xref: /aosp_15_r20/external/cronet/base/time/time_apple.mm (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1// Copyright 2012 The Chromium Authors
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/time/time.h"
6
7#import <Foundation/Foundation.h>
8#include <mach/mach.h>
9#include <mach/mach_time.h>
10#include <stddef.h>
11#include <stdint.h>
12#include <sys/sysctl.h>
13#include <sys/time.h>
14#include <sys/types.h>
15#include <time.h>
16
17#include "base/apple/mach_logging.h"
18#include "base/apple/scoped_cftyperef.h"
19#include "base/apple/scoped_mach_port.h"
20#include "base/logging.h"
21#include "base/numerics/safe_conversions.h"
22#include "base/time/time_override.h"
23#include "build/build_config.h"
24
25namespace {
26
27// Returns a pointer to the initialized Mach timebase info struct.
28mach_timebase_info_data_t* MachTimebaseInfo() {
29  static mach_timebase_info_data_t timebase_info = []() {
30    mach_timebase_info_data_t info;
31    kern_return_t kr = mach_timebase_info(&info);
32    MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
33    DCHECK(info.numer);
34    DCHECK(info.denom);
35    return info;
36  }();
37  return &timebase_info;
38}
39
40int64_t MachTimeToMicroseconds(uint64_t mach_time) {
41  // timebase_info gives us the conversion factor between absolute time tick
42  // units and nanoseconds.
43  mach_timebase_info_data_t* timebase_info = MachTimebaseInfo();
44
45  // Take the fast path when the conversion is 1:1. The result will for sure fit
46  // into an int_64 because we're going from nanoseconds to microseconds.
47  if (timebase_info->numer == timebase_info->denom) {
48    return static_cast<int64_t>(mach_time /
49                                base::Time::kNanosecondsPerMicrosecond);
50  }
51
52  uint64_t microseconds = 0;
53  const uint64_t divisor =
54      timebase_info->denom * base::Time::kNanosecondsPerMicrosecond;
55
56  // Microseconds is mach_time * timebase.numer /
57  // (timebase.denom * kNanosecondsPerMicrosecond). Divide first to reduce
58  // the chance of overflow. Also stash the remainder right now, a likely
59  // byproduct of the division.
60  microseconds = mach_time / divisor;
61  const uint64_t mach_time_remainder = mach_time % divisor;
62
63  // Now multiply, keeping an eye out for overflow.
64  CHECK(!__builtin_umulll_overflow(microseconds, timebase_info->numer,
65                                   &microseconds));
66
67  // By dividing first we lose precision. Regain it by adding back the
68  // microseconds from the remainder, with an eye out for overflow.
69  uint64_t least_significant_microseconds =
70      (mach_time_remainder * timebase_info->numer) / divisor;
71  CHECK(!__builtin_uaddll_overflow(microseconds, least_significant_microseconds,
72                                   &microseconds));
73
74  // Don't bother with the rollover handling that the Windows version does.
75  // The returned time in microseconds is enough for 292,277 years (starting
76  // from 2^63 because the returned int64_t is signed,
77  // 9223372036854775807 / (1e6 * 60 * 60 * 24 * 365.2425) = 292,277).
78  return base::checked_cast<int64_t>(microseconds);
79}
80
81// Returns monotonically growing number of ticks in microseconds since some
82// unspecified starting point.
83int64_t ComputeCurrentTicks() {
84  // mach_absolute_time is it when it comes to ticks on the Mac.  Other calls
85  // with less precision (such as TickCount) just call through to
86  // mach_absolute_time.
87  return MachTimeToMicroseconds(mach_absolute_time());
88}
89
90int64_t ComputeThreadTicks() {
91  struct timespec ts = {};
92  CHECK(clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts) == 0);
93  base::CheckedNumeric<int64_t> absolute_micros(ts.tv_sec);
94  absolute_micros *= base::Time::kMicrosecondsPerSecond;
95  absolute_micros += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond);
96  return absolute_micros.ValueOrDie();
97}
98
99}  // namespace
100
101namespace base {
102
103// The Time routines in this file use Mach and CoreFoundation APIs, since the
104// POSIX definition of time_t in macOS wraps around after 2038--and
105// there are already cookie expiration dates, etc., past that time out in
106// the field.  Using CFDate prevents that problem, and using mach_absolute_time
107// for TimeTicks gives us nice high-resolution interval timing.
108
109// Time -----------------------------------------------------------------------
110
111namespace subtle {
112Time TimeNowIgnoringOverride() {
113  return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
114}
115
116Time TimeNowFromSystemTimeIgnoringOverride() {
117  // Just use TimeNowIgnoringOverride() because it returns the system time.
118  return TimeNowIgnoringOverride();
119}
120}  // namespace subtle
121
122// static
123Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
124  static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
125                "CFAbsoluteTime must have an infinity value");
126  if (t == 0) {
127    return Time();  // Consider 0 as a null Time.
128  }
129  return (t == std::numeric_limits<CFAbsoluteTime>::infinity())
130             ? Max()
131             : (UnixEpoch() +
132                Seconds(double{t + kCFAbsoluteTimeIntervalSince1970}));
133}
134
135CFAbsoluteTime Time::ToCFAbsoluteTime() const {
136  static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
137                "CFAbsoluteTime must have an infinity value");
138  if (is_null()) {
139    return 0;  // Consider 0 as a null Time.
140  }
141  return is_max() ? std::numeric_limits<CFAbsoluteTime>::infinity()
142                  : (CFAbsoluteTime{(*this - UnixEpoch()).InSecondsF()} -
143                     kCFAbsoluteTimeIntervalSince1970);
144}
145
146// static
147Time Time::FromNSDate(NSDate* date) {
148  DCHECK(date);
149  return FromCFAbsoluteTime(date.timeIntervalSinceReferenceDate);
150}
151
152NSDate* Time::ToNSDate() const {
153  return [NSDate dateWithTimeIntervalSinceReferenceDate:ToCFAbsoluteTime()];
154}
155
156// TimeDelta ------------------------------------------------------------------
157
158// static
159TimeDelta TimeDelta::FromMachTime(uint64_t mach_time) {
160  return Microseconds(MachTimeToMicroseconds(mach_time));
161}
162
163// TimeTicks ------------------------------------------------------------------
164
165namespace subtle {
166TimeTicks TimeTicksNowIgnoringOverride() {
167  return TimeTicks() + Microseconds(ComputeCurrentTicks());
168}
169}  // namespace subtle
170
171// static
172bool TimeTicks::IsHighResolution() {
173  return true;
174}
175
176// static
177bool TimeTicks::IsConsistentAcrossProcesses() {
178  return true;
179}
180
181// static
182TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) {
183  return TimeTicks(MachTimeToMicroseconds(mach_absolute_time));
184}
185
186// static
187mach_timebase_info_data_t TimeTicks::SetMachTimebaseInfoForTesting(
188    mach_timebase_info_data_t timebase) {
189  mach_timebase_info_data_t orig_timebase = *MachTimebaseInfo();
190
191  *MachTimebaseInfo() = timebase;
192
193  return orig_timebase;
194}
195
196// static
197TimeTicks::Clock TimeTicks::GetClock() {
198  return Clock::MAC_MACH_ABSOLUTE_TIME;
199}
200
201// ThreadTicks ----------------------------------------------------------------
202
203namespace subtle {
204ThreadTicks ThreadTicksNowIgnoringOverride() {
205  return ThreadTicks() + Microseconds(ComputeThreadTicks());
206}
207}  // namespace subtle
208
209}  // namespace base
210