is the prefix code and the rest
622 are the extra bits). Non-zero values in v[] are shifted by
623 *max_length_prefix. Will not create prefix codes bigger than the initial
624 value of *max_run_length_prefix. The prefix code of run length L is simply
625 Log2Floor(L) and the number of extra bits is the same as the prefix code. */
RunLengthCodeZeros(const size_t in_size,uint32_t * BROTLI_RESTRICT v,size_t * BROTLI_RESTRICT out_size,uint32_t * BROTLI_RESTRICT max_run_length_prefix)626 static void RunLengthCodeZeros(const size_t in_size,
627 uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
628 uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
629 uint32_t max_reps = 0;
630 size_t i;
631 uint32_t max_prefix;
632 for (i = 0; i < in_size;) {
633 uint32_t reps = 0;
634 for (; i < in_size && v[i] != 0; ++i) ;
635 for (; i < in_size && v[i] == 0; ++i) {
636 ++reps;
637 }
638 max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
639 }
640 max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
641 max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
642 *max_run_length_prefix = max_prefix;
643 *out_size = 0;
644 for (i = 0; i < in_size;) {
645 BROTLI_DCHECK(*out_size <= i);
646 if (v[i] != 0) {
647 v[*out_size] = v[i] + *max_run_length_prefix;
648 ++i;
649 ++(*out_size);
650 } else {
651 uint32_t reps = 1;
652 size_t k;
653 for (k = i + 1; k < in_size && v[k] == 0; ++k) {
654 ++reps;
655 }
656 i += reps;
657 while (reps != 0) {
658 if (reps < (2u << max_prefix)) {
659 uint32_t run_length_prefix = Log2FloorNonZero(reps);
660 const uint32_t extra_bits = reps - (1u << run_length_prefix);
661 v[*out_size] = run_length_prefix + (extra_bits << 9);
662 ++(*out_size);
663 break;
664 } else {
665 const uint32_t extra_bits = (1u << max_prefix) - 1u;
666 v[*out_size] = max_prefix + (extra_bits << 9);
667 reps -= (2u << max_prefix) - 1u;
668 ++(*out_size);
669 }
670 }
671 }
672 }
673 }
674
675 #define SYMBOL_BITS 9
676
677 typedef struct EncodeContextMapArena {
678 uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
679 uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
680 uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
681 } EncodeContextMapArena;
682
EncodeContextMap(MemoryManager * m,EncodeContextMapArena * arena,const uint32_t * context_map,size_t context_map_size,size_t num_clusters,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)683 static void EncodeContextMap(MemoryManager* m,
684 EncodeContextMapArena* arena,
685 const uint32_t* context_map,
686 size_t context_map_size,
687 size_t num_clusters,
688 HuffmanTree* tree,
689 size_t* storage_ix, uint8_t* storage) {
690 size_t i;
691 uint32_t* rle_symbols;
692 uint32_t max_run_length_prefix = 6;
693 size_t num_rle_symbols = 0;
694 uint32_t* BROTLI_RESTRICT const histogram = arena->histogram;
695 static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
696 uint8_t* BROTLI_RESTRICT const depths = arena->depths;
697 uint16_t* BROTLI_RESTRICT const bits = arena->bits;
698
699 StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
700
701 if (num_clusters == 1) {
702 return;
703 }
704
705 rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
706 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(rle_symbols)) return;
707 MoveToFrontTransform(context_map, context_map_size, rle_symbols);
708 RunLengthCodeZeros(context_map_size, rle_symbols,
709 &num_rle_symbols, &max_run_length_prefix);
710 memset(histogram, 0, sizeof(arena->histogram));
711 for (i = 0; i < num_rle_symbols; ++i) {
712 ++histogram[rle_symbols[i] & kSymbolMask];
713 }
714 {
715 BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0);
716 BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
717 if (use_rle) {
718 BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
719 }
720 }
721 BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
722 num_clusters + max_run_length_prefix,
723 tree, depths, bits, storage_ix, storage);
724 for (i = 0; i < num_rle_symbols; ++i) {
725 const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
726 const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
727 BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
728 if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
729 BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
730 }
731 }
732 BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */
733 BROTLI_FREE(m, rle_symbols);
734 }
735
736 /* Stores the block switch command with index block_ix to the bit stream. */
StoreBlockSwitch(BlockSplitCode * code,const uint32_t block_len,const uint8_t block_type,BROTLI_BOOL is_first_block,size_t * storage_ix,uint8_t * storage)737 static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
738 const uint32_t block_len,
739 const uint8_t block_type,
740 BROTLI_BOOL is_first_block,
741 size_t* storage_ix,
742 uint8_t* storage) {
743 size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
744 size_t lencode;
745 uint32_t len_nextra;
746 uint32_t len_extra;
747 if (!is_first_block) {
748 BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
749 storage_ix, storage);
750 }
751 GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
752
753 BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
754 storage_ix, storage);
755 BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
756 }
757
758 /* Builds a BlockSplitCode data structure from the block split given by the
759 vector of block types and block lengths and stores it to the bit stream. */
BuildAndStoreBlockSplitCode(const uint8_t * types,const uint32_t * lengths,const size_t num_blocks,const size_t num_types,HuffmanTree * tree,BlockSplitCode * code,size_t * storage_ix,uint8_t * storage)760 static void BuildAndStoreBlockSplitCode(const uint8_t* types,
761 const uint32_t* lengths,
762 const size_t num_blocks,
763 const size_t num_types,
764 HuffmanTree* tree,
765 BlockSplitCode* code,
766 size_t* storage_ix,
767 uint8_t* storage) {
768 uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
769 uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
770 size_t i;
771 BlockTypeCodeCalculator type_code_calculator;
772 memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
773 memset(length_histo, 0, sizeof(length_histo));
774 InitBlockTypeCodeCalculator(&type_code_calculator);
775 for (i = 0; i < num_blocks; ++i) {
776 size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
777 if (i != 0) ++type_histo[type_code];
778 ++length_histo[BlockLengthPrefixCode(lengths[i])];
779 }
780 StoreVarLenUint8(num_types - 1, storage_ix, storage);
781 if (num_types > 1) { /* TODO(eustas): else? could StoreBlockSwitch occur? */
782 BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree,
783 &code->type_depths[0], &code->type_bits[0],
784 storage_ix, storage);
785 BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
786 BROTLI_NUM_BLOCK_LEN_SYMBOLS,
787 tree, &code->length_depths[0],
788 &code->length_bits[0], storage_ix, storage);
789 StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
790 }
791 }
792
793 /* Stores a context map where the histogram type is always the block type. */
StoreTrivialContextMap(EncodeContextMapArena * arena,size_t num_types,size_t context_bits,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)794 static void StoreTrivialContextMap(EncodeContextMapArena* arena,
795 size_t num_types,
796 size_t context_bits,
797 HuffmanTree* tree,
798 size_t* storage_ix,
799 uint8_t* storage) {
800 StoreVarLenUint8(num_types - 1, storage_ix, storage);
801 if (num_types > 1) {
802 size_t repeat_code = context_bits - 1u;
803 size_t repeat_bits = (1u << repeat_code) - 1u;
804 size_t alphabet_size = num_types + repeat_code;
805 uint32_t* BROTLI_RESTRICT const histogram = arena->histogram;
806 uint8_t* BROTLI_RESTRICT const depths = arena->depths;
807 uint16_t* BROTLI_RESTRICT const bits = arena->bits;
808 size_t i;
809 memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
810 /* Write RLEMAX. */
811 BrotliWriteBits(1, 1, storage_ix, storage);
812 BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
813 histogram[repeat_code] = (uint32_t)num_types;
814 histogram[0] = 1;
815 for (i = context_bits; i < alphabet_size; ++i) {
816 histogram[i] = 1;
817 }
818 BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size,
819 tree, depths, bits, storage_ix, storage);
820 for (i = 0; i < num_types; ++i) {
821 size_t code = (i == 0 ? 0 : i + context_bits - 1);
822 BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
823 BrotliWriteBits(
824 depths[repeat_code], bits[repeat_code], storage_ix, storage);
825 BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
826 }
827 /* Write IMTF (inverse-move-to-front) bit. */
828 BrotliWriteBits(1, 1, storage_ix, storage);
829 }
830 }
831
832 /* Manages the encoding of one block category (literal, command or distance). */
833 typedef struct BlockEncoder {
834 size_t histogram_length_;
835 size_t num_block_types_;
836 const uint8_t* block_types_; /* Not owned. */
837 const uint32_t* block_lengths_; /* Not owned. */
838 size_t num_blocks_;
839 BlockSplitCode block_split_code_;
840 size_t block_ix_;
841 size_t block_len_;
842 size_t entropy_ix_;
843 uint8_t* depths_;
844 uint16_t* bits_;
845 } BlockEncoder;
846
InitBlockEncoder(BlockEncoder * self,size_t histogram_length,size_t num_block_types,const uint8_t * block_types,const uint32_t * block_lengths,const size_t num_blocks)847 static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length,
848 size_t num_block_types, const uint8_t* block_types,
849 const uint32_t* block_lengths, const size_t num_blocks) {
850 self->histogram_length_ = histogram_length;
851 self->num_block_types_ = num_block_types;
852 self->block_types_ = block_types;
853 self->block_lengths_ = block_lengths;
854 self->num_blocks_ = num_blocks;
855 InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
856 self->block_ix_ = 0;
857 self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
858 self->entropy_ix_ = 0;
859 self->depths_ = 0;
860 self->bits_ = 0;
861 }
862
CleanupBlockEncoder(MemoryManager * m,BlockEncoder * self)863 static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
864 BROTLI_FREE(m, self->depths_);
865 BROTLI_FREE(m, self->bits_);
866 }
867
868 /* Creates entropy codes of block lengths and block types and stores them
869 to the bit stream. */
BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder * self,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)870 static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
871 HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
872 BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
873 self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
874 storage_ix, storage);
875 }
876
877 /* Stores the next symbol with the entropy code of the current block type.
878 Updates the block type and block length at block boundaries. */
StoreSymbol(BlockEncoder * self,size_t symbol,size_t * storage_ix,uint8_t * storage)879 static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
880 uint8_t* storage) {
881 if (self->block_len_ == 0) {
882 size_t block_ix = ++self->block_ix_;
883 uint32_t block_len = self->block_lengths_[block_ix];
884 uint8_t block_type = self->block_types_[block_ix];
885 self->block_len_ = block_len;
886 self->entropy_ix_ = block_type * self->histogram_length_;
887 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
888 storage_ix, storage);
889 }
890 --self->block_len_;
891 {
892 size_t ix = self->entropy_ix_ + symbol;
893 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
894 }
895 }
896
897 /* Stores the next symbol with the entropy code of the current block type and
898 context value.
899 Updates the block type and block length at block boundaries. */
StoreSymbolWithContext(BlockEncoder * self,size_t symbol,size_t context,const uint32_t * context_map,size_t * storage_ix,uint8_t * storage,const size_t context_bits)900 static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
901 size_t context, const uint32_t* context_map, size_t* storage_ix,
902 uint8_t* storage, const size_t context_bits) {
903 if (self->block_len_ == 0) {
904 size_t block_ix = ++self->block_ix_;
905 uint32_t block_len = self->block_lengths_[block_ix];
906 uint8_t block_type = self->block_types_[block_ix];
907 self->block_len_ = block_len;
908 self->entropy_ix_ = (size_t)block_type << context_bits;
909 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
910 storage_ix, storage);
911 }
912 --self->block_len_;
913 {
914 size_t histo_ix = context_map[self->entropy_ix_ + context];
915 size_t ix = histo_ix * self->histogram_length_ + symbol;
916 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
917 }
918 }
919
920 #define FN(X) X ## Literal
921 /* NOLINTNEXTLINE(build/include) */
922 #include "block_encoder_inc.h"
923 #undef FN
924
925 #define FN(X) X ## Command
926 /* NOLINTNEXTLINE(build/include) */
927 #include "block_encoder_inc.h"
928 #undef FN
929
930 #define FN(X) X ## Distance
931 /* NOLINTNEXTLINE(build/include) */
932 #include "block_encoder_inc.h"
933 #undef FN
934
JumpToByteBoundary(size_t * storage_ix,uint8_t * storage)935 static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
936 *storage_ix = (*storage_ix + 7u) & ~7u;
937 storage[*storage_ix >> 3] = 0;
938 }
939
940 typedef struct StoreMetablockArena {
941 BlockEncoder literal_enc;
942 BlockEncoder command_enc;
943 BlockEncoder distance_enc;
944 EncodeContextMapArena context_map_arena;
945 } StoreMetablockArena;
946
BrotliStoreMetaBlock(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,uint8_t prev_byte,uint8_t prev_byte2,BROTLI_BOOL is_last,const BrotliEncoderParams * params,ContextType literal_context_mode,const Command * commands,size_t n_commands,const MetaBlockSplit * mb,size_t * storage_ix,uint8_t * storage)947 void BrotliStoreMetaBlock(MemoryManager* m,
948 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
949 uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last,
950 const BrotliEncoderParams* params, ContextType literal_context_mode,
951 const Command* commands, size_t n_commands, const MetaBlockSplit* mb,
952 size_t* storage_ix, uint8_t* storage) {
953
954 size_t pos = start_pos;
955 size_t i;
956 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
957 uint32_t num_effective_distance_symbols = params->dist.alphabet_size_limit;
958 HuffmanTree* tree;
959 ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode);
960 StoreMetablockArena* arena = NULL;
961 BlockEncoder* literal_enc = NULL;
962 BlockEncoder* command_enc = NULL;
963 BlockEncoder* distance_enc = NULL;
964 const BrotliDistanceParams* dist = ¶ms->dist;
965 BROTLI_DCHECK(
966 num_effective_distance_symbols <= BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS);
967
968 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
969
970 tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
971 arena = BROTLI_ALLOC(m, StoreMetablockArena, 1);
972 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(tree) || BROTLI_IS_NULL(arena)) return;
973 literal_enc = &arena->literal_enc;
974 command_enc = &arena->command_enc;
975 distance_enc = &arena->distance_enc;
976 InitBlockEncoder(literal_enc, BROTLI_NUM_LITERAL_SYMBOLS,
977 mb->literal_split.num_types, mb->literal_split.types,
978 mb->literal_split.lengths, mb->literal_split.num_blocks);
979 InitBlockEncoder(command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
980 mb->command_split.num_types, mb->command_split.types,
981 mb->command_split.lengths, mb->command_split.num_blocks);
982 InitBlockEncoder(distance_enc, num_effective_distance_symbols,
983 mb->distance_split.num_types, mb->distance_split.types,
984 mb->distance_split.lengths, mb->distance_split.num_blocks);
985
986 BuildAndStoreBlockSwitchEntropyCodes(literal_enc, tree, storage_ix, storage);
987 BuildAndStoreBlockSwitchEntropyCodes(command_enc, tree, storage_ix, storage);
988 BuildAndStoreBlockSwitchEntropyCodes(distance_enc, tree, storage_ix, storage);
989
990 BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage);
991 BrotliWriteBits(
992 4, dist->num_direct_distance_codes >> dist->distance_postfix_bits,
993 storage_ix, storage);
994 for (i = 0; i < mb->literal_split.num_types; ++i) {
995 BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
996 }
997
998 if (mb->literal_context_map_size == 0) {
999 StoreTrivialContextMap(
1000 &arena->context_map_arena, mb->literal_histograms_size,
1001 BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
1002 } else {
1003 EncodeContextMap(m, &arena->context_map_arena,
1004 mb->literal_context_map, mb->literal_context_map_size,
1005 mb->literal_histograms_size, tree, storage_ix, storage);
1006 if (BROTLI_IS_OOM(m)) return;
1007 }
1008
1009 if (mb->distance_context_map_size == 0) {
1010 StoreTrivialContextMap(
1011 &arena->context_map_arena, mb->distance_histograms_size,
1012 BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
1013 } else {
1014 EncodeContextMap(m, &arena->context_map_arena,
1015 mb->distance_context_map, mb->distance_context_map_size,
1016 mb->distance_histograms_size, tree, storage_ix, storage);
1017 if (BROTLI_IS_OOM(m)) return;
1018 }
1019
1020 BuildAndStoreEntropyCodesLiteral(m, literal_enc, mb->literal_histograms,
1021 mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree,
1022 storage_ix, storage);
1023 if (BROTLI_IS_OOM(m)) return;
1024 BuildAndStoreEntropyCodesCommand(m, command_enc, mb->command_histograms,
1025 mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree,
1026 storage_ix, storage);
1027 if (BROTLI_IS_OOM(m)) return;
1028 BuildAndStoreEntropyCodesDistance(m, distance_enc, mb->distance_histograms,
1029 mb->distance_histograms_size, num_distance_symbols, tree,
1030 storage_ix, storage);
1031 if (BROTLI_IS_OOM(m)) return;
1032 BROTLI_FREE(m, tree);
1033
1034 for (i = 0; i < n_commands; ++i) {
1035 const Command cmd = commands[i];
1036 size_t cmd_code = cmd.cmd_prefix_;
1037 StoreSymbol(command_enc, cmd_code, storage_ix, storage);
1038 StoreCommandExtra(&cmd, storage_ix, storage);
1039 if (mb->literal_context_map_size == 0) {
1040 size_t j;
1041 for (j = cmd.insert_len_; j != 0; --j) {
1042 StoreSymbol(literal_enc, input[pos & mask], storage_ix, storage);
1043 ++pos;
1044 }
1045 } else {
1046 size_t j;
1047 for (j = cmd.insert_len_; j != 0; --j) {
1048 size_t context =
1049 BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut);
1050 uint8_t literal = input[pos & mask];
1051 StoreSymbolWithContext(literal_enc, literal, context,
1052 mb->literal_context_map, storage_ix, storage,
1053 BROTLI_LITERAL_CONTEXT_BITS);
1054 prev_byte2 = prev_byte;
1055 prev_byte = literal;
1056 ++pos;
1057 }
1058 }
1059 pos += CommandCopyLen(&cmd);
1060 if (CommandCopyLen(&cmd)) {
1061 prev_byte2 = input[(pos - 2) & mask];
1062 prev_byte = input[(pos - 1) & mask];
1063 if (cmd.cmd_prefix_ >= 128) {
1064 size_t dist_code = cmd.dist_prefix_ & 0x3FF;
1065 uint32_t distnumextra = cmd.dist_prefix_ >> 10;
1066 uint64_t distextra = cmd.dist_extra_;
1067 if (mb->distance_context_map_size == 0) {
1068 StoreSymbol(distance_enc, dist_code, storage_ix, storage);
1069 } else {
1070 size_t context = CommandDistanceContext(&cmd);
1071 StoreSymbolWithContext(distance_enc, dist_code, context,
1072 mb->distance_context_map, storage_ix, storage,
1073 BROTLI_DISTANCE_CONTEXT_BITS);
1074 }
1075 BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
1076 }
1077 }
1078 }
1079 CleanupBlockEncoder(m, distance_enc);
1080 CleanupBlockEncoder(m, command_enc);
1081 CleanupBlockEncoder(m, literal_enc);
1082 BROTLI_FREE(m, arena);
1083 if (is_last) {
1084 JumpToByteBoundary(storage_ix, storage);
1085 }
1086 }
1087
BuildHistograms(const uint8_t * input,size_t start_pos,size_t mask,const Command * commands,size_t n_commands,HistogramLiteral * lit_histo,HistogramCommand * cmd_histo,HistogramDistance * dist_histo)1088 static void BuildHistograms(const uint8_t* input,
1089 size_t start_pos,
1090 size_t mask,
1091 const Command* commands,
1092 size_t n_commands,
1093 HistogramLiteral* lit_histo,
1094 HistogramCommand* cmd_histo,
1095 HistogramDistance* dist_histo) {
1096 size_t pos = start_pos;
1097 size_t i;
1098 for (i = 0; i < n_commands; ++i) {
1099 const Command cmd = commands[i];
1100 size_t j;
1101 HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
1102 for (j = cmd.insert_len_; j != 0; --j) {
1103 HistogramAddLiteral(lit_histo, input[pos & mask]);
1104 ++pos;
1105 }
1106 pos += CommandCopyLen(&cmd);
1107 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
1108 HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF);
1109 }
1110 }
1111 }
1112
StoreDataWithHuffmanCodes(const uint8_t * input,size_t start_pos,size_t mask,const Command * commands,size_t n_commands,const uint8_t * lit_depth,const uint16_t * lit_bits,const uint8_t * cmd_depth,const uint16_t * cmd_bits,const uint8_t * dist_depth,const uint16_t * dist_bits,size_t * storage_ix,uint8_t * storage)1113 static void StoreDataWithHuffmanCodes(const uint8_t* input,
1114 size_t start_pos,
1115 size_t mask,
1116 const Command* commands,
1117 size_t n_commands,
1118 const uint8_t* lit_depth,
1119 const uint16_t* lit_bits,
1120 const uint8_t* cmd_depth,
1121 const uint16_t* cmd_bits,
1122 const uint8_t* dist_depth,
1123 const uint16_t* dist_bits,
1124 size_t* storage_ix,
1125 uint8_t* storage) {
1126 size_t pos = start_pos;
1127 size_t i;
1128 for (i = 0; i < n_commands; ++i) {
1129 const Command cmd = commands[i];
1130 const size_t cmd_code = cmd.cmd_prefix_;
1131 size_t j;
1132 BrotliWriteBits(
1133 cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
1134 StoreCommandExtra(&cmd, storage_ix, storage);
1135 for (j = cmd.insert_len_; j != 0; --j) {
1136 const uint8_t literal = input[pos & mask];
1137 BrotliWriteBits(
1138 lit_depth[literal], lit_bits[literal], storage_ix, storage);
1139 ++pos;
1140 }
1141 pos += CommandCopyLen(&cmd);
1142 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
1143 const size_t dist_code = cmd.dist_prefix_ & 0x3FF;
1144 const uint32_t distnumextra = cmd.dist_prefix_ >> 10;
1145 const uint32_t distextra = cmd.dist_extra_;
1146 BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
1147 storage_ix, storage);
1148 BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
1149 }
1150 }
1151 }
1152
1153 /* TODO(eustas): pull alloc/dealloc to caller? */
1154 typedef struct MetablockArena {
1155 HistogramLiteral lit_histo;
1156 HistogramCommand cmd_histo;
1157 HistogramDistance dist_histo;
1158 /* TODO(eustas): merge bits and depth? */
1159 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
1160 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
1161 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
1162 uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
1163 uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1164 uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1165 HuffmanTree tree[MAX_HUFFMAN_TREE_SIZE];
1166 } MetablockArena;
1167
BrotliStoreMetaBlockTrivial(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,BROTLI_BOOL is_last,const BrotliEncoderParams * params,const Command * commands,size_t n_commands,size_t * storage_ix,uint8_t * storage)1168 void BrotliStoreMetaBlockTrivial(MemoryManager* m,
1169 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
1170 BROTLI_BOOL is_last, const BrotliEncoderParams* params,
1171 const Command* commands, size_t n_commands,
1172 size_t* storage_ix, uint8_t* storage) {
1173 MetablockArena* arena = BROTLI_ALLOC(m, MetablockArena, 1);
1174 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
1175 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(arena)) return;
1176
1177 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
1178
1179 HistogramClearLiteral(&arena->lit_histo);
1180 HistogramClearCommand(&arena->cmd_histo);
1181 HistogramClearDistance(&arena->dist_histo);
1182
1183 BuildHistograms(input, start_pos, mask, commands, n_commands,
1184 &arena->lit_histo, &arena->cmd_histo, &arena->dist_histo);
1185
1186 BrotliWriteBits(13, 0, storage_ix, storage);
1187
1188 BuildAndStoreHuffmanTree(arena->lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS,
1189 BROTLI_NUM_LITERAL_SYMBOLS, arena->tree,
1190 arena->lit_depth, arena->lit_bits,
1191 storage_ix, storage);
1192 BuildAndStoreHuffmanTree(arena->cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS,
1193 BROTLI_NUM_COMMAND_SYMBOLS, arena->tree,
1194 arena->cmd_depth, arena->cmd_bits,
1195 storage_ix, storage);
1196 BuildAndStoreHuffmanTree(arena->dist_histo.data_,
1197 MAX_SIMPLE_DISTANCE_ALPHABET_SIZE,
1198 num_distance_symbols, arena->tree,
1199 arena->dist_depth, arena->dist_bits,
1200 storage_ix, storage);
1201 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1202 n_commands, arena->lit_depth, arena->lit_bits,
1203 arena->cmd_depth, arena->cmd_bits,
1204 arena->dist_depth, arena->dist_bits,
1205 storage_ix, storage);
1206 BROTLI_FREE(m, arena);
1207 if (is_last) {
1208 JumpToByteBoundary(storage_ix, storage);
1209 }
1210 }
1211
BrotliStoreMetaBlockFast(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,BROTLI_BOOL is_last,const BrotliEncoderParams * params,const Command * commands,size_t n_commands,size_t * storage_ix,uint8_t * storage)1212 void BrotliStoreMetaBlockFast(MemoryManager* m,
1213 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
1214 BROTLI_BOOL is_last, const BrotliEncoderParams* params,
1215 const Command* commands, size_t n_commands,
1216 size_t* storage_ix, uint8_t* storage) {
1217 MetablockArena* arena = BROTLI_ALLOC(m, MetablockArena, 1);
1218 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
1219 uint32_t distance_alphabet_bits =
1220 Log2FloorNonZero(num_distance_symbols - 1) + 1;
1221 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(arena)) return;
1222
1223 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
1224
1225 BrotliWriteBits(13, 0, storage_ix, storage);
1226
1227 if (n_commands <= 128) {
1228 uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
1229 size_t pos = start_pos;
1230 size_t num_literals = 0;
1231 size_t i;
1232 for (i = 0; i < n_commands; ++i) {
1233 const Command cmd = commands[i];
1234 size_t j;
1235 for (j = cmd.insert_len_; j != 0; --j) {
1236 ++histogram[input[pos & mask]];
1237 ++pos;
1238 }
1239 num_literals += cmd.insert_len_;
1240 pos += CommandCopyLen(&cmd);
1241 }
1242 BrotliBuildAndStoreHuffmanTreeFast(arena->tree, histogram, num_literals,
1243 /* max_bits = */ 8,
1244 arena->lit_depth, arena->lit_bits,
1245 storage_ix, storage);
1246 StoreStaticCommandHuffmanTree(storage_ix, storage);
1247 StoreStaticDistanceHuffmanTree(storage_ix, storage);
1248 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1249 n_commands, arena->lit_depth, arena->lit_bits,
1250 kStaticCommandCodeDepth,
1251 kStaticCommandCodeBits,
1252 kStaticDistanceCodeDepth,
1253 kStaticDistanceCodeBits,
1254 storage_ix, storage);
1255 } else {
1256 HistogramClearLiteral(&arena->lit_histo);
1257 HistogramClearCommand(&arena->cmd_histo);
1258 HistogramClearDistance(&arena->dist_histo);
1259 BuildHistograms(input, start_pos, mask, commands, n_commands,
1260 &arena->lit_histo, &arena->cmd_histo, &arena->dist_histo);
1261 BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->lit_histo.data_,
1262 arena->lit_histo.total_count_,
1263 /* max_bits = */ 8,
1264 arena->lit_depth, arena->lit_bits,
1265 storage_ix, storage);
1266 BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->cmd_histo.data_,
1267 arena->cmd_histo.total_count_,
1268 /* max_bits = */ 10,
1269 arena->cmd_depth, arena->cmd_bits,
1270 storage_ix, storage);
1271 BrotliBuildAndStoreHuffmanTreeFast(arena->tree, arena->dist_histo.data_,
1272 arena->dist_histo.total_count_,
1273 /* max_bits = */
1274 distance_alphabet_bits,
1275 arena->dist_depth, arena->dist_bits,
1276 storage_ix, storage);
1277 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1278 n_commands, arena->lit_depth, arena->lit_bits,
1279 arena->cmd_depth, arena->cmd_bits,
1280 arena->dist_depth, arena->dist_bits,
1281 storage_ix, storage);
1282 }
1283
1284 BROTLI_FREE(m, arena);
1285
1286 if (is_last) {
1287 JumpToByteBoundary(storage_ix, storage);
1288 }
1289 }
1290
1291 /* This is for storing uncompressed blocks (simple raw storage of
1292 bytes-as-bytes). */
BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,const uint8_t * BROTLI_RESTRICT input,size_t position,size_t mask,size_t len,size_t * BROTLI_RESTRICT storage_ix,uint8_t * BROTLI_RESTRICT storage)1293 void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,
1294 const uint8_t* BROTLI_RESTRICT input,
1295 size_t position, size_t mask,
1296 size_t len,
1297 size_t* BROTLI_RESTRICT storage_ix,
1298 uint8_t* BROTLI_RESTRICT storage) {
1299 size_t masked_pos = position & mask;
1300 BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
1301 JumpToByteBoundary(storage_ix, storage);
1302
1303 if (masked_pos + len > mask + 1) {
1304 size_t len1 = mask + 1 - masked_pos;
1305 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
1306 *storage_ix += len1 << 3;
1307 len -= len1;
1308 masked_pos = 0;
1309 }
1310 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
1311 *storage_ix += len << 3;
1312
1313 /* We need to clear the next 4 bytes to continue to be
1314 compatible with BrotliWriteBits. */
1315 BrotliWriteBitsPrepareStorage(*storage_ix, storage);
1316
1317 /* Since the uncompressed block itself may not be the final block, add an
1318 empty one after this. */
1319 if (is_final_block) {
1320 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
1321 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */
1322 JumpToByteBoundary(storage_ix, storage);
1323 }
1324 }
1325
1326 #if defined(BROTLI_TEST)
GetBlockLengthPrefixCodeForTest(uint32_t len,size_t * code,uint32_t * n_extra,uint32_t * extra)1327 void GetBlockLengthPrefixCodeForTest(uint32_t len, size_t* code,
1328 uint32_t* n_extra, uint32_t* extra) {
1329 GetBlockLengthPrefixCode(len, code, n_extra, extra);
1330 }
1331 #endif
1332
1333 #if defined(__cplusplus) || defined(c_plusplus)
1334 } /* extern "C" */
1335 #endif
1336