xref: /aosp_15_r20/external/cronet/third_party/abseil-cpp/absl/time/clock.cc (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/time/clock.h"
16 
17 #include "absl/base/attributes.h"
18 #include "absl/base/optimization.h"
19 
20 #ifdef _WIN32
21 #include <windows.h>
22 #endif
23 
24 #include <algorithm>
25 #include <atomic>
26 #include <cerrno>
27 #include <cstdint>
28 #include <ctime>
29 #include <limits>
30 
31 #include "absl/base/internal/spinlock.h"
32 #include "absl/base/internal/unscaledcycleclock.h"
33 #include "absl/base/macros.h"
34 #include "absl/base/port.h"
35 #include "absl/base/thread_annotations.h"
36 
37 namespace absl {
38 ABSL_NAMESPACE_BEGIN
Now()39 Time Now() {
40   // TODO(bww): Get a timespec instead so we don't have to divide.
41   int64_t n = absl::GetCurrentTimeNanos();
42   if (n >= 0) {
43     return time_internal::FromUnixDuration(
44         time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45   }
46   return time_internal::FromUnixDuration(absl::Nanoseconds(n));
47 }
48 ABSL_NAMESPACE_END
49 }  // namespace absl
50 
51 // Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the
52 // cyclecounter, otherwise just get the time directly from the OS on every call.
53 // By default, the fast algorithm based on the cyclecount is disabled because in
54 // certain situations, for example, if the OS enters a "sleep" mode, it may
55 // produce incorrect values immediately upon waking.
56 // This can be chosen at compile-time via
57 // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
58 #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
59 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60 #endif
61 
62 #if defined(__APPLE__) || defined(_WIN32)
63 #include "absl/time/internal/get_current_time_chrono.inc"
64 #else
65 #include "absl/time/internal/get_current_time_posix.inc"
66 #endif
67 
68 // Allows override by test.
69 #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
70 #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
71   ::absl::time_internal::GetCurrentTimeNanosFromSystem()
72 #endif
73 
74 #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
75 namespace absl {
76 ABSL_NAMESPACE_BEGIN
GetCurrentTimeNanos()77 int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
78 ABSL_NAMESPACE_END
79 }  // namespace absl
80 #else  // Use the cyclecounter-based implementation below.
81 
82 // Allows override by test.
83 #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
84 #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
85   ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
86 #endif
87 
88 namespace absl {
89 ABSL_NAMESPACE_BEGIN
90 namespace time_internal {
91 
92 // On some processors, consecutive reads of the cycle counter may yield the
93 // same value (weakly-increasing). In debug mode, clear the least significant
94 // bits to discourage depending on a strictly-increasing Now() value.
95 // In x86-64's debug mode, discourage depending on a strictly-increasing Now()
96 // value.
97 #if !defined(NDEBUG) && defined(__x86_64__)
98 constexpr int64_t kCycleClockNowMask = ~int64_t{0xff};
99 #else
100 constexpr int64_t kCycleClockNowMask = ~int64_t{0};
101 #endif
102 
103 // This is a friend wrapper around UnscaledCycleClock::Now()
104 // (needed to access UnscaledCycleClock).
105 class UnscaledCycleClockWrapperForGetCurrentTime {
106  public:
Now()107   static int64_t Now() {
108     return base_internal::UnscaledCycleClock::Now() & kCycleClockNowMask;
109   }
110 };
111 }  // namespace time_internal
112 
113 // uint64_t is used in this module to provide an extra bit in multiplications
114 
115 // ---------------------------------------------------------------------
116 // An implementation of reader-write locks that use no atomic ops in the read
117 // case.  This is a generalization of Lamport's method for reading a multiword
118 // clock.  Increment a word on each write acquisition, using the low-order bit
119 // as a spinlock; the word is the high word of the "clock".  Readers read the
120 // high word, then all other data, then the high word again, and repeat the
121 // read if the reads of the high words yields different answers, or an odd
122 // value (either case suggests possible interference from a writer).
123 // Here we use a spinlock to ensure only one writer at a time, rather than
124 // spinning on the bottom bit of the word to benefit from SpinLock
125 // spin-delay tuning.
126 
127 // Acquire seqlock (*seq) and return the value to be written to unlock.
SeqAcquire(std::atomic<uint64_t> * seq)128 static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
129   uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
130 
131   // We put a release fence between update to *seq and writes to shared data.
132   // Thus all stores to shared data are effectively release operations and
133   // update to *seq above cannot be re-ordered past any of them.  Note that
134   // this barrier is not for the fetch_add above.  A release barrier for the
135   // fetch_add would be before it, not after.
136   std::atomic_thread_fence(std::memory_order_release);
137 
138   return x + 2;   // original word plus 2
139 }
140 
141 // Release seqlock (*seq) by writing x to it---a value previously returned by
142 // SeqAcquire.
SeqRelease(std::atomic<uint64_t> * seq,uint64_t x)143 static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
144   // The unlock store to *seq must have release ordering so that all
145   // updates to shared data must finish before this store.
146   seq->store(x, std::memory_order_release);  // release lock for readers
147 }
148 
149 // ---------------------------------------------------------------------
150 
151 // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
152 enum { kScale = 30 };
153 
154 // The minimum interval between samples of the time base.
155 // We pick enough time to amortize the cost of the sample,
156 // to get a reasonably accurate cycle counter rate reading,
157 // and not so much that calculations will overflow 64-bits.
158 static const uint64_t kMinNSBetweenSamples = 2000 << 20;
159 
160 // We require that kMinNSBetweenSamples shifted by kScale
161 // have at least a bit left over for 64-bit calculations.
162 static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
163                kMinNSBetweenSamples,
164                "cannot represent kMaxBetweenSamplesNSScaled");
165 
166 // data from a sample of the kernel's time value
167 struct TimeSampleAtomic {
168   std::atomic<uint64_t> raw_ns{0};              // raw kernel time
169   std::atomic<uint64_t> base_ns{0};             // our estimate of time
170   std::atomic<uint64_t> base_cycles{0};         // cycle counter reading
171   std::atomic<uint64_t> nsscaled_per_cycle{0};  // cycle period
172   // cycles before we'll sample again (a scaled reciprocal of the period,
173   // to avoid a division on the fast path).
174   std::atomic<uint64_t> min_cycles_per_sample{0};
175 };
176 // Same again, but with non-atomic types
177 struct TimeSample {
178   uint64_t raw_ns = 0;                 // raw kernel time
179   uint64_t base_ns = 0;                // our estimate of time
180   uint64_t base_cycles = 0;            // cycle counter reading
181   uint64_t nsscaled_per_cycle = 0;     // cycle period
182   uint64_t min_cycles_per_sample = 0;  // approx cycles before next sample
183 };
184 
185 struct ABSL_CACHELINE_ALIGNED TimeState {
186   std::atomic<uint64_t> seq{0};
187   TimeSampleAtomic last_sample;  // the last sample; under seq
188 
189   // The following counters are used only by the test code.
190   int64_t stats_initializations{0};
191   int64_t stats_reinitializations{0};
192   int64_t stats_calibrations{0};
193   int64_t stats_slow_paths{0};
194   int64_t stats_fast_slow_paths{0};
195 
ABSL_GUARDED_BYabsl::TimeState196   uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
197 
198   // Used by GetCurrentTimeNanosFromKernel().
199   // We try to read clock values at about the same time as the kernel clock.
200   // This value gets adjusted up or down as estimate of how long that should
201   // take, so we can reject attempts that take unusually long.
202   std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
203   // Number of times in a row we've seen a kernel time call take substantially
204   // less than approx_syscall_time_in_cycles.
205   std::atomic<uint32_t> kernel_time_seen_smaller{0};
206 
207   // A reader-writer lock protecting the static locations below.
208   // See SeqAcquire() and SeqRelease() above.
209   absl::base_internal::SpinLock lock{absl::kConstInit,
210                                      base_internal::SCHEDULE_KERNEL_ONLY};
211 };
212 ABSL_CONST_INIT static TimeState time_state;
213 
214 // Return the time in ns as told by the kernel interface.  Place in *cycleclock
215 // the value of the cycleclock at about the time of the syscall.
216 // This call represents the time base that this module synchronizes to.
217 // Ensures that *cycleclock does not step back by up to (1 << 16) from
218 // last_cycleclock, to discard small backward counter steps.  (Larger steps are
219 // assumed to be complete resyncs, which shouldn't happen.  If they do, a full
220 // reinitialization of the outer algorithm should occur.)
GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,uint64_t * cycleclock)221 static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
222                                              uint64_t *cycleclock)
223     ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
224   uint64_t local_approx_syscall_time_in_cycles =  // local copy
225       time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
226 
227   int64_t current_time_nanos_from_system;
228   uint64_t before_cycles;
229   uint64_t after_cycles;
230   uint64_t elapsed_cycles;
231   int loops = 0;
232   do {
233     before_cycles =
234         static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
235     current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
236     after_cycles =
237         static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
238     // elapsed_cycles is unsigned, so is large on overflow
239     elapsed_cycles = after_cycles - before_cycles;
240     if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
241         ++loops == 20) {  // clock changed frequencies?  Back off.
242       loops = 0;
243       if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
244         local_approx_syscall_time_in_cycles =
245             (local_approx_syscall_time_in_cycles + 1) << 1;
246       }
247       time_state.approx_syscall_time_in_cycles.store(
248           local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
249     }
250   } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
251            last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
252 
253   // Adjust approx_syscall_time_in_cycles to be within a factor of 2
254   // of the typical time to execute one iteration of the loop above.
255   if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
256     // measured time is no smaller than half current approximation
257     time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
258   } else if (time_state.kernel_time_seen_smaller.fetch_add(
259                  1, std::memory_order_relaxed) >= 3) {
260     // smaller delays several times in a row; reduce approximation by 12.5%
261     const uint64_t new_approximation =
262         local_approx_syscall_time_in_cycles -
263         (local_approx_syscall_time_in_cycles >> 3);
264     time_state.approx_syscall_time_in_cycles.store(new_approximation,
265                                                    std::memory_order_relaxed);
266     time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
267   }
268 
269   *cycleclock = after_cycles;
270   return current_time_nanos_from_system;
271 }
272 
273 static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
274 
275 // Read the contents of *atomic into *sample.
276 // Each field is read atomically, but to maintain atomicity between fields,
277 // the access must be done under a lock.
ReadTimeSampleAtomic(const struct TimeSampleAtomic * atomic,struct TimeSample * sample)278 static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
279                                  struct TimeSample *sample) {
280   sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
281   sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
282   sample->nsscaled_per_cycle =
283       atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
284   sample->min_cycles_per_sample =
285       atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
286   sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
287 }
288 
289 // Public routine.
290 // Algorithm:  We wish to compute real time from a cycle counter.  In normal
291 // operation, we construct a piecewise linear approximation to the kernel time
292 // source, using the cycle counter value.  The start of each line segment is at
293 // the same point as the end of the last, but may have a different slope (that
294 // is, a different idea of the cycle counter frequency).  Every couple of
295 // seconds, the kernel time source is sampled and compared with the current
296 // approximation.  A new slope is chosen that, if followed for another couple
297 // of seconds, will correct the error at the current position.  The information
298 // for a sample is in the "last_sample" struct.  The linear approximation is
299 //   estimated_time = last_sample.base_ns +
300 //     last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
301 // (ns_per_cycle is actually stored in different units and scaled, to avoid
302 // overflow).  The base_ns of the next linear approximation is the
303 // estimated_time using the last approximation; the base_cycles is the cycle
304 // counter value at that time; the ns_per_cycle is the number of ns per cycle
305 // measured since the last sample, but adjusted so that most of the difference
306 // between the estimated_time and the kernel time will be corrected by the
307 // estimated time to the next sample.  In normal operation, this algorithm
308 // relies on:
309 // - the cycle counter and kernel time rates not changing a lot in a few
310 //   seconds.
311 // - the client calling into the code often compared to a couple of seconds, so
312 //   the time to the next correction can be estimated.
313 // Any time ns_per_cycle is not known, a major error is detected, or the
314 // assumption about frequent calls is violated, the implementation returns the
315 // kernel time.  It records sufficient data that a linear approximation can
316 // resume a little later.
317 
GetCurrentTimeNanos()318 int64_t GetCurrentTimeNanos() {
319   // read the data from the "last_sample" struct (but don't need raw_ns yet)
320   // The reads of "seq" and test of the values emulate a reader lock.
321   uint64_t base_ns;
322   uint64_t base_cycles;
323   uint64_t nsscaled_per_cycle;
324   uint64_t min_cycles_per_sample;
325   uint64_t seq_read0;
326   uint64_t seq_read1;
327 
328   // If we have enough information to interpolate, the value returned will be
329   // derived from this cycleclock-derived time estimate.  On some platforms
330   // (POWER) the function to retrieve this value has enough complexity to
331   // contribute to register pressure - reading it early before initializing
332   // the other pieces of the calculation minimizes spill/restore instructions,
333   // minimizing icache cost.
334   uint64_t now_cycles =
335       static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
336 
337   // Acquire pairs with the barrier in SeqRelease - if this load sees that
338   // store, the shared-data reads necessarily see that SeqRelease's updates
339   // to the same shared data.
340   seq_read0 = time_state.seq.load(std::memory_order_acquire);
341 
342   base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
343   base_cycles =
344       time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
345   nsscaled_per_cycle =
346       time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
347   min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
348       std::memory_order_relaxed);
349 
350   // This acquire fence pairs with the release fence in SeqAcquire.  Since it
351   // is sequenced between reads of shared data and seq_read1, the reads of
352   // shared data are effectively acquiring.
353   std::atomic_thread_fence(std::memory_order_acquire);
354 
355   // The shared-data reads are effectively acquire ordered, and the
356   // shared-data writes are effectively release ordered. Therefore if our
357   // shared-data reads see any of a particular update's shared-data writes,
358   // seq_read1 is guaranteed to see that update's SeqAcquire.
359   seq_read1 = time_state.seq.load(std::memory_order_relaxed);
360 
361   // Fast path.  Return if min_cycles_per_sample has not yet elapsed since the
362   // last sample, and we read a consistent sample.  The fast path activates
363   // only when min_cycles_per_sample is non-zero, which happens when we get an
364   // estimate for the cycle time.  The predicate will fail if now_cycles <
365   // base_cycles, or if some other thread is in the slow path.
366   //
367   // Since we now read now_cycles before base_ns, it is possible for now_cycles
368   // to be less than base_cycles (if we were interrupted between those loads and
369   // last_sample was updated). This is harmless, because delta_cycles will wrap
370   // and report a time much much bigger than min_cycles_per_sample. In that case
371   // we will take the slow path.
372   uint64_t delta_cycles;
373   if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
374       (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
375     return static_cast<int64_t>(
376         base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale));
377   }
378   return GetCurrentTimeNanosSlowPath();
379 }
380 
381 // Return (a << kScale)/b.
382 // Zero is returned if b==0.   Scaling is performed internally to
383 // preserve precision without overflow.
SafeDivideAndScale(uint64_t a,uint64_t b)384 static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
385   // Find maximum safe_shift so that
386   //  0 <= safe_shift <= kScale  and  (a << safe_shift) does not overflow.
387   int safe_shift = kScale;
388   while (((a << safe_shift) >> safe_shift) != a) {
389     safe_shift--;
390   }
391   uint64_t scaled_b = b >> (kScale - safe_shift);
392   uint64_t quotient = 0;
393   if (scaled_b != 0) {
394     quotient = (a << safe_shift) / scaled_b;
395   }
396   return quotient;
397 }
398 
399 static uint64_t UpdateLastSample(
400     uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
401     const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
402 
403 // The slow path of GetCurrentTimeNanos().  This is taken while gathering
404 // initial samples, when enough time has elapsed since the last sample, and if
405 // any other thread is writing to last_sample.
406 //
407 // Manually mark this 'noinline' to minimize stack frame size of the fast
408 // path.  Without this, sometimes a compiler may inline this big block of code
409 // into the fast path.  That causes lots of register spills and reloads that
410 // are unnecessary unless the slow path is taken.
411 //
412 // TODO(absl-team): Remove this attribute when our compiler is smart enough
413 // to do the right thing.
414 ABSL_ATTRIBUTE_NOINLINE
GetCurrentTimeNanosSlowPath()415 static int64_t GetCurrentTimeNanosSlowPath()
416     ABSL_LOCKS_EXCLUDED(time_state.lock) {
417   // Serialize access to slow-path.  Fast-path readers are not blocked yet, and
418   // code below must not modify last_sample until the seqlock is acquired.
419   time_state.lock.Lock();
420 
421   // Sample the kernel time base.  This is the definition of
422   // "now" if we take the slow path.
423   uint64_t now_cycles;
424   uint64_t now_ns = static_cast<uint64_t>(
425       GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles));
426   time_state.last_now_cycles = now_cycles;
427 
428   uint64_t estimated_base_ns;
429 
430   // ----------
431   // Read the "last_sample" values again; this time holding the write lock.
432   struct TimeSample sample;
433   ReadTimeSampleAtomic(&time_state.last_sample, &sample);
434 
435   // ----------
436   // Try running the fast path again; another thread may have updated the
437   // sample between our run of the fast path and the sample we just read.
438   uint64_t delta_cycles = now_cycles - sample.base_cycles;
439   if (delta_cycles < sample.min_cycles_per_sample) {
440     // Another thread updated the sample.  This path does not take the seqlock
441     // so that blocked readers can make progress without blocking new readers.
442     estimated_base_ns = sample.base_ns +
443         ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
444     time_state.stats_fast_slow_paths++;
445   } else {
446     estimated_base_ns =
447         UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
448   }
449 
450   time_state.lock.Unlock();
451 
452   return static_cast<int64_t>(estimated_base_ns);
453 }
454 
455 // Main part of the algorithm.  Locks out readers, updates the approximation
456 // using the new sample from the kernel, and stores the result in last_sample
457 // for readers.  Returns the new estimated time.
UpdateLastSample(uint64_t now_cycles,uint64_t now_ns,uint64_t delta_cycles,const struct TimeSample * sample)458 static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
459                                  uint64_t delta_cycles,
460                                  const struct TimeSample *sample)
461     ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
462   uint64_t estimated_base_ns = now_ns;
463   uint64_t lock_value =
464       SeqAcquire(&time_state.seq);  // acquire seqlock to block readers
465 
466   // The 5s in the next if-statement limits the time for which we will trust
467   // the cycle counter and our last sample to give a reasonable result.
468   // Errors in the rate of the source clock can be multiplied by the ratio
469   // between this limit and kMinNSBetweenSamples.
470   if (sample->raw_ns == 0 ||  // no recent sample, or clock went backwards
471       sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
472       now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
473     // record this sample, and forget any previously known slope.
474     time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
475     time_state.last_sample.base_ns.store(estimated_base_ns,
476                                          std::memory_order_relaxed);
477     time_state.last_sample.base_cycles.store(now_cycles,
478                                              std::memory_order_relaxed);
479     time_state.last_sample.nsscaled_per_cycle.store(0,
480                                                     std::memory_order_relaxed);
481     time_state.last_sample.min_cycles_per_sample.store(
482         0, std::memory_order_relaxed);
483     time_state.stats_initializations++;
484   } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
485              sample->base_cycles + 50 < now_cycles) {
486     // Enough time has passed to compute the cycle time.
487     if (sample->nsscaled_per_cycle != 0) {  // Have a cycle time estimate.
488       // Compute time from counter reading, but avoiding overflow
489       // delta_cycles may be larger than on the fast path.
490       uint64_t estimated_scaled_ns;
491       int s = -1;
492       do {
493         s++;
494         estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
495       } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
496                (delta_cycles >> s));
497       estimated_base_ns = sample->base_ns +
498                           (estimated_scaled_ns >> (kScale - s));
499     }
500 
501     // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
502     // assuming the cycle counter rate stays the same as the last interval.
503     uint64_t ns = now_ns - sample->raw_ns;
504     uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
505 
506     uint64_t assumed_next_sample_delta_cycles =
507         SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
508 
509     // Estimate low by this much.
510     int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns);
511 
512     // We want to set nsscaled_per_cycle so that our estimate of the ns time
513     // at the assumed cycle time is the assumed ns time.
514     // That is, we want to set nsscaled_per_cycle so:
515     //  kMinNSBetweenSamples + diff_ns  ==
516     //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
517     // But we wish to damp oscillations, so instead correct only most
518     // of our current error, by solving:
519     //  kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
520     //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
521     ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) +
522                                diff_ns - (diff_ns / 16));
523     uint64_t new_nsscaled_per_cycle =
524         SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
525     if (new_nsscaled_per_cycle != 0 &&
526         diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
527       // record the cycle time measurement
528       time_state.last_sample.nsscaled_per_cycle.store(
529           new_nsscaled_per_cycle, std::memory_order_relaxed);
530       uint64_t new_min_cycles_per_sample =
531           SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
532       time_state.last_sample.min_cycles_per_sample.store(
533           new_min_cycles_per_sample, std::memory_order_relaxed);
534       time_state.stats_calibrations++;
535     } else {  // something went wrong; forget the slope
536       time_state.last_sample.nsscaled_per_cycle.store(
537           0, std::memory_order_relaxed);
538       time_state.last_sample.min_cycles_per_sample.store(
539           0, std::memory_order_relaxed);
540       estimated_base_ns = now_ns;
541       time_state.stats_reinitializations++;
542     }
543     time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
544     time_state.last_sample.base_ns.store(estimated_base_ns,
545                                          std::memory_order_relaxed);
546     time_state.last_sample.base_cycles.store(now_cycles,
547                                              std::memory_order_relaxed);
548   } else {
549     // have a sample, but no slope; waiting for enough time for a calibration
550     time_state.stats_slow_paths++;
551   }
552 
553   SeqRelease(&time_state.seq, lock_value);  // release the readers
554 
555   return estimated_base_ns;
556 }
557 ABSL_NAMESPACE_END
558 }  // namespace absl
559 #endif  // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
560 
561 namespace absl {
562 ABSL_NAMESPACE_BEGIN
563 namespace {
564 
565 // Returns the maximum duration that SleepOnce() can sleep for.
MaxSleep()566 constexpr absl::Duration MaxSleep() {
567 #ifdef _WIN32
568   // Windows Sleep() takes unsigned long argument in milliseconds.
569   return absl::Milliseconds(
570       std::numeric_limits<unsigned long>::max());  // NOLINT(runtime/int)
571 #else
572   return absl::Seconds(std::numeric_limits<time_t>::max());
573 #endif
574 }
575 
576 // Sleeps for the given duration.
577 // REQUIRES: to_sleep <= MaxSleep().
SleepOnce(absl::Duration to_sleep)578 void SleepOnce(absl::Duration to_sleep) {
579 #ifdef _WIN32
580   Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1)));
581 #else
582   struct timespec sleep_time = absl::ToTimespec(to_sleep);
583   while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
584     // Ignore signals and wait for the full interval to elapse.
585   }
586 #endif
587 }
588 
589 }  // namespace
590 ABSL_NAMESPACE_END
591 }  // namespace absl
592 
593 extern "C" {
594 
ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)595 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)(
596     absl::Duration duration) {
597   while (duration > absl::ZeroDuration()) {
598     absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
599     absl::SleepOnce(to_sleep);
600     duration -= to_sleep;
601   }
602 }
603 
604 }  // extern "C"
605