xref: /aosp_15_r20/external/cronet/base/threading/thread_local_storage.cc (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2014 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/threading/thread_local_storage.h"
6 
7 #include <algorithm>
8 #include <atomic>
9 
10 #include "base/check_op.h"
11 #include "base/compiler_specific.h"
12 #include "base/memory/raw_ptr_exclusion.h"
13 #include "base/notreached.h"
14 #include "base/synchronization/lock.h"
15 #include "build/build_config.h"
16 
17 #if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
18 #include <pthread.h>
19 #include <type_traits>
20 #endif
21 
22 using base::internal::PlatformThreadLocalStorage;
23 
24 // Chrome Thread Local Storage (TLS)
25 //
26 // This TLS system allows Chrome to use a single OS level TLS slot process-wide,
27 // and allows us to control the slot limits instead of being at the mercy of the
28 // platform. To do this, Chrome TLS replicates an array commonly found in the OS
29 // thread metadata.
30 //
31 // Overview:
32 //
33 // OS TLS Slots       Per-Thread                 Per-Process Global
34 //     ...
35 //     []             Chrome TLS Array           Chrome TLS Metadata
36 //     [] ----------> [][][][][ ][][][][]        [][][][][ ][][][][]
37 //     []                      |                          |
38 //     ...                     V                          V
39 //                      Metadata Version           Slot Information
40 //                         Your Data!
41 //
42 // Using a single OS TLS slot, Chrome TLS allocates an array on demand for the
43 // lifetime of each thread that requests Chrome TLS data. Each per-thread TLS
44 // array matches the length of the per-process global metadata array.
45 //
46 // A per-process global TLS metadata array tracks information about each item in
47 // the per-thread array:
48 //   * Status: Tracks if the slot is allocated or free to assign.
49 //   * Destructor: An optional destructor to call on thread destruction for that
50 //                 specific slot.
51 //   * Version: Tracks the current version of the TLS slot. Each TLS slot
52 //              allocation is associated with a unique version number.
53 //
54 //              Most OS TLS APIs guarantee that a newly allocated TLS slot is
55 //              initialized to 0 for all threads. The Chrome TLS system provides
56 //              this guarantee by tracking the version for each TLS slot here
57 //              on each per-thread Chrome TLS array entry. Threads that access
58 //              a slot with a mismatched version will receive 0 as their value.
59 //              The metadata version is incremented when the client frees a
60 //              slot. The per-thread metadata version is updated when a client
61 //              writes to the slot. This scheme allows for constant time
62 //              invalidation and avoids the need to iterate through each Chrome
63 //              TLS array to mark the slot as zero.
64 //
65 // Just like an OS TLS API, clients of the Chrome TLS are responsible for
66 // managing any necessary lifetime of the data in their slots. The only
67 // convenience provided is automatic destruction when a thread ends. If a client
68 // frees a slot, that client is responsible for destroying the data in the slot.
69 
70 namespace {
71 // In order to make TLS destructors work, we need to keep around a function
72 // pointer to the destructor for each slot. We keep this array of pointers in a
73 // global (static) array.
74 // We use the single OS-level TLS slot (giving us one pointer per thread) to
75 // hold a pointer to a per-thread array (table) of slots that we allocate to
76 // Chromium consumers.
77 
78 // g_native_tls_key is the one native TLS that we use. It stores our table.
79 
80 std::atomic<PlatformThreadLocalStorage::TLSKey> g_native_tls_key{
81     PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES};
82 
83 // The OS TLS slot has the following states. The TLS slot's lower 2 bits contain
84 // the state, the upper bits the TlsVectorEntry*.
85 //   * kUninitialized: Any call to Slot::Get()/Set() will create the base
86 //     per-thread TLS state. kUninitialized must be null.
87 //   * kInUse: value has been created and is in use.
88 //   * kDestroying: Set when the thread is exiting prior to deleting any of the
89 //     values stored in the TlsVectorEntry*. This state is necessary so that
90 //     sequence/task checks won't be done while in the process of deleting the
91 //     tls entries (see comments in SequenceCheckerImpl for more details).
92 //   * kDestroyed: All of the values in the vector have been deallocated and
93 //     the TlsVectorEntry has been deleted.
94 //
95 // Final States:
96 //   * Windows: kDestroyed. Windows does not iterate through the OS TLS to clean
97 //     up the values.
98 //   * POSIX: kUninitialized. POSIX iterates through TLS until all slots contain
99 //     nullptr.
100 //
101 // More details on this design:
102 //   We need some type of thread-local state to indicate that the TLS system has
103 //   been destroyed. To do so, we leverage the multi-pass nature of destruction
104 //   of pthread_key.
105 //
106 //    a) After destruction of TLS system, we set the pthread_key to a sentinel
107 //       kDestroyed.
108 //    b) All calls to Slot::Get() DCHECK that the state is not kDestroyed, and
109 //       any system which might potentially invoke Slot::Get() after destruction
110 //       of TLS must check ThreadLocalStorage::ThreadIsBeingDestroyed().
111 //    c) After a full pass of the pthread_keys, on the next invocation of
112 //       ConstructTlsVector(), we'll then set the key to nullptr.
113 //    d) At this stage, the TLS system is back in its uninitialized state.
114 //    e) If in the second pass of destruction of pthread_keys something were to
115 //       re-initialize TLS [this should never happen! Since the only code which
116 //       uses Chrome TLS is Chrome controlled, we should really be striving for
117 //       single-pass destruction], then TLS will be re-initialized and then go
118 //       through the 2-pass destruction system again. Everything should just
119 //       work (TM).
120 
121 // The state of the tls-entry.
122 enum class TlsVectorState {
123   kUninitialized = 0,
124 
125   // In the process of destroying the entries in the vector.
126   kDestroying,
127 
128   // All of the entries and the vector has been destroyed.
129   kDestroyed,
130 
131   // The vector has been initialized and is in use.
132   kInUse,
133 
134   kMaxValue = kInUse
135 };
136 
137 // Bit-mask used to store TlsVectorState.
138 constexpr uintptr_t kVectorStateBitMask = 3;
139 static_assert(static_cast<int>(TlsVectorState::kMaxValue) <=
140                   kVectorStateBitMask,
141               "number of states must fit in header");
142 static_assert(static_cast<int>(TlsVectorState::kUninitialized) == 0,
143               "kUninitialized must be null");
144 
145 // The maximum number of slots in our thread local storage stack.
146 constexpr size_t kThreadLocalStorageSize = 256;
147 
148 enum TlsStatus {
149   FREE,
150   IN_USE,
151 };
152 
153 struct TlsMetadata {
154   TlsStatus status;
155   base::ThreadLocalStorage::TLSDestructorFunc destructor;
156   // Incremented every time a slot is reused. Used to detect reuse of slots.
157   uint32_t version;
158   // Tracks slot creation order. Used to destroy slots in the reverse order:
159   // from last created to first created.
160   uint32_t sequence_num;
161 };
162 
163 struct TlsVectorEntry {
164   // `data` is not a raw_ptr<...> for performance reasons (based on analysis of
165   // sampling profiler data and tab_search:top100:2020).
166   RAW_PTR_EXCLUSION void* data;
167 
168   uint32_t version;
169 };
170 
171 // This lock isn't needed until after we've constructed the per-thread TLS
172 // vector, so it's safe to use.
GetTLSMetadataLock()173 base::Lock* GetTLSMetadataLock() {
174   static auto* lock = new base::Lock();
175   return lock;
176 }
177 TlsMetadata g_tls_metadata[kThreadLocalStorageSize];
178 size_t g_last_assigned_slot = 0;
179 uint32_t g_sequence_num = 0;
180 
181 // The maximum number of times to try to clear slots by calling destructors.
182 // Use pthread naming convention for clarity.
183 constexpr size_t kMaxDestructorIterations = kThreadLocalStorageSize;
184 
185 // Sets the value and state of the vector.
SetTlsVectorValue(PlatformThreadLocalStorage::TLSKey key,TlsVectorEntry * tls_data,TlsVectorState state)186 void SetTlsVectorValue(PlatformThreadLocalStorage::TLSKey key,
187                        TlsVectorEntry* tls_data,
188                        TlsVectorState state) {
189   DCHECK(tls_data || (state == TlsVectorState::kUninitialized) ||
190          (state == TlsVectorState::kDestroyed));
191   PlatformThreadLocalStorage::SetTLSValue(
192       key, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(tls_data) |
193                                    static_cast<uintptr_t>(state)));
194 }
195 
196 // Returns the tls vector and current state from the raw tls value.
GetTlsVectorStateAndValue(void * tls_value,TlsVectorEntry ** entry=nullptr)197 TlsVectorState GetTlsVectorStateAndValue(void* tls_value,
198                                          TlsVectorEntry** entry = nullptr) {
199   if (entry) {
200     *entry = reinterpret_cast<TlsVectorEntry*>(
201         reinterpret_cast<uintptr_t>(tls_value) & ~kVectorStateBitMask);
202   }
203   return static_cast<TlsVectorState>(reinterpret_cast<uintptr_t>(tls_value) &
204                                      kVectorStateBitMask);
205 }
206 
207 // Returns the tls vector and state using the tls key.
GetTlsVectorStateAndValue(PlatformThreadLocalStorage::TLSKey key,TlsVectorEntry ** entry=nullptr)208 TlsVectorState GetTlsVectorStateAndValue(PlatformThreadLocalStorage::TLSKey key,
209                                          TlsVectorEntry** entry = nullptr) {
210 // Only on x86_64, the implementation is not stable on ARM64. For instance, in
211 // macOS 11, the TPIDRRO_EL0 registers holds the CPU index in the low bits,
212 // which is not the case in macOS 12. See libsyscall/os/tsd.h in XNU
213 // (_os_tsd_get_direct() is used by pthread_getspecific() internally).
214 #if BUILDFLAG(IS_MAC) && defined(ARCH_CPU_X86_64)
215   // On macOS, pthread_getspecific() is in libSystem, so a call to it has to go
216   // through PLT. However, and contrary to some other platforms, *all* TLS keys
217   // are in a static array in the thread structure. So they are *always* at a
218   // fixed offset from the segment register holding the thread structure
219   // address.
220   //
221   // We could use _pthread_getspecific_direct(), but it is not
222   // exported. However, on all macOS versions we support, the TLS array is at
223   // %gs. This is used in V8 and PartitionAlloc, and can also be seen by looking
224   // at pthread_getspecific() disassembly:
225   //
226   // libsystem_pthread.dylib`pthread_getspecific:
227   // libsystem_pthread.dylib[0x7ff800316099] <+0>: movq   %gs:(,%rdi,8), %rax
228   // libsystem_pthread.dylib[0x7ff8003160a2] <+9>: retq
229   //
230   // This function is essentially inlining the content of pthread_getspecific()
231   // here.
232   //
233   // Note that this likely ends up being even faster than thread_local for
234   // typical Chromium builds where the code is in a dynamic library. For the
235   // static executable case, this is likely equivalent.
236   static_assert(
237       std::is_same_v<PlatformThreadLocalStorage::TLSKey, pthread_key_t>,
238       "The special-case below assumes that the platform TLS implementation is "
239       "pthread.");
240 
241   intptr_t platform_tls_value;
242   asm("movq %%gs:(,%1,8), %0;" : "=r"(platform_tls_value) : "r"(key));
243 
244   return GetTlsVectorStateAndValue(reinterpret_cast<void*>(platform_tls_value),
245                                    entry);
246 #else
247   return GetTlsVectorStateAndValue(PlatformThreadLocalStorage::GetTLSValue(key),
248                                    entry);
249 #endif
250 }
251 
252 // This function is called to initialize our entire Chromium TLS system.
253 // It may be called very early, and we need to complete most all of the setup
254 // (initialization) before calling *any* memory allocator functions, which may
255 // recursively depend on this initialization.
256 // As a result, we use Atomics, and avoid anything (like a singleton) that might
257 // require memory allocations.
ConstructTlsVector()258 TlsVectorEntry* ConstructTlsVector() {
259   PlatformThreadLocalStorage::TLSKey key =
260       g_native_tls_key.load(std::memory_order_relaxed);
261   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
262     CHECK(PlatformThreadLocalStorage::AllocTLS(&key));
263 
264     // The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
265     // not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
266     // define an almost impossible value be it.
267     // If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
268     // another TLS slot.
269     if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
270       PlatformThreadLocalStorage::TLSKey tmp = key;
271       CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
272             key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
273       PlatformThreadLocalStorage::FreeTLS(tmp);
274     }
275     // Atomically test-and-set the tls_key. If the key is
276     // TLS_KEY_OUT_OF_INDEXES, go ahead and set it. Otherwise, do nothing, as
277     // another thread already did our dirty work.
278     PlatformThreadLocalStorage::TLSKey old_key =
279         PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;
280     if (!g_native_tls_key.compare_exchange_strong(old_key, key,
281                                                   std::memory_order_relaxed,
282                                                   std::memory_order_relaxed)) {
283       // We've been shortcut. Another thread replaced g_native_tls_key first so
284       // we need to destroy our index and use the one the other thread got
285       // first.
286       PlatformThreadLocalStorage::FreeTLS(key);
287       key = g_native_tls_key.load(std::memory_order_relaxed);
288     }
289   }
290   CHECK_EQ(GetTlsVectorStateAndValue(key), TlsVectorState::kUninitialized);
291 
292   // Some allocators, such as TCMalloc, make use of thread local storage. As a
293   // result, any attempt to call new (or malloc) will lazily cause such a system
294   // to initialize, which will include registering for a TLS key. If we are not
295   // careful here, then that request to create a key will call new back, and
296   // we'll have an infinite loop. We avoid that as follows: Use a stack
297   // allocated vector, so that we don't have dependence on our allocator until
298   // our service is in place. (i.e., don't even call new until after we're
299   // setup)
300   TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
301   memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
302   // Ensure that any rentrant calls change the temp version.
303   SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kInUse);
304 
305   // Allocate an array to store our data.
306   TlsVectorEntry* tls_data = new TlsVectorEntry[kThreadLocalStorageSize];
307   memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
308   SetTlsVectorValue(key, tls_data, TlsVectorState::kInUse);
309   return tls_data;
310 }
311 
OnThreadExitInternal(TlsVectorEntry * tls_data)312 void OnThreadExitInternal(TlsVectorEntry* tls_data) {
313   DCHECK(tls_data);
314   // Some allocators, such as TCMalloc, use TLS. As a result, when a thread
315   // terminates, one of the destructor calls we make may be to shut down an
316   // allocator. We have to be careful that after we've shutdown all of the known
317   // destructors (perchance including an allocator), that we don't call the
318   // allocator and cause it to resurrect itself (with no possibly destructor
319   // call to follow). We handle this problem as follows: Switch to using a stack
320   // allocated vector, so that we don't have dependence on our allocator after
321   // we have called all g_tls_metadata destructors. (i.e., don't even call
322   // delete[] after we're done with destructors.)
323   TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
324   memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
325   // Ensure that any re-entrant calls change the temp version.
326   PlatformThreadLocalStorage::TLSKey key =
327       g_native_tls_key.load(std::memory_order_relaxed);
328   SetTlsVectorValue(key, stack_allocated_tls_data, TlsVectorState::kDestroying);
329   delete[] tls_data;  // Our last dependence on an allocator.
330 
331   size_t remaining_attempts = kMaxDestructorIterations + 1;
332   bool need_to_scan_destructors = true;
333   while (need_to_scan_destructors) {
334     need_to_scan_destructors = false;
335 
336     // Snapshot the TLS Metadata so we don't have to lock on every access.
337     TlsMetadata tls_metadata[kThreadLocalStorageSize];
338     {
339       base::AutoLock auto_lock(*GetTLSMetadataLock());
340       memcpy(tls_metadata, g_tls_metadata, sizeof(g_tls_metadata));
341     }
342 
343     // We destroy slots in reverse order (i.e. destroy the first-created slot
344     // last), for the following reasons:
345     // 1) Slots that are created early belong to basic services (like an
346     // allocator) and might have to be recreated by destructors of other
347     // services. So we save iterations here by destroying them last.
348     // 2) Perfetto tracing service allocates a slot early and relies on it to
349     // keep emitting trace events while destructors of other slots are called,
350     // so it's important to keep it live to avoid use-after-free errors.
351     // To achieve this, we sort all slots in the order of decreasing sequence
352     // numbers.
353     struct OrderedSlot {
354       uint32_t sequence_num;
355       uint16_t slot;
356     } slot_destruction_order[kThreadLocalStorageSize];
357     for (uint16_t i = 0; i < kThreadLocalStorageSize; ++i) {
358       slot_destruction_order[i].sequence_num = tls_metadata[i].sequence_num;
359       slot_destruction_order[i].slot = i;
360     }
361     std::sort(std::begin(slot_destruction_order),
362               std::end(slot_destruction_order),
363               [](const OrderedSlot& s1, const OrderedSlot& s2) {
364                 return s1.sequence_num > s2.sequence_num;
365               });
366 
367     for (const auto& ordered_slot : slot_destruction_order) {
368       size_t slot = ordered_slot.slot;
369       void* tls_value = stack_allocated_tls_data[slot].data;
370       if (!tls_value || tls_metadata[slot].status == TlsStatus::FREE ||
371           stack_allocated_tls_data[slot].version != tls_metadata[slot].version)
372         continue;
373 
374       base::ThreadLocalStorage::TLSDestructorFunc destructor =
375           tls_metadata[slot].destructor;
376       if (!destructor)
377         continue;
378       stack_allocated_tls_data[slot].data = nullptr;  // pre-clear the slot.
379       destructor(tls_value);
380       // Any destructor might have called a different service, which then set a
381       // different slot to a non-null value. Hence we need to check the whole
382       // vector again. This is a pthread standard.
383       need_to_scan_destructors = true;
384     }
385 
386     if (--remaining_attempts == 0) {
387       NOTREACHED();  // Destructors might not have been called.
388       break;
389     }
390   }
391 
392   // Remove our stack allocated vector.
393   SetTlsVectorValue(key, nullptr, TlsVectorState::kDestroyed);
394 }
395 
396 }  // namespace
397 
398 namespace base {
399 
400 namespace internal {
401 
402 #if BUILDFLAG(IS_WIN)
OnThreadExit()403 void PlatformThreadLocalStorage::OnThreadExit() {
404   PlatformThreadLocalStorage::TLSKey key =
405       g_native_tls_key.load(std::memory_order_relaxed);
406   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
407     return;
408   TlsVectorEntry* tls_vector = nullptr;
409   const TlsVectorState state = GetTlsVectorStateAndValue(key, &tls_vector);
410 
411   // On Windows, thread destruction callbacks are only invoked once per module,
412   // so there should be no way that this could be invoked twice.
413   DCHECK_NE(state, TlsVectorState::kDestroyed);
414 
415   // Maybe we have never initialized TLS for this thread.
416   if (state == TlsVectorState::kUninitialized)
417     return;
418   OnThreadExitInternal(tls_vector);
419 }
420 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
421 void PlatformThreadLocalStorage::OnThreadExit(void* value) {
422   // On posix this function may be called twice. The first pass calls dtors and
423   // sets state to kDestroyed. The second pass sets kDestroyed to
424   // kUninitialized.
425   TlsVectorEntry* tls_vector = nullptr;
426   const TlsVectorState state = GetTlsVectorStateAndValue(value, &tls_vector);
427   if (state == TlsVectorState::kDestroyed) {
428     PlatformThreadLocalStorage::TLSKey key =
429         g_native_tls_key.load(std::memory_order_relaxed);
430     SetTlsVectorValue(key, nullptr, TlsVectorState::kUninitialized);
431     return;
432   }
433 
434   OnThreadExitInternal(tls_vector);
435 }
436 #endif  // BUILDFLAG(IS_WIN)
437 
438 }  // namespace internal
439 
440 // static
HasBeenDestroyed()441 bool ThreadLocalStorage::HasBeenDestroyed() {
442   PlatformThreadLocalStorage::TLSKey key =
443       g_native_tls_key.load(std::memory_order_relaxed);
444   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
445     return false;
446   const TlsVectorState state = GetTlsVectorStateAndValue(key);
447   return state == TlsVectorState::kDestroying ||
448          state == TlsVectorState::kDestroyed;
449 }
450 
Initialize(TLSDestructorFunc destructor)451 void ThreadLocalStorage::Slot::Initialize(TLSDestructorFunc destructor) {
452   PlatformThreadLocalStorage::TLSKey key =
453       g_native_tls_key.load(std::memory_order_relaxed);
454   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
455       GetTlsVectorStateAndValue(key) == TlsVectorState::kUninitialized) {
456     ConstructTlsVector();
457   }
458 
459   // Grab a new slot.
460   {
461     base::AutoLock auto_lock(*GetTLSMetadataLock());
462     for (size_t i = 0; i < kThreadLocalStorageSize; ++i) {
463       // Tracking the last assigned slot is an attempt to find the next
464       // available slot within one iteration. Under normal usage, slots remain
465       // in use for the lifetime of the process (otherwise before we reclaimed
466       // slots, we would have run out of slots). This makes it highly likely the
467       // next slot is going to be a free slot.
468       size_t slot_candidate =
469           (g_last_assigned_slot + 1 + i) % kThreadLocalStorageSize;
470       if (g_tls_metadata[slot_candidate].status == TlsStatus::FREE) {
471         g_tls_metadata[slot_candidate].status = TlsStatus::IN_USE;
472         g_tls_metadata[slot_candidate].destructor = destructor;
473         g_tls_metadata[slot_candidate].sequence_num = ++g_sequence_num;
474         g_last_assigned_slot = slot_candidate;
475         DCHECK_EQ(kInvalidSlotValue, slot_);
476         slot_ = slot_candidate;
477         version_ = g_tls_metadata[slot_candidate].version;
478         break;
479       }
480     }
481   }
482   CHECK_LT(slot_, kThreadLocalStorageSize);
483 }
484 
Free()485 void ThreadLocalStorage::Slot::Free() {
486   DCHECK_LT(slot_, kThreadLocalStorageSize);
487   {
488     base::AutoLock auto_lock(*GetTLSMetadataLock());
489     g_tls_metadata[slot_].status = TlsStatus::FREE;
490     g_tls_metadata[slot_].destructor = nullptr;
491     ++(g_tls_metadata[slot_].version);
492   }
493   slot_ = kInvalidSlotValue;
494 }
495 
Get() const496 void* ThreadLocalStorage::Slot::Get() const {
497   TlsVectorEntry* tls_data = nullptr;
498   const TlsVectorState state = GetTlsVectorStateAndValue(
499       g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
500   DCHECK_NE(state, TlsVectorState::kDestroyed);
501   if (!tls_data)
502     return nullptr;
503   DCHECK_LT(slot_, kThreadLocalStorageSize);
504   // Version mismatches means this slot was previously freed.
505   if (tls_data[slot_].version != version_)
506     return nullptr;
507   return tls_data[slot_].data;
508 }
509 
Set(void * value)510 void ThreadLocalStorage::Slot::Set(void* value) {
511   TlsVectorEntry* tls_data = nullptr;
512   const TlsVectorState state = GetTlsVectorStateAndValue(
513       g_native_tls_key.load(std::memory_order_relaxed), &tls_data);
514   DCHECK_NE(state, TlsVectorState::kDestroyed);
515   if (UNLIKELY(!tls_data)) {
516     if (!value)
517       return;
518     tls_data = ConstructTlsVector();
519   }
520   DCHECK_LT(slot_, kThreadLocalStorageSize);
521   tls_data[slot_].data = value;
522   tls_data[slot_].version = version_;
523 }
524 
Slot(TLSDestructorFunc destructor)525 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
526   Initialize(destructor);
527 }
528 
~Slot()529 ThreadLocalStorage::Slot::~Slot() {
530   Free();
531 }
532 
533 }  // namespace base
534