1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/synchronization/waitable_event.h"
6
7 #include <stddef.h>
8
9 #include <limits>
10 #include <optional>
11 #include <vector>
12
13 #include "base/check_op.h"
14 #include "base/memory/stack_allocated.h"
15 #include "base/ranges/algorithm.h"
16 #include "base/synchronization/condition_variable.h"
17 #include "base/synchronization/lock.h"
18 #include "base/threading/scoped_blocking_call.h"
19 #include "base/threading/thread_restrictions.h"
20 #include "base/time/time.h"
21 #include "base/time/time_override.h"
22
23 // -----------------------------------------------------------------------------
24 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
25 // support cross-process events (where one process can signal an event which
26 // others are waiting on). Because of this, we can avoid having one thread per
27 // listener in several cases.
28 //
29 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
30 // waiter is either an async wait, in which case we have a Task and the
31 // MessageLoop to run it on, or a blocking wait, in which case we have the
32 // condition variable to signal.
33 //
34 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
35 // waits can be canceled, which means grabbing the lock and removing oneself
36 // from the list.
37 //
38 // Waiting on multiple events is handled by adding a single, synchronous wait to
39 // the wait-list of many events. An event passes a pointer to itself when
40 // firing a waiter and so we can store that pointer to find out which event
41 // triggered.
42 // -----------------------------------------------------------------------------
43
44 namespace base {
45
46 // -----------------------------------------------------------------------------
47 // This is just an abstract base class for waking the two types of waiters
48 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)49 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
50 InitialState initial_state)
51 : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
52
Reset()53 void WaitableEvent::Reset() {
54 base::AutoLock locked(kernel_->lock_);
55 kernel_->signaled_ = false;
56 }
57
SignalImpl()58 void WaitableEvent::SignalImpl() {
59 base::AutoLock locked(kernel_->lock_);
60
61 if (kernel_->signaled_)
62 return;
63
64 if (kernel_->manual_reset_) {
65 SignalAll();
66 kernel_->signaled_ = true;
67 } else {
68 // In the case of auto reset, if no waiters were woken, we remain
69 // signaled.
70 if (!SignalOne())
71 kernel_->signaled_ = true;
72 }
73 }
74
IsSignaled()75 bool WaitableEvent::IsSignaled() {
76 base::AutoLock locked(kernel_->lock_);
77
78 const bool result = kernel_->signaled_;
79 if (result && !kernel_->manual_reset_)
80 kernel_->signaled_ = false;
81 return result;
82 }
83
84 // -----------------------------------------------------------------------------
85 // Synchronous waits
86
87 // -----------------------------------------------------------------------------
88 // This is a synchronous waiter. The thread is waiting on the given condition
89 // variable and the fired flag in this object.
90 // -----------------------------------------------------------------------------
91 class SyncWaiter : public WaitableEvent::Waiter {
92 STACK_ALLOCATED();
93
94 public:
SyncWaiter()95 SyncWaiter()
96 : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
97
Fire(WaitableEvent * signaling_event)98 bool Fire(WaitableEvent* signaling_event) override {
99 base::AutoLock locked(lock_);
100
101 if (fired_)
102 return false;
103
104 fired_ = true;
105 signaling_event_ = signaling_event;
106
107 cv_.Broadcast();
108
109 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
110 // the blocking thread's stack. There is no |delete this;| in Fire. The
111 // SyncWaiter object is destroyed when it goes out of scope.
112
113 return true;
114 }
115
signaling_event() const116 WaitableEvent* signaling_event() const {
117 return signaling_event_;
118 }
119
120 // ---------------------------------------------------------------------------
121 // These waiters are always stack allocated and don't delete themselves. Thus
122 // there's no problem and the ABA tag is the same as the object pointer.
123 // ---------------------------------------------------------------------------
Compare(void * tag)124 bool Compare(void* tag) override { return this == tag; }
125
126 // ---------------------------------------------------------------------------
127 // Called with lock held.
128 // ---------------------------------------------------------------------------
fired() const129 bool fired() const {
130 return fired_;
131 }
132
133 // ---------------------------------------------------------------------------
134 // During a TimedWait, we need a way to make sure that an auto-reset
135 // WaitableEvent doesn't think that this event has been signaled between
136 // unlocking it and removing it from the wait-list. Called with lock held.
137 // ---------------------------------------------------------------------------
Disable()138 void Disable() {
139 fired_ = true;
140 }
141
lock()142 base::Lock* lock() {
143 return &lock_;
144 }
145
cv()146 base::ConditionVariable* cv() {
147 return &cv_;
148 }
149
150 private:
151 bool fired_;
152 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
153 base::Lock lock_;
154 base::ConditionVariable cv_;
155 };
156
TimedWaitImpl(TimeDelta wait_delta)157 bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
158 kernel_->lock_.Acquire();
159 if (kernel_->signaled_) {
160 if (!kernel_->manual_reset_) {
161 // In this case we were signaled when we had no waiters. Now that
162 // someone has waited upon us, we can automatically reset.
163 kernel_->signaled_ = false;
164 }
165
166 kernel_->lock_.Release();
167 return true;
168 }
169
170 SyncWaiter sw;
171 if (only_used_while_idle_) {
172 sw.cv()->declare_only_used_while_idle();
173 }
174 sw.lock()->Acquire();
175
176 Enqueue(&sw);
177 kernel_->lock_.Release();
178 // We are violating locking order here by holding the SyncWaiter lock but not
179 // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
180 // again before unlocking it.
181
182 // TimeTicks takes care of overflow but we special case is_max() nonetheless
183 // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
184 // the increment step of the for loop if the condition variable returns
185 // early). Ref: https://crbug.com/910524#c7
186 const TimeTicks end_time =
187 wait_delta.is_max() ? TimeTicks::Max()
188 : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
189 for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
190 remaining = end_time.is_max()
191 ? TimeDelta::Max()
192 : end_time - subtle::TimeTicksNowIgnoringOverride()) {
193 if (end_time.is_max())
194 sw.cv()->Wait();
195 else
196 sw.cv()->TimedWait(remaining);
197 }
198
199 // Get the SyncWaiter signaled state before releasing the lock.
200 const bool return_value = sw.fired();
201
202 // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
203 // locking order), however, in between the two a signal could be fired and
204 // |sw| would accept it, however we will still return false, so the signal
205 // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
206 // makes sw::Fire return false.
207 sw.Disable();
208 sw.lock()->Release();
209
210 // This is a bug that has been enshrined in the interface of WaitableEvent
211 // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
212 // always return false in that case. However, taking the lock ensures that
213 // |Signal| has completed before we return and means that a WaitableEvent can
214 // synchronise its own destruction.
215 kernel_->lock_.Acquire();
216 kernel_->Dequeue(&sw, &sw);
217 kernel_->lock_.Release();
218
219 return return_value;
220 }
221
222 // -----------------------------------------------------------------------------
223 // Synchronous waiting on multiple objects.
224
225 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)226 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
227 const std::pair<WaitableEvent*, unsigned> &b) {
228 return a.first < b.first;
229 }
230
231 // static
232 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
WaitManyImpl(WaitableEvent ** raw_waitables,size_t count)233 size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables,
234 size_t count) NO_THREAD_SAFETY_ANALYSIS {
235 // We need to acquire the locks in a globally consistent order. Thus we sort
236 // the array of waitables by address. We actually sort a pairs so that we can
237 // map back to the original index values later.
238 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
239 waitables.reserve(count);
240 for (size_t i = 0; i < count; ++i)
241 waitables.push_back(std::make_pair(raw_waitables[i], i));
242
243 DCHECK_EQ(count, waitables.size());
244
245 ranges::sort(waitables, cmp_fst_addr);
246
247 // The set of waitables must be distinct. Since we have just sorted by
248 // address, we can check this cheaply by comparing pairs of consecutive
249 // elements.
250 for (size_t i = 0; i < waitables.size() - 1; ++i) {
251 DCHECK(waitables[i].first != waitables[i+1].first);
252 }
253
254 SyncWaiter sw;
255
256 const size_t r = EnqueueMany(&waitables[0], count, &sw);
257 if (r < count) {
258 // One of the events is already signaled. The SyncWaiter has not been
259 // enqueued anywhere.
260 return waitables[r].second;
261 }
262
263 // At this point, we hold the locks on all the WaitableEvents and we have
264 // enqueued our waiter in them all.
265 sw.lock()->Acquire();
266 // Release the WaitableEvent locks in the reverse order
267 for (size_t i = 0; i < count; ++i) {
268 waitables[count - (1 + i)].first->kernel_->lock_.Release();
269 }
270
271 for (;;) {
272 if (sw.fired())
273 break;
274
275 sw.cv()->Wait();
276 }
277 sw.lock()->Release();
278
279 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
280 WaitableEvent *const signaled_event = sw.signaling_event();
281 // This will store the index of the raw_waitables which fired.
282 size_t signaled_index = 0;
283
284 // Take the locks of each WaitableEvent in turn (except the signaled one) and
285 // remove our SyncWaiter from the wait-list
286 for (size_t i = 0; i < count; ++i) {
287 if (raw_waitables[i] != signaled_event) {
288 raw_waitables[i]->kernel_->lock_.Acquire();
289 // There's no possible ABA issue with the address of the SyncWaiter here
290 // because it lives on the stack. Thus the tag value is just the pointer
291 // value again.
292 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
293 raw_waitables[i]->kernel_->lock_.Release();
294 } else {
295 // By taking this lock here we ensure that |Signal| has completed by the
296 // time we return, because |Signal| holds this lock. This matches the
297 // behaviour of |Wait| and |TimedWait|.
298 raw_waitables[i]->kernel_->lock_.Acquire();
299 raw_waitables[i]->kernel_->lock_.Release();
300 signaled_index = i;
301 }
302 }
303
304 return signaled_index;
305 }
306
307 // -----------------------------------------------------------------------------
308 // If return value == count:
309 // The locks of the WaitableEvents have been taken in order and the Waiter has
310 // been enqueued in the wait-list of each. None of the WaitableEvents are
311 // currently signaled
312 // else:
313 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
314 // in any of them and the return value is the index of the WaitableEvent which
315 // was signaled with the lowest input index from the original WaitMany call.
316 // -----------------------------------------------------------------------------
317 // static
318 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)319 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
320 size_t count,
321 Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
322 size_t winner = count;
323 size_t winner_index = count;
324 for (size_t i = 0; i < count; ++i) {
325 auto& kernel = waitables[i].first->kernel_;
326 kernel->lock_.Acquire();
327 if (kernel->signaled_ && waitables[i].second < winner) {
328 winner = waitables[i].second;
329 winner_index = i;
330 }
331 }
332
333 // No events signaled. All locks acquired. Enqueue the Waiter on all of them
334 // and return.
335 if (winner == count) {
336 for (size_t i = 0; i < count; ++i)
337 waitables[i].first->Enqueue(waiter);
338 return count;
339 }
340
341 // Unlock in reverse order and possibly clear the chosen winner's signal
342 // before returning its index.
343 for (auto* w = waitables + count - 1; w >= waitables; --w) {
344 auto& kernel = w->first->kernel_;
345 if (w->second == winner) {
346 if (!kernel->manual_reset_)
347 kernel->signaled_ = false;
348 }
349 kernel->lock_.Release();
350 }
351
352 return winner_index;
353 }
354
355 // -----------------------------------------------------------------------------
356
357
358 // -----------------------------------------------------------------------------
359 // Private functions...
360
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)361 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
362 ResetPolicy reset_policy,
363 InitialState initial_state)
364 : manual_reset_(reset_policy == ResetPolicy::MANUAL),
365 signaled_(initial_state == InitialState::SIGNALED) {}
366
367 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
368
369 // -----------------------------------------------------------------------------
370 // Wake all waiting waiters. Called with lock held.
371 // -----------------------------------------------------------------------------
SignalAll()372 bool WaitableEvent::SignalAll() {
373 bool signaled_at_least_one = false;
374
375 for (Waiter* i : kernel_->waiters_) {
376 if (i->Fire(this))
377 signaled_at_least_one = true;
378 }
379
380 kernel_->waiters_.clear();
381 return signaled_at_least_one;
382 }
383
384 // ---------------------------------------------------------------------------
385 // Try to wake a single waiter. Return true if one was woken. Called with lock
386 // held.
387 // ---------------------------------------------------------------------------
SignalOne()388 bool WaitableEvent::SignalOne() {
389 for (;;) {
390 if (kernel_->waiters_.empty())
391 return false;
392
393 const bool r = (*kernel_->waiters_.begin())->Fire(this);
394 kernel_->waiters_.pop_front();
395 if (r)
396 return true;
397 }
398 }
399
400 // -----------------------------------------------------------------------------
401 // Add a waiter to the list of those waiting. Called with lock held.
402 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)403 void WaitableEvent::Enqueue(Waiter* waiter) {
404 kernel_->waiters_.push_back(waiter);
405 }
406
407 // -----------------------------------------------------------------------------
408 // Remove a waiter from the list of those waiting. Return true if the waiter was
409 // actually removed. Called with lock held.
410 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)411 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
412 for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
413 if (*i == waiter && (*i)->Compare(tag)) {
414 waiters_.erase(i);
415 return true;
416 }
417 }
418
419 return false;
420 }
421
422 // -----------------------------------------------------------------------------
423
424 } // namespace base
425