xref: /aosp_15_r20/external/cronet/base/synchronization/waitable_event_posix.cc (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/synchronization/waitable_event.h"
6 
7 #include <stddef.h>
8 
9 #include <limits>
10 #include <optional>
11 #include <vector>
12 
13 #include "base/check_op.h"
14 #include "base/memory/stack_allocated.h"
15 #include "base/ranges/algorithm.h"
16 #include "base/synchronization/condition_variable.h"
17 #include "base/synchronization/lock.h"
18 #include "base/threading/scoped_blocking_call.h"
19 #include "base/threading/thread_restrictions.h"
20 #include "base/time/time.h"
21 #include "base/time/time_override.h"
22 
23 // -----------------------------------------------------------------------------
24 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
25 // support cross-process events (where one process can signal an event which
26 // others are waiting on). Because of this, we can avoid having one thread per
27 // listener in several cases.
28 //
29 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
30 // waiter is either an async wait, in which case we have a Task and the
31 // MessageLoop to run it on, or a blocking wait, in which case we have the
32 // condition variable to signal.
33 //
34 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
35 // waits can be canceled, which means grabbing the lock and removing oneself
36 // from the list.
37 //
38 // Waiting on multiple events is handled by adding a single, synchronous wait to
39 // the wait-list of many events. An event passes a pointer to itself when
40 // firing a waiter and so we can store that pointer to find out which event
41 // triggered.
42 // -----------------------------------------------------------------------------
43 
44 namespace base {
45 
46 // -----------------------------------------------------------------------------
47 // This is just an abstract base class for waking the two types of waiters
48 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)49 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
50                              InitialState initial_state)
51     : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
52 
Reset()53 void WaitableEvent::Reset() {
54   base::AutoLock locked(kernel_->lock_);
55   kernel_->signaled_ = false;
56 }
57 
SignalImpl()58 void WaitableEvent::SignalImpl() {
59   base::AutoLock locked(kernel_->lock_);
60 
61   if (kernel_->signaled_)
62     return;
63 
64   if (kernel_->manual_reset_) {
65     SignalAll();
66     kernel_->signaled_ = true;
67   } else {
68     // In the case of auto reset, if no waiters were woken, we remain
69     // signaled.
70     if (!SignalOne())
71       kernel_->signaled_ = true;
72   }
73 }
74 
IsSignaled()75 bool WaitableEvent::IsSignaled() {
76   base::AutoLock locked(kernel_->lock_);
77 
78   const bool result = kernel_->signaled_;
79   if (result && !kernel_->manual_reset_)
80     kernel_->signaled_ = false;
81   return result;
82 }
83 
84 // -----------------------------------------------------------------------------
85 // Synchronous waits
86 
87 // -----------------------------------------------------------------------------
88 // This is a synchronous waiter. The thread is waiting on the given condition
89 // variable and the fired flag in this object.
90 // -----------------------------------------------------------------------------
91 class SyncWaiter : public WaitableEvent::Waiter {
92   STACK_ALLOCATED();
93 
94  public:
SyncWaiter()95   SyncWaiter()
96       : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
97 
Fire(WaitableEvent * signaling_event)98   bool Fire(WaitableEvent* signaling_event) override {
99     base::AutoLock locked(lock_);
100 
101     if (fired_)
102       return false;
103 
104     fired_ = true;
105     signaling_event_ = signaling_event;
106 
107     cv_.Broadcast();
108 
109     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
110     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
111     // SyncWaiter object is destroyed when it goes out of scope.
112 
113     return true;
114   }
115 
signaling_event() const116   WaitableEvent* signaling_event() const {
117     return signaling_event_;
118   }
119 
120   // ---------------------------------------------------------------------------
121   // These waiters are always stack allocated and don't delete themselves. Thus
122   // there's no problem and the ABA tag is the same as the object pointer.
123   // ---------------------------------------------------------------------------
Compare(void * tag)124   bool Compare(void* tag) override { return this == tag; }
125 
126   // ---------------------------------------------------------------------------
127   // Called with lock held.
128   // ---------------------------------------------------------------------------
fired() const129   bool fired() const {
130     return fired_;
131   }
132 
133   // ---------------------------------------------------------------------------
134   // During a TimedWait, we need a way to make sure that an auto-reset
135   // WaitableEvent doesn't think that this event has been signaled between
136   // unlocking it and removing it from the wait-list. Called with lock held.
137   // ---------------------------------------------------------------------------
Disable()138   void Disable() {
139     fired_ = true;
140   }
141 
lock()142   base::Lock* lock() {
143     return &lock_;
144   }
145 
cv()146   base::ConditionVariable* cv() {
147     return &cv_;
148   }
149 
150  private:
151   bool fired_;
152   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
153   base::Lock lock_;
154   base::ConditionVariable cv_;
155 };
156 
TimedWaitImpl(TimeDelta wait_delta)157 bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
158   kernel_->lock_.Acquire();
159   if (kernel_->signaled_) {
160     if (!kernel_->manual_reset_) {
161       // In this case we were signaled when we had no waiters. Now that
162       // someone has waited upon us, we can automatically reset.
163       kernel_->signaled_ = false;
164     }
165 
166     kernel_->lock_.Release();
167     return true;
168   }
169 
170   SyncWaiter sw;
171   if (only_used_while_idle_) {
172     sw.cv()->declare_only_used_while_idle();
173   }
174   sw.lock()->Acquire();
175 
176   Enqueue(&sw);
177   kernel_->lock_.Release();
178   // We are violating locking order here by holding the SyncWaiter lock but not
179   // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
180   // again before unlocking it.
181 
182   // TimeTicks takes care of overflow but we special case is_max() nonetheless
183   // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
184   // the increment step of the for loop if the condition variable returns
185   // early). Ref: https://crbug.com/910524#c7
186   const TimeTicks end_time =
187       wait_delta.is_max() ? TimeTicks::Max()
188                           : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
189   for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
190        remaining = end_time.is_max()
191                        ? TimeDelta::Max()
192                        : end_time - subtle::TimeTicksNowIgnoringOverride()) {
193     if (end_time.is_max())
194       sw.cv()->Wait();
195     else
196       sw.cv()->TimedWait(remaining);
197   }
198 
199   // Get the SyncWaiter signaled state before releasing the lock.
200   const bool return_value = sw.fired();
201 
202   // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
203   // locking order), however, in between the two a signal could be fired and
204   // |sw| would accept it, however we will still return false, so the signal
205   // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
206   // makes sw::Fire return false.
207   sw.Disable();
208   sw.lock()->Release();
209 
210   // This is a bug that has been enshrined in the interface of WaitableEvent
211   // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
212   // always return false in that case. However, taking the lock ensures that
213   // |Signal| has completed before we return and means that a WaitableEvent can
214   // synchronise its own destruction.
215   kernel_->lock_.Acquire();
216   kernel_->Dequeue(&sw, &sw);
217   kernel_->lock_.Release();
218 
219   return return_value;
220 }
221 
222 // -----------------------------------------------------------------------------
223 // Synchronous waiting on multiple objects.
224 
225 static bool  // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)226 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
227              const std::pair<WaitableEvent*, unsigned> &b) {
228   return a.first < b.first;
229 }
230 
231 // static
232 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
WaitManyImpl(WaitableEvent ** raw_waitables,size_t count)233 size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables,
234                                    size_t count) NO_THREAD_SAFETY_ANALYSIS {
235   // We need to acquire the locks in a globally consistent order. Thus we sort
236   // the array of waitables by address. We actually sort a pairs so that we can
237   // map back to the original index values later.
238   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
239   waitables.reserve(count);
240   for (size_t i = 0; i < count; ++i)
241     waitables.push_back(std::make_pair(raw_waitables[i], i));
242 
243   DCHECK_EQ(count, waitables.size());
244 
245   ranges::sort(waitables, cmp_fst_addr);
246 
247   // The set of waitables must be distinct. Since we have just sorted by
248   // address, we can check this cheaply by comparing pairs of consecutive
249   // elements.
250   for (size_t i = 0; i < waitables.size() - 1; ++i) {
251     DCHECK(waitables[i].first != waitables[i+1].first);
252   }
253 
254   SyncWaiter sw;
255 
256   const size_t r = EnqueueMany(&waitables[0], count, &sw);
257   if (r < count) {
258     // One of the events is already signaled. The SyncWaiter has not been
259     // enqueued anywhere.
260     return waitables[r].second;
261   }
262 
263   // At this point, we hold the locks on all the WaitableEvents and we have
264   // enqueued our waiter in them all.
265   sw.lock()->Acquire();
266     // Release the WaitableEvent locks in the reverse order
267     for (size_t i = 0; i < count; ++i) {
268       waitables[count - (1 + i)].first->kernel_->lock_.Release();
269     }
270 
271     for (;;) {
272       if (sw.fired())
273         break;
274 
275       sw.cv()->Wait();
276     }
277   sw.lock()->Release();
278 
279   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
280   WaitableEvent *const signaled_event = sw.signaling_event();
281   // This will store the index of the raw_waitables which fired.
282   size_t signaled_index = 0;
283 
284   // Take the locks of each WaitableEvent in turn (except the signaled one) and
285   // remove our SyncWaiter from the wait-list
286   for (size_t i = 0; i < count; ++i) {
287     if (raw_waitables[i] != signaled_event) {
288       raw_waitables[i]->kernel_->lock_.Acquire();
289         // There's no possible ABA issue with the address of the SyncWaiter here
290         // because it lives on the stack. Thus the tag value is just the pointer
291         // value again.
292         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
293       raw_waitables[i]->kernel_->lock_.Release();
294     } else {
295       // By taking this lock here we ensure that |Signal| has completed by the
296       // time we return, because |Signal| holds this lock. This matches the
297       // behaviour of |Wait| and |TimedWait|.
298       raw_waitables[i]->kernel_->lock_.Acquire();
299       raw_waitables[i]->kernel_->lock_.Release();
300       signaled_index = i;
301     }
302   }
303 
304   return signaled_index;
305 }
306 
307 // -----------------------------------------------------------------------------
308 // If return value == count:
309 //   The locks of the WaitableEvents have been taken in order and the Waiter has
310 //   been enqueued in the wait-list of each. None of the WaitableEvents are
311 //   currently signaled
312 // else:
313 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
314 //   in any of them and the return value is the index of the WaitableEvent which
315 //   was signaled with the lowest input index from the original WaitMany call.
316 // -----------------------------------------------------------------------------
317 // static
318 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)319 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
320                                   size_t count,
321                                   Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
322   size_t winner = count;
323   size_t winner_index = count;
324   for (size_t i = 0; i < count; ++i) {
325     auto& kernel = waitables[i].first->kernel_;
326     kernel->lock_.Acquire();
327     if (kernel->signaled_ && waitables[i].second < winner) {
328       winner = waitables[i].second;
329       winner_index = i;
330     }
331   }
332 
333   // No events signaled. All locks acquired. Enqueue the Waiter on all of them
334   // and return.
335   if (winner == count) {
336     for (size_t i = 0; i < count; ++i)
337       waitables[i].first->Enqueue(waiter);
338     return count;
339   }
340 
341   // Unlock in reverse order and possibly clear the chosen winner's signal
342   // before returning its index.
343   for (auto* w = waitables + count - 1; w >= waitables; --w) {
344     auto& kernel = w->first->kernel_;
345     if (w->second == winner) {
346       if (!kernel->manual_reset_)
347         kernel->signaled_ = false;
348     }
349     kernel->lock_.Release();
350   }
351 
352   return winner_index;
353 }
354 
355 // -----------------------------------------------------------------------------
356 
357 
358 // -----------------------------------------------------------------------------
359 // Private functions...
360 
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)361 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
362     ResetPolicy reset_policy,
363     InitialState initial_state)
364     : manual_reset_(reset_policy == ResetPolicy::MANUAL),
365       signaled_(initial_state == InitialState::SIGNALED) {}
366 
367 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
368 
369 // -----------------------------------------------------------------------------
370 // Wake all waiting waiters. Called with lock held.
371 // -----------------------------------------------------------------------------
SignalAll()372 bool WaitableEvent::SignalAll() {
373   bool signaled_at_least_one = false;
374 
375   for (Waiter* i : kernel_->waiters_) {
376     if (i->Fire(this))
377       signaled_at_least_one = true;
378   }
379 
380   kernel_->waiters_.clear();
381   return signaled_at_least_one;
382 }
383 
384 // ---------------------------------------------------------------------------
385 // Try to wake a single waiter. Return true if one was woken. Called with lock
386 // held.
387 // ---------------------------------------------------------------------------
SignalOne()388 bool WaitableEvent::SignalOne() {
389   for (;;) {
390     if (kernel_->waiters_.empty())
391       return false;
392 
393     const bool r = (*kernel_->waiters_.begin())->Fire(this);
394     kernel_->waiters_.pop_front();
395     if (r)
396       return true;
397   }
398 }
399 
400 // -----------------------------------------------------------------------------
401 // Add a waiter to the list of those waiting. Called with lock held.
402 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)403 void WaitableEvent::Enqueue(Waiter* waiter) {
404   kernel_->waiters_.push_back(waiter);
405 }
406 
407 // -----------------------------------------------------------------------------
408 // Remove a waiter from the list of those waiting. Return true if the waiter was
409 // actually removed. Called with lock held.
410 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)411 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
412   for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
413     if (*i == waiter && (*i)->Compare(tag)) {
414       waiters_.erase(i);
415       return true;
416     }
417   }
418 
419   return false;
420 }
421 
422 // -----------------------------------------------------------------------------
423 
424 }  // namespace base
425