xref: /aosp_15_r20/external/cronet/third_party/abseil-cpp/absl/synchronization/mutex.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //
35 //  ReaderMutexLock
36 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 //              access within the current scope.
38 //
39 //  WriterMutexLock
40 //            - Effectively an alias for `MutexLock` above, designed for use in
41 //              distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 //  Condition - (Preferred) Used to wait for a particular predicate that
47 //              depends on state protected by the `Mutex` to become true.
48 //  CondVar   - A lower-level variant of `Condition` that relies on
49 //              application code to explicitly signal the `CondVar` when
50 //              a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <cstring>
64 #include <iterator>
65 #include <string>
66 
67 #include "absl/base/attributes.h"
68 #include "absl/base/const_init.h"
69 #include "absl/base/internal/identity.h"
70 #include "absl/base/internal/low_level_alloc.h"
71 #include "absl/base/internal/thread_identity.h"
72 #include "absl/base/internal/tsan_mutex_interface.h"
73 #include "absl/base/port.h"
74 #include "absl/base/thread_annotations.h"
75 #include "absl/synchronization/internal/kernel_timeout.h"
76 #include "absl/synchronization/internal/per_thread_sem.h"
77 #include "absl/time/time.h"
78 
79 namespace absl {
80 ABSL_NAMESPACE_BEGIN
81 
82 class Condition;
83 struct SynchWaitParams;
84 
85 // -----------------------------------------------------------------------------
86 // Mutex
87 // -----------------------------------------------------------------------------
88 //
89 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
90 // on some resource, typically a variable or data structure with associated
91 // invariants. Proper usage of mutexes prevents concurrent access by different
92 // threads to the same resource.
93 //
94 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
95 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
96 // *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
97 // Mutex. During the span of time between the Lock() and Unlock() operations,
98 // a mutex is said to be *held*. By design, all mutexes support exclusive/write
99 // locks, as this is the most common way to use a mutex.
100 //
101 // Mutex operations are only allowed under certain conditions; otherwise an
102 // operation is "invalid", and disallowed by the API. The conditions concern
103 // both the current state of the mutex and the identity of the threads that
104 // are performing the operations.
105 //
106 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
107 //
108 // |                | Lock()                 | Unlock() |
109 // |----------------+------------------------+----------|
110 // | Free           | Exclusive              | invalid  |
111 // | Exclusive      | blocks, then exclusive | Free     |
112 //
113 // The full conditions are as follows.
114 //
115 // * Calls to `Unlock()` require that the mutex be held, and must be made in the
116 //   same thread that performed the corresponding `Lock()` operation which
117 //   acquired the mutex; otherwise the call is invalid.
118 //
119 // * The mutex being non-reentrant (or non-recursive) means that a call to
120 //   `Lock()` or `TryLock()` must not be made in a thread that already holds the
121 //   mutex; such a call is invalid.
122 //
123 // * In other words, the state of being "held" has both a temporal component
124 //   (from `Lock()` until `Unlock()`) as well as a thread identity component:
125 //   the mutex is held *by a particular thread*.
126 //
127 // An "invalid" operation has undefined behavior. The `Mutex` implementation
128 // is allowed to do anything on an invalid call, including, but not limited to,
129 // crashing with a useful error message, silently succeeding, or corrupting
130 // data structures. In debug mode, the implementation may crash with a useful
131 // error message.
132 //
133 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
134 // is, however, approximately fair over long periods, and starvation-free for
135 // threads at the same priority.
136 //
137 // The lock/unlock primitives are now annotated with lock annotations
138 // defined in (base/thread_annotations.h). When writing multi-threaded code,
139 // you should use lock annotations whenever possible to document your lock
140 // synchronization policy. Besides acting as documentation, these annotations
141 // also help compilers or static analysis tools to identify and warn about
142 // issues that could potentially result in race conditions and deadlocks.
143 //
144 // For more information about the lock annotations, please see
145 // [Thread Safety
146 // Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
147 // documentation.
148 //
149 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
150 
151 class ABSL_LOCKABLE ABSL_ATTRIBUTE_WARN_UNUSED Mutex {
152  public:
153   // Creates a `Mutex` that is not held by anyone. This constructor is
154   // typically used for Mutexes allocated on the heap or the stack.
155   //
156   // To create `Mutex` instances with static storage duration
157   // (e.g. a namespace-scoped or global variable), see
158   // `Mutex::Mutex(absl::kConstInit)` below instead.
159   Mutex();
160 
161   // Creates a mutex with static storage duration.  A global variable
162   // constructed this way avoids the lifetime issues that can occur on program
163   // startup and shutdown.  (See absl/base/const_init.h.)
164   //
165   // For Mutexes allocated on the heap and stack, instead use the default
166   // constructor, which can interact more fully with the thread sanitizer.
167   //
168   // Example usage:
169   //   namespace foo {
170   //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
171   //   }
172   explicit constexpr Mutex(absl::ConstInitType);
173 
174   ~Mutex();
175 
176   // Mutex::Lock()
177   //
178   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
179   // then acquires it exclusively. (This lock is also known as a "write lock.")
180   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
181 
182   // Mutex::Unlock()
183   //
184   // Releases this `Mutex` and returns it from the exclusive/write state to the
185   // free state. Calling thread must hold the `Mutex` exclusively.
186   void Unlock() ABSL_UNLOCK_FUNCTION();
187 
188   // Mutex::TryLock()
189   //
190   // If the mutex can be acquired without blocking, does so exclusively and
191   // returns `true`. Otherwise, returns `false`. Returns `true` with high
192   // probability if the `Mutex` was free.
193   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
194 
195   // Mutex::AssertHeld()
196   //
197   // Require that the mutex be held exclusively (write mode) by this thread.
198   //
199   // If the mutex is not currently held by this thread, this function may report
200   // an error (typically by crashing with a diagnostic) or it may do nothing.
201   // This function is intended only as a tool to assist debugging; it doesn't
202   // guarantee correctness.
203   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
204 
205   // ---------------------------------------------------------------------------
206   // Reader-Writer Locking
207   // ---------------------------------------------------------------------------
208 
209   // A Mutex can also be used as a starvation-free reader-writer lock.
210   // Neither read-locks nor write-locks are reentrant/recursive to avoid
211   // potential client programming errors.
212   //
213   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
214   // `Unlock()` and `TryLock()` methods for use within applications mixing
215   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
216   // manner can make locking behavior clearer when mixing read and write modes.
217   //
218   // Introducing reader locks necessarily complicates the `Mutex` state
219   // machine somewhat. The table below illustrates the allowed state transitions
220   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
221   // is held in shared mode; this occurs when another thread is blocked on a
222   // call to WriterLock().
223   //
224   // ---------------------------------------------------------------------------
225   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
226   // ---------------------------------------------------------------------------
227   // State
228   // ---------------------------------------------------------------------------
229   // Free           Exclusive    invalid   Shared(1)              invalid
230   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
231   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
232   // Exclusive      blocks       Free      blocks                 invalid
233   // ---------------------------------------------------------------------------
234   //
235   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
236 
237   // Mutex::ReaderLock()
238   //
239   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
240   // or in shared mode, and then acquires a share of it. Note that
241   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
242   // on the mutex.
243 
244   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
245 
246   // Mutex::ReaderUnlock()
247   //
248   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
249   // the free state if this thread holds the last reader lock on the mutex. Note
250   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
251   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
252 
253   // Mutex::ReaderTryLock()
254   //
255   // If the mutex can be acquired without blocking, acquires this mutex for
256   // shared access and returns `true`. Otherwise, returns `false`. Returns
257   // `true` with high probability if the `Mutex` was free or shared.
258   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
259 
260   // Mutex::AssertReaderHeld()
261   //
262   // Require that the mutex be held at least in shared mode (read mode) by this
263   // thread.
264   //
265   // If the mutex is not currently held by this thread, this function may report
266   // an error (typically by crashing with a diagnostic) or it may do nothing.
267   // This function is intended only as a tool to assist debugging; it doesn't
268   // guarantee correctness.
269   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
270 
271   // Mutex::WriterLock()
272   // Mutex::WriterUnlock()
273   // Mutex::WriterTryLock()
274   //
275   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
276   //
277   // These methods may be used (along with the complementary `Reader*()`
278   // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
279   // etc.) from reader/writer lock usage.
WriterLock()280   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
281 
WriterUnlock()282   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
283 
WriterTryLock()284   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
285     return this->TryLock();
286   }
287 
288   // ---------------------------------------------------------------------------
289   // Conditional Critical Regions
290   // ---------------------------------------------------------------------------
291 
292   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
293   //
294   //   * Use of `Mutex` member functions with `Condition` objects.
295   //   * Use of the separate `CondVar` abstraction.
296   //
297   // In general, prefer use of `Condition` and the `Mutex` member functions
298   // listed below over `CondVar`. When there are multiple threads waiting on
299   // distinctly different conditions, however, a battery of `CondVar`s may be
300   // more efficient. This section discusses use of `Condition` objects.
301   //
302   // `Mutex` contains member functions for performing lock operations only under
303   // certain conditions, of class `Condition`. For correctness, the `Condition`
304   // must return a boolean that is a pure function, only of state protected by
305   // the `Mutex`. The condition must be invariant w.r.t. environmental state
306   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
307   // always be invoked with the mutex held in at least read mode, so you should
308   // not block it for long periods or sleep it on a timer.
309   //
310   // Since a condition must not depend directly on the current time, use
311   // `*WithTimeout()` member function variants to make your condition
312   // effectively true after a given duration, or `*WithDeadline()` variants to
313   // make your condition effectively true after a given time.
314   //
315   // The condition function should have no side-effects aside from debug
316   // logging; as a special exception, the function may acquire other mutexes
317   // provided it releases all those that it acquires.  (This exception was
318   // required to allow logging.)
319 
320   // Mutex::Await()
321   //
322   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
323   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
324   // same mode in which it was previously held. If the condition is initially
325   // `true`, `Await()` *may* skip the release/re-acquire step.
326   //
327   // `Await()` requires that this thread holds this `Mutex` in some mode.
Await(const Condition & cond)328   void Await(const Condition& cond) {
329     AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
330   }
331 
332   // Mutex::LockWhen()
333   // Mutex::ReaderLockWhen()
334   // Mutex::WriterLockWhen()
335   //
336   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
337   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
338   // logically equivalent to `*Lock(); Await();` though they may have different
339   // performance characteristics.
LockWhen(const Condition & cond)340   void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
341     LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
342                    true);
343   }
344 
ReaderLockWhen(const Condition & cond)345   void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() {
346     LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
347                    false);
348   }
349 
WriterLockWhen(const Condition & cond)350   void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
351     this->LockWhen(cond);
352   }
353 
354   // ---------------------------------------------------------------------------
355   // Mutex Variants with Timeouts/Deadlines
356   // ---------------------------------------------------------------------------
357 
358   // Mutex::AwaitWithTimeout()
359   // Mutex::AwaitWithDeadline()
360   //
361   // Unlocks this `Mutex` and blocks until simultaneously:
362   //   - either `cond` is true or the {timeout has expired, deadline has passed}
363   //     and
364   //   - this `Mutex` can be reacquired,
365   // then reacquire this `Mutex` in the same mode in which it was previously
366   // held, returning `true` iff `cond` is `true` on return.
367   //
368   // If the condition is initially `true`, the implementation *may* skip the
369   // release/re-acquire step and return immediately.
370   //
371   // Deadlines in the past are equivalent to an immediate deadline.
372   // Negative timeouts are equivalent to a zero timeout.
373   //
374   // This method requires that this thread holds this `Mutex` in some mode.
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)375   bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
376     return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
377   }
378 
AwaitWithDeadline(const Condition & cond,absl::Time deadline)379   bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
380     return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
381   }
382 
383   // Mutex::LockWhenWithTimeout()
384   // Mutex::ReaderLockWhenWithTimeout()
385   // Mutex::WriterLockWhenWithTimeout()
386   //
387   // Blocks until simultaneously both:
388   //   - either `cond` is `true` or the timeout has expired, and
389   //   - this `Mutex` can be acquired,
390   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
391   // `true` on return.
392   //
393   // Negative timeouts are equivalent to a zero timeout.
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)394   bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
395       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
396     return LockWhenCommon(
397         cond, synchronization_internal::KernelTimeout{timeout}, true);
398   }
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)399   bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
400       ABSL_SHARED_LOCK_FUNCTION() {
401     return LockWhenCommon(
402         cond, synchronization_internal::KernelTimeout{timeout}, false);
403   }
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)404   bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
405       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
406     return this->LockWhenWithTimeout(cond, timeout);
407   }
408 
409   // Mutex::LockWhenWithDeadline()
410   // Mutex::ReaderLockWhenWithDeadline()
411   // Mutex::WriterLockWhenWithDeadline()
412   //
413   // Blocks until simultaneously both:
414   //   - either `cond` is `true` or the deadline has been passed, and
415   //   - this `Mutex` can be acquired,
416   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
417   // on return.
418   //
419   // Deadlines in the past are equivalent to an immediate deadline.
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)420   bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
421       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
422     return LockWhenCommon(
423         cond, synchronization_internal::KernelTimeout{deadline}, true);
424   }
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)425   bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
426       ABSL_SHARED_LOCK_FUNCTION() {
427     return LockWhenCommon(
428         cond, synchronization_internal::KernelTimeout{deadline}, false);
429   }
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)430   bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
431       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
432     return this->LockWhenWithDeadline(cond, deadline);
433   }
434 
435   // ---------------------------------------------------------------------------
436   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
437   // ---------------------------------------------------------------------------
438 
439   // Mutex::EnableInvariantDebugging()
440   //
441   // If `invariant`!=null and if invariant debugging has been enabled globally,
442   // cause `(*invariant)(arg)` to be called at moments when the invariant for
443   // this `Mutex` should hold (for example: just after acquire, just before
444   // release).
445   //
446   // The routine `invariant` should have no side-effects since it is not
447   // guaranteed how many times it will be called; it should check the invariant
448   // and crash if it does not hold. Enabling global invariant debugging may
449   // substantially reduce `Mutex` performance; it should be set only for
450   // non-production runs.  Optimization options may also disable invariant
451   // checks.
452   void EnableInvariantDebugging(void (*invariant)(void*), void* arg);
453 
454   // Mutex::EnableDebugLog()
455   //
456   // Cause all subsequent uses of this `Mutex` to be logged via
457   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
458   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
459   //
460   // Note: This method substantially reduces `Mutex` performance.
461   void EnableDebugLog(const char* name);
462 
463   // Deadlock detection
464 
465   // Mutex::ForgetDeadlockInfo()
466   //
467   // Forget any deadlock-detection information previously gathered
468   // about this `Mutex`. Call this method in debug mode when the lock ordering
469   // of a `Mutex` changes.
470   void ForgetDeadlockInfo();
471 
472   // Mutex::AssertNotHeld()
473   //
474   // Return immediately if this thread does not hold this `Mutex` in any
475   // mode; otherwise, may report an error (typically by crashing with a
476   // diagnostic), or may return immediately.
477   //
478   // Currently this check is performed only if all of:
479   //    - in debug mode
480   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
481   //    - number of locks concurrently held by this thread is not large.
482   // are true.
483   void AssertNotHeld() const;
484 
485   // Special cases.
486 
487   // A `MuHow` is a constant that indicates how a lock should be acquired.
488   // Internal implementation detail.  Clients should ignore.
489   typedef const struct MuHowS* MuHow;
490 
491   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
492   //
493   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
494   // future use of `Mutex` within a fatal signal handler. This method is
495   // intended for use only for last-ditch attempts to log crash information.
496   // It does not guarantee that attempts to use Mutexes within the handler will
497   // not deadlock; it merely makes other faults less likely.
498   //
499   // WARNING:  This routine must be invoked from a signal handler, and the
500   // signal handler must either loop forever or terminate the process.
501   // Attempts to return from (or `longjmp` out of) the signal handler once this
502   // call has been made may cause arbitrary program behaviour including
503   // crashes and deadlocks.
504   static void InternalAttemptToUseMutexInFatalSignalHandler();
505 
506  private:
507   std::atomic<intptr_t> mu_;  // The Mutex state.
508 
509   // Post()/Wait() versus associated PerThreadSem; in class for required
510   // friendship with PerThreadSem.
511   static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
512   static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
513                                 synchronization_internal::KernelTimeout t);
514 
515   // slow path acquire
516   void LockSlowLoop(SynchWaitParams* waitp, int flags);
517   // wrappers around LockSlowLoop()
518   bool LockSlowWithDeadline(MuHow how, const Condition* cond,
519                             synchronization_internal::KernelTimeout t,
520                             int flags);
521   void LockSlow(MuHow how, const Condition* cond,
522                 int flags) ABSL_ATTRIBUTE_COLD;
523   // slow path release
524   void UnlockSlow(SynchWaitParams* waitp) ABSL_ATTRIBUTE_COLD;
525   // TryLock slow path.
526   bool TryLockSlow();
527   // ReaderTryLock slow path.
528   bool ReaderTryLockSlow();
529   // Common code between Await() and AwaitWithTimeout/Deadline()
530   bool AwaitCommon(const Condition& cond,
531                    synchronization_internal::KernelTimeout t);
532   bool LockWhenCommon(const Condition& cond,
533                       synchronization_internal::KernelTimeout t, bool write);
534   // Attempt to remove thread s from queue.
535   void TryRemove(base_internal::PerThreadSynch* s);
536   // Block a thread on mutex.
537   void Block(base_internal::PerThreadSynch* s);
538   // Wake a thread; return successor.
539   base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
540   void Dtor();
541 
542   friend class CondVar;   // for access to Trans()/Fer().
543   void Trans(MuHow how);  // used for CondVar->Mutex transfer
544   void Fer(
545       base_internal::PerThreadSynch* w);  // used for CondVar->Mutex transfer
546 
547   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)548   explicit Mutex(const volatile Mutex* /*ignored*/) {}
549 
550   Mutex(const Mutex&) = delete;
551   Mutex& operator=(const Mutex&) = delete;
552 };
553 
554 // -----------------------------------------------------------------------------
555 // Mutex RAII Wrappers
556 // -----------------------------------------------------------------------------
557 
558 // MutexLock
559 //
560 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
561 // RAII.
562 //
563 // Example:
564 //
565 // Class Foo {
566 //  public:
567 //   Foo::Bar* Baz() {
568 //     MutexLock lock(&mu_);
569 //     ...
570 //     return bar;
571 //   }
572 //
573 // private:
574 //   Mutex mu_;
575 // };
576 class ABSL_SCOPED_LOCKABLE MutexLock {
577  public:
578   // Constructors
579 
580   // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
581   // guaranteed to be locked when this object is constructed. Requires that
582   // `mu` be dereferenceable.
MutexLock(Mutex * mu)583   explicit MutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
584     this->mu_->Lock();
585   }
586 
587   // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
588   // the above, the condition given by `cond` is also guaranteed to hold when
589   // this object is constructed.
MutexLock(Mutex * mu,const Condition & cond)590   explicit MutexLock(Mutex* mu, const Condition& cond)
591       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
592       : mu_(mu) {
593     this->mu_->LockWhen(cond);
594   }
595 
596   MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
597   MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
598   MutexLock& operator=(const MutexLock&) = delete;
599   MutexLock& operator=(MutexLock&&) = delete;
600 
ABSL_UNLOCK_FUNCTION()601   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
602 
603  private:
604   Mutex* const mu_;
605 };
606 
607 // ReaderMutexLock
608 //
609 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
610 // releases a shared lock on a `Mutex` via RAII.
611 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
612  public:
ReaderMutexLock(Mutex * mu)613   explicit ReaderMutexLock(Mutex* mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
614     mu->ReaderLock();
615   }
616 
ReaderMutexLock(Mutex * mu,const Condition & cond)617   explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
618       ABSL_SHARED_LOCK_FUNCTION(mu)
619       : mu_(mu) {
620     mu->ReaderLockWhen(cond);
621   }
622 
623   ReaderMutexLock(const ReaderMutexLock&) = delete;
624   ReaderMutexLock(ReaderMutexLock&&) = delete;
625   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
626   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
627 
ABSL_UNLOCK_FUNCTION()628   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
629 
630  private:
631   Mutex* const mu_;
632 };
633 
634 // WriterMutexLock
635 //
636 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
637 // releases a write (exclusive) lock on a `Mutex` via RAII.
638 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
639  public:
WriterMutexLock(Mutex * mu)640   explicit WriterMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
641       : mu_(mu) {
642     mu->WriterLock();
643   }
644 
WriterMutexLock(Mutex * mu,const Condition & cond)645   explicit WriterMutexLock(Mutex* mu, const Condition& cond)
646       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
647       : mu_(mu) {
648     mu->WriterLockWhen(cond);
649   }
650 
651   WriterMutexLock(const WriterMutexLock&) = delete;
652   WriterMutexLock(WriterMutexLock&&) = delete;
653   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
654   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
655 
ABSL_UNLOCK_FUNCTION()656   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
657 
658  private:
659   Mutex* const mu_;
660 };
661 
662 // -----------------------------------------------------------------------------
663 // Condition
664 // -----------------------------------------------------------------------------
665 //
666 // `Mutex` contains a number of member functions which take a `Condition` as an
667 // argument; clients can wait for conditions to become `true` before attempting
668 // to acquire the mutex. These sections are known as "condition critical"
669 // sections. To use a `Condition`, you simply need to construct it, and use
670 // within an appropriate `Mutex` member function; everything else in the
671 // `Condition` class is an implementation detail.
672 //
673 // A `Condition` is specified as a function pointer which returns a boolean.
674 // `Condition` functions should be pure functions -- their results should depend
675 // only on passed arguments, should not consult any external state (such as
676 // clocks), and should have no side-effects, aside from debug logging. Any
677 // objects that the function may access should be limited to those which are
678 // constant while the mutex is blocked on the condition (e.g. a stack variable),
679 // or objects of state protected explicitly by the mutex.
680 //
681 // No matter which construction is used for `Condition`, the underlying
682 // function pointer / functor / callable must not throw any
683 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
684 // the face of a throwing `Condition`. (When Abseil is allowed to depend
685 // on C++17, these function pointers will be explicitly marked
686 // `noexcept`; until then this requirement cannot be enforced in the
687 // type system.)
688 //
689 // Note: to use a `Condition`, you need only construct it and pass it to a
690 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
691 // constructor of one of the scope guard classes.
692 //
693 // Example using LockWhen/Unlock:
694 //
695 //   // assume count_ is not internal reference count
696 //   int count_ ABSL_GUARDED_BY(mu_);
697 //   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
698 //
699 //   mu_.LockWhen(count_is_zero);
700 //   // ...
701 //   mu_.Unlock();
702 //
703 // Example using a scope guard:
704 //
705 //   {
706 //     MutexLock lock(&mu_, count_is_zero);
707 //     // ...
708 //   }
709 //
710 // When multiple threads are waiting on exactly the same condition, make sure
711 // that they are constructed with the same parameters (same pointer to function
712 // + arg, or same pointer to object + method), so that the mutex implementation
713 // can avoid redundantly evaluating the same condition for each thread.
714 class Condition {
715  public:
716   // A Condition that returns the result of "(*func)(arg)"
717   Condition(bool (*func)(void*), void* arg);
718 
719   // Templated version for people who are averse to casts.
720   //
721   // To use a lambda, prepend it with unary plus, which converts the lambda
722   // into a function pointer:
723   //     Condition(+[](T* t) { return ...; }, arg).
724   //
725   // Note: lambdas in this case must contain no bound variables.
726   //
727   // See class comment for performance advice.
728   template <typename T>
729   Condition(bool (*func)(T*), T* arg);
730 
731   // Same as above, but allows for cases where `arg` comes from a pointer that
732   // is convertible to the function parameter type `T*` but not an exact match.
733   //
734   // For example, the argument might be `X*` but the function takes `const X*`,
735   // or the argument might be `Derived*` while the function takes `Base*`, and
736   // so on for cases where the argument pointer can be implicitly converted.
737   //
738   // Implementation notes: This constructor overload is required in addition to
739   // the one above to allow deduction of `T` from `arg` for cases such as where
740   // a function template is passed as `func`. Also, the dummy `typename = void`
741   // template parameter exists just to work around a MSVC mangling bug.
742   template <typename T, typename = void>
743   Condition(bool (*func)(T*),
744             typename absl::internal::type_identity<T>::type* arg);
745 
746   // Templated version for invoking a method that returns a `bool`.
747   //
748   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
749   // `object->Method()`.
750   //
751   // Implementation Note: `absl::internal::type_identity` is used to allow
752   // methods to come from base classes. A simpler signature like
753   // `Condition(T*, bool (T::*)())` does not suffice.
754   template <typename T>
755   Condition(T* object,
756             bool (absl::internal::type_identity<T>::type::*method)());
757 
758   // Same as above, for const members
759   template <typename T>
760   Condition(const T* object,
761             bool (absl::internal::type_identity<T>::type::*method)() const);
762 
763   // A Condition that returns the value of `*cond`
764   explicit Condition(const bool* cond);
765 
766   // Templated version for invoking a functor that returns a `bool`.
767   // This approach accepts pointers to non-mutable lambdas, `std::function`,
768   // the result of` std::bind` and user-defined functors that define
769   // `bool F::operator()() const`.
770   //
771   // Example:
772   //
773   //   auto reached = [this, current]() {
774   //     mu_.AssertReaderHeld();                // For annotalysis.
775   //     return processed_ >= current;
776   //   };
777   //   mu_.Await(Condition(&reached));
778   //
779   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
780   // the lambda as it may be called when the mutex is being unlocked from a
781   // scope holding only a reader lock, which will make the assertion not
782   // fulfilled and crash the binary.
783 
784   // See class comment for performance advice. In particular, if there
785   // might be more than one waiter for the same condition, make sure
786   // that all waiters construct the condition with the same pointers.
787 
788   // Implementation note: The second template parameter ensures that this
789   // constructor doesn't participate in overload resolution if T doesn't have
790   // `bool operator() const`.
791   template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
792                             &T::operator()))>
Condition(const T * obj)793   explicit Condition(const T* obj)
794       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
795 
796   // A Condition that always returns `true`.
797   // kTrue is only useful in a narrow set of circumstances, mostly when
798   // it's passed conditionally. For example:
799   //
800   //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
801   //
802   // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
803   // don't return immediately when the timeout happens, they still block until
804   // the Mutex becomes available. The return value of these methods does
805   // not indicate if the timeout was reached; rather it indicates whether or
806   // not the condition is true.
807   ABSL_CONST_INIT static const Condition kTrue;
808 
809   // Evaluates the condition.
810   bool Eval() const;
811 
812   // Returns `true` if the two conditions are guaranteed to return the same
813   // value if evaluated at the same time, `false` if the evaluation *may* return
814   // different results.
815   //
816   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
817   // components are the same. A null pointer is equivalent to a `true`
818   // condition.
819   static bool GuaranteedEqual(const Condition* a, const Condition* b);
820 
821  private:
822   // Sizing an allocation for a method pointer can be subtle. In the Itanium
823   // specifications, a method pointer has a predictable, uniform size. On the
824   // other hand, MSVC ABI, method pointer sizes vary based on the
825   // inheritance of the class. Specifically, method pointers from classes with
826   // multiple inheritance are bigger than those of classes with single
827   // inheritance. Other variations also exist.
828 
829 #ifndef _MSC_VER
830   // Allocation for a function pointer or method pointer.
831   // The {0} initializer ensures that all unused bytes of this buffer are
832   // always zeroed out.  This is necessary, because GuaranteedEqual() compares
833   // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
834   using MethodPtr = bool (Condition::*)();
835   char callback_[sizeof(MethodPtr)] = {0};
836 #else
837   // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
838   // may be the largest known pointer-to-member of any platform. For this
839   // reason we will allocate 24 bytes for MSVC platform toolchains.
840   char callback_[24] = {0};
841 #endif
842 
843   // Function with which to evaluate callbacks and/or arguments.
844   bool (*eval_)(const Condition*) = nullptr;
845 
846   // Either an argument for a function call or an object for a method call.
847   void* arg_ = nullptr;
848 
849   // Various functions eval_ can point to:
850   static bool CallVoidPtrFunction(const Condition*);
851   template <typename T>
852   static bool CastAndCallFunction(const Condition* c);
853   template <typename T, typename ConditionMethodPtr>
854   static bool CastAndCallMethod(const Condition* c);
855 
856   // Helper methods for storing, validating, and reading callback arguments.
857   template <typename T>
StoreCallback(T callback)858   inline void StoreCallback(T callback) {
859     static_assert(
860         sizeof(callback) <= sizeof(callback_),
861         "An overlarge pointer was passed as a callback to Condition.");
862     std::memcpy(callback_, &callback, sizeof(callback));
863   }
864 
865   template <typename T>
ReadCallback(T * callback)866   inline void ReadCallback(T* callback) const {
867     std::memcpy(callback, callback_, sizeof(*callback));
868   }
869 
AlwaysTrue(const Condition *)870   static bool AlwaysTrue(const Condition*) { return true; }
871 
872   // Used only to create kTrue.
Condition()873   constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
874 };
875 
876 // -----------------------------------------------------------------------------
877 // CondVar
878 // -----------------------------------------------------------------------------
879 //
880 // A condition variable, reflecting state evaluated separately outside of the
881 // `Mutex` object, which can be signaled to wake callers.
882 // This class is not normally needed; use `Mutex` member functions such as
883 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
884 // with many threads and many conditions, `CondVar` may be faster.
885 //
886 // The implementation may deliver signals to any condition variable at
887 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
888 // result, upon being awoken, you must check the logical condition you have
889 // been waiting upon.
890 //
891 // Examples:
892 //
893 // Usage for a thread waiting for some condition C protected by mutex mu:
894 //       mu.Lock();
895 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
896 //       //  C holds; process data
897 //       mu.Unlock();
898 //
899 // Usage to wake T is:
900 //       mu.Lock();
901 //       // process data, possibly establishing C
902 //       if (C) { cv->Signal(); }
903 //       mu.Unlock();
904 //
905 // If C may be useful to more than one waiter, use `SignalAll()` instead of
906 // `Signal()`.
907 //
908 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
909 // the locked region; this usage can make reasoning about your program easier.
910 //
911 class CondVar {
912  public:
913   // A `CondVar` allocated on the heap or on the stack can use the this
914   // constructor.
915   CondVar();
916 
917   // CondVar::Wait()
918   //
919   // Atomically releases a `Mutex` and blocks on this condition variable.
920   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
921   // spurious wakeup), then reacquires the `Mutex` and returns.
922   //
923   // Requires and ensures that the current thread holds the `Mutex`.
Wait(Mutex * mu)924   void Wait(Mutex* mu) {
925     WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
926   }
927 
928   // CondVar::WaitWithTimeout()
929   //
930   // Atomically releases a `Mutex` and blocks on this condition variable.
931   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
932   // spurious wakeup), or until the timeout has expired, then reacquires
933   // the `Mutex` and returns.
934   //
935   // Returns true if the timeout has expired without this `CondVar`
936   // being signalled in any manner. If both the timeout has expired
937   // and this `CondVar` has been signalled, the implementation is free
938   // to return `true` or `false`.
939   //
940   // Requires and ensures that the current thread holds the `Mutex`.
WaitWithTimeout(Mutex * mu,absl::Duration timeout)941   bool WaitWithTimeout(Mutex* mu, absl::Duration timeout) {
942     return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
943   }
944 
945   // CondVar::WaitWithDeadline()
946   //
947   // Atomically releases a `Mutex` and blocks on this condition variable.
948   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
949   // spurious wakeup), or until the deadline has passed, then reacquires
950   // the `Mutex` and returns.
951   //
952   // Deadlines in the past are equivalent to an immediate deadline.
953   //
954   // Returns true if the deadline has passed without this `CondVar`
955   // being signalled in any manner. If both the deadline has passed
956   // and this `CondVar` has been signalled, the implementation is free
957   // to return `true` or `false`.
958   //
959   // Requires and ensures that the current thread holds the `Mutex`.
WaitWithDeadline(Mutex * mu,absl::Time deadline)960   bool WaitWithDeadline(Mutex* mu, absl::Time deadline) {
961     return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
962   }
963 
964   // CondVar::Signal()
965   //
966   // Signal this `CondVar`; wake at least one waiter if one exists.
967   void Signal();
968 
969   // CondVar::SignalAll()
970   //
971   // Signal this `CondVar`; wake all waiters.
972   void SignalAll();
973 
974   // CondVar::EnableDebugLog()
975   //
976   // Causes all subsequent uses of this `CondVar` to be logged via
977   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
978   // Note: this method substantially reduces `CondVar` performance.
979   void EnableDebugLog(const char* name);
980 
981  private:
982   bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
983   void Remove(base_internal::PerThreadSynch* s);
984   std::atomic<intptr_t> cv_;  // Condition variable state.
985   CondVar(const CondVar&) = delete;
986   CondVar& operator=(const CondVar&) = delete;
987 };
988 
989 // Variants of MutexLock.
990 //
991 // If you find yourself using one of these, consider instead using
992 // Mutex::Unlock() and/or if-statements for clarity.
993 
994 // MutexLockMaybe
995 //
996 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
997 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
998  public:
MutexLockMaybe(Mutex * mu)999   explicit MutexLockMaybe(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1000       : mu_(mu) {
1001     if (this->mu_ != nullptr) {
1002       this->mu_->Lock();
1003     }
1004   }
1005 
MutexLockMaybe(Mutex * mu,const Condition & cond)1006   explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
1007       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1008       : mu_(mu) {
1009     if (this->mu_ != nullptr) {
1010       this->mu_->LockWhen(cond);
1011     }
1012   }
1013 
ABSL_UNLOCK_FUNCTION()1014   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
1015     if (this->mu_ != nullptr) {
1016       this->mu_->Unlock();
1017     }
1018   }
1019 
1020  private:
1021   Mutex* const mu_;
1022   MutexLockMaybe(const MutexLockMaybe&) = delete;
1023   MutexLockMaybe(MutexLockMaybe&&) = delete;
1024   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
1025   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
1026 };
1027 
1028 // ReleasableMutexLock
1029 //
1030 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
1031 // mutex before destruction. `Release()` may be called at most once.
1032 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
1033  public:
ReleasableMutexLock(Mutex * mu)1034   explicit ReleasableMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1035       : mu_(mu) {
1036     this->mu_->Lock();
1037   }
1038 
ReleasableMutexLock(Mutex * mu,const Condition & cond)1039   explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
1040       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1041       : mu_(mu) {
1042     this->mu_->LockWhen(cond);
1043   }
1044 
ABSL_UNLOCK_FUNCTION()1045   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1046     if (this->mu_ != nullptr) {
1047       this->mu_->Unlock();
1048     }
1049   }
1050 
1051   void Release() ABSL_UNLOCK_FUNCTION();
1052 
1053  private:
1054   Mutex* mu_;
1055   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1056   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1057   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1058   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1059 };
1060 
Mutex()1061 inline Mutex::Mutex() : mu_(0) {
1062   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1063 }
1064 
Mutex(absl::ConstInitType)1065 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1066 
1067 #if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL)
1068 ABSL_ATTRIBUTE_ALWAYS_INLINE
~Mutex()1069 inline Mutex::~Mutex() { Dtor(); }
1070 #endif
1071 
1072 #if defined(NDEBUG) && !defined(ABSL_HAVE_THREAD_SANITIZER)
1073 // Use default (empty) destructor in release build for performance reasons.
1074 // We need to mark both Dtor and ~Mutex as always inline for inconsistent
1075 // builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these
1076 // cases we want the empty functions to dissolve entirely rather than being
1077 // exported from dynamic libraries and potentially override the non-empty ones.
1078 ABSL_ATTRIBUTE_ALWAYS_INLINE
Dtor()1079 inline void Mutex::Dtor() {}
1080 #endif
1081 
CondVar()1082 inline CondVar::CondVar() : cv_(0) {}
1083 
1084 // static
1085 template <typename T, typename ConditionMethodPtr>
CastAndCallMethod(const Condition * c)1086 bool Condition::CastAndCallMethod(const Condition* c) {
1087   T* object = static_cast<T*>(c->arg_);
1088   ConditionMethodPtr condition_method_pointer;
1089   c->ReadCallback(&condition_method_pointer);
1090   return (object->*condition_method_pointer)();
1091 }
1092 
1093 // static
1094 template <typename T>
CastAndCallFunction(const Condition * c)1095 bool Condition::CastAndCallFunction(const Condition* c) {
1096   bool (*function)(T*);
1097   c->ReadCallback(&function);
1098   T* argument = static_cast<T*>(c->arg_);
1099   return (*function)(argument);
1100 }
1101 
1102 template <typename T>
Condition(bool (* func)(T *),T * arg)1103 inline Condition::Condition(bool (*func)(T*), T* arg)
1104     : eval_(&CastAndCallFunction<T>),
1105       arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1106   static_assert(sizeof(&func) <= sizeof(callback_),
1107                 "An overlarge function pointer was passed to Condition.");
1108   StoreCallback(func);
1109 }
1110 
1111 template <typename T, typename>
Condition(bool (* func)(T *),typename absl::internal::type_identity<T>::type * arg)1112 inline Condition::Condition(
1113     bool (*func)(T*), typename absl::internal::type_identity<T>::type* arg)
1114     // Just delegate to the overload above.
1115     : Condition(func, arg) {}
1116 
1117 template <typename T>
Condition(T * object,bool (absl::internal::type_identity<T>::type::* method)())1118 inline Condition::Condition(
1119     T* object, bool (absl::internal::type_identity<T>::type::*method)())
1120     : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) {
1121   static_assert(sizeof(&method) <= sizeof(callback_),
1122                 "An overlarge method pointer was passed to Condition.");
1123   StoreCallback(method);
1124 }
1125 
1126 template <typename T>
Condition(const T * object,bool (absl::internal::type_identity<T>::type::* method)()const)1127 inline Condition::Condition(
1128     const T* object,
1129     bool (absl::internal::type_identity<T>::type::*method)() const)
1130     : eval_(&CastAndCallMethod<const T, decltype(method)>),
1131       arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1132   StoreCallback(method);
1133 }
1134 
1135 // Register hooks for profiling support.
1136 //
1137 // The function pointer registered here will be called whenever a mutex is
1138 // contended.  The callback is given the cycles for which waiting happened (as
1139 // measured by //absl/base/internal/cycleclock.h, and which may not
1140 // be real "cycle" counts.)
1141 //
1142 // There is no ordering guarantee between when the hook is registered and when
1143 // callbacks will begin.  Only a single profiler can be installed in a running
1144 // binary; if this function is called a second time with a different function
1145 // pointer, the value is ignored (and will cause an assertion failure in debug
1146 // mode.)
1147 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1148 
1149 // Register a hook for Mutex tracing.
1150 //
1151 // The function pointer registered here will be called whenever a mutex is
1152 // contended.  The callback is given an opaque handle to the contended mutex,
1153 // an event name, and the number of wait cycles (as measured by
1154 // //absl/base/internal/cycleclock.h, and which may not be real
1155 // "cycle" counts.)
1156 //
1157 // The only event name currently sent is "slow release".
1158 //
1159 // This has the same ordering and single-use limitations as
1160 // RegisterMutexProfiler() above.
1161 void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
1162                                     int64_t wait_cycles));
1163 
1164 // Register a hook for CondVar tracing.
1165 //
1166 // The function pointer registered here will be called here on various CondVar
1167 // events.  The callback is given an opaque handle to the CondVar object and
1168 // a string identifying the event.  This is thread-safe, but only a single
1169 // tracer can be registered.
1170 //
1171 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1172 // "SignalAll wakeup".
1173 //
1174 // This has the same ordering and single-use limitations as
1175 // RegisterMutexProfiler() above.
1176 void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));
1177 
1178 // EnableMutexInvariantDebugging()
1179 //
1180 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1181 // then invariant predicates can be registered per-Mutex for debug checking.
1182 // See Mutex::EnableInvariantDebugging().
1183 void EnableMutexInvariantDebugging(bool enabled);
1184 
1185 // When in debug mode, and when the feature has been enabled globally, the
1186 // implementation will keep track of lock ordering and complain (or optionally
1187 // crash) if a cycle is detected in the acquired-before graph.
1188 
1189 // Possible modes of operation for the deadlock detector in debug mode.
1190 enum class OnDeadlockCycle {
1191   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1192   kReport,  // Report lock cycles to stderr when detected
1193   kAbort,   // Report lock cycles to stderr when detected, then abort
1194 };
1195 
1196 // SetMutexDeadlockDetectionMode()
1197 //
1198 // Enable or disable global support for detection of potential deadlocks
1199 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1200 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1201 // will be maintained internally, and detected cycles will be reported in
1202 // the manner chosen here.
1203 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1204 
1205 ABSL_NAMESPACE_END
1206 }  // namespace absl
1207 
1208 // In some build configurations we pass --detect-odr-violations to the
1209 // gold linker.  This causes it to flag weak symbol overrides as ODR
1210 // violations.  Because ODR only applies to C++ and not C,
1211 // --detect-odr-violations ignores symbols not mangled with C++ names.
1212 // By changing our extension points to be extern "C", we dodge this
1213 // check.
1214 extern "C" {
1215 void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1216 }  // extern "C"
1217 
1218 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1219