xref: /aosp_15_r20/external/cronet/base/numerics/safe_conversions.h (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2014 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
6 #define BASE_NUMERICS_SAFE_CONVERSIONS_H_
7 
8 #include <stddef.h>
9 
10 #include <cmath>
11 #include <concepts>
12 #include <limits>
13 #include <type_traits>
14 
15 #include "base/numerics/safe_conversions_impl.h"
16 
17 #if defined(__ARMEL__) && !defined(__native_client__)
18 #include "base/numerics/safe_conversions_arm_impl.h"
19 #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
20 #else
21 #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
22 #endif
23 
24 namespace base {
25 namespace internal {
26 
27 #if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
28 template <typename Dst, typename Src>
29 struct SaturateFastAsmOp {
30   static constexpr bool is_supported = false;
DoSaturateFastAsmOp31   static constexpr Dst Do(Src) {
32     // Force a compile failure if instantiated.
33     return CheckOnFailure::template HandleFailure<Dst>();
34   }
35 };
36 #endif  // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
37 #undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
38 
39 // The following special case a few specific integer conversions where we can
40 // eke out better performance than range checking.
41 template <typename Dst, typename Src>
42 struct IsValueInRangeFastOp {
43   static constexpr bool is_supported = false;
DoIsValueInRangeFastOp44   static constexpr bool Do(Src value) {
45     // Force a compile failure if instantiated.
46     return CheckOnFailure::template HandleFailure<bool>();
47   }
48 };
49 
50 // Signed to signed range comparison.
51 template <typename Dst, typename Src>
52   requires(std::signed_integral<Dst> && std::signed_integral<Src> &&
53            !IsTypeInRangeForNumericType<Dst, Src>::value)
54 struct IsValueInRangeFastOp<Dst, Src> {
55   static constexpr bool is_supported = true;
56 
57   static constexpr bool Do(Src value) {
58     // Just downcast to the smaller type, sign extend it back to the original
59     // type, and then see if it matches the original value.
60     return value == static_cast<Dst>(value);
61   }
62 };
63 
64 // Signed to unsigned range comparison.
65 template <typename Dst, typename Src>
66   requires(std::unsigned_integral<Dst> && std::signed_integral<Src> &&
67            !IsTypeInRangeForNumericType<Dst, Src>::value)
68 struct IsValueInRangeFastOp<Dst, Src> {
69   static constexpr bool is_supported = true;
70 
71   static constexpr bool Do(Src value) {
72     // We cast a signed as unsigned to overflow negative values to the top,
73     // then compare against whichever maximum is smaller, as our upper bound.
74     return as_unsigned(value) <= as_unsigned(CommonMax<Src, Dst>());
75   }
76 };
77 
78 // Convenience function that returns true if the supplied value is in range
79 // for the destination type.
80 template <typename Dst, typename Src>
81 constexpr bool IsValueInRangeForNumericType(Src value) {
82   using SrcType = typename internal::UnderlyingType<Src>::type;
83   return internal::IsValueInRangeFastOp<Dst, SrcType>::is_supported
84              ? internal::IsValueInRangeFastOp<Dst, SrcType>::Do(
85                    static_cast<SrcType>(value))
86              : internal::DstRangeRelationToSrcRange<Dst>(
87                    static_cast<SrcType>(value))
88                    .IsValid();
89 }
90 
91 // checked_cast<> is analogous to static_cast<> for numeric types,
92 // except that it CHECKs that the specified numeric conversion will not
93 // overflow or underflow. NaN source will always trigger a CHECK.
94 template <typename Dst,
95           class CheckHandler = internal::CheckOnFailure,
96           typename Src>
97 constexpr Dst checked_cast(Src value) {
98   // This throws a compile-time error on evaluating the constexpr if it can be
99   // determined at compile-time as failing, otherwise it will CHECK at runtime.
100   using SrcType = typename internal::UnderlyingType<Src>::type;
101   return BASE_NUMERICS_LIKELY((IsValueInRangeForNumericType<Dst>(value)))
102              ? static_cast<Dst>(static_cast<SrcType>(value))
103              : CheckHandler::template HandleFailure<Dst>();
104 }
105 
106 // Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
107 // You may provide your own limits (e.g. to saturated_cast) so long as you
108 // implement all of the static constexpr member functions in the class below.
109 template <typename T>
110 struct SaturationDefaultLimits : public std::numeric_limits<T> {
111   static constexpr T NaN() {
112     if constexpr (std::numeric_limits<T>::has_quiet_NaN) {
113       return std::numeric_limits<T>::quiet_NaN();
114     } else {
115       return T();
116     }
117   }
118   using std::numeric_limits<T>::max;
119   static constexpr T Overflow() {
120     if constexpr (std::numeric_limits<T>::has_infinity) {
121       return std::numeric_limits<T>::infinity();
122     } else {
123       return std::numeric_limits<T>::max();
124     }
125   }
126   using std::numeric_limits<T>::lowest;
127   static constexpr T Underflow() {
128     if constexpr (std::numeric_limits<T>::has_infinity) {
129       return std::numeric_limits<T>::infinity() * -1;
130     } else {
131       return std::numeric_limits<T>::lowest();
132     }
133   }
134 };
135 
136 template <typename Dst, template <typename> class S, typename Src>
137 constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
138   // For some reason clang generates much better code when the branch is
139   // structured exactly this way, rather than a sequence of checks.
140   return !constraint.IsOverflowFlagSet()
141              ? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
142                                                  : S<Dst>::Underflow())
143              // Skip this check for integral Src, which cannot be NaN.
144              : (std::is_integral_v<Src> || !constraint.IsUnderflowFlagSet()
145                     ? S<Dst>::Overflow()
146                     : S<Dst>::NaN());
147 }
148 
149 // We can reduce the number of conditions and get slightly better performance
150 // for normal signed and unsigned integer ranges. And in the specific case of
151 // Arm, we can use the optimized saturation instructions.
152 template <typename Dst, typename Src>
153 struct SaturateFastOp {
154   static constexpr bool is_supported = false;
155   static constexpr Dst Do(Src value) {
156     // Force a compile failure if instantiated.
157     return CheckOnFailure::template HandleFailure<Dst>();
158   }
159 };
160 
161 template <typename Dst, typename Src>
162   requires(std::integral<Src> && std::integral<Dst> &&
163            SaturateFastAsmOp<Dst, Src>::is_supported)
164 struct SaturateFastOp<Dst, Src> {
165   static constexpr bool is_supported = true;
166   static constexpr Dst Do(Src value) {
167     return SaturateFastAsmOp<Dst, Src>::Do(value);
168   }
169 };
170 
171 template <typename Dst, typename Src>
172   requires(std::integral<Src> && std::integral<Dst> &&
173            !SaturateFastAsmOp<Dst, Src>::is_supported)
174 struct SaturateFastOp<Dst, Src> {
175   static constexpr bool is_supported = true;
176   static constexpr Dst Do(Src value) {
177     // The exact order of the following is structured to hit the correct
178     // optimization heuristics across compilers. Do not change without
179     // checking the emitted code.
180     const Dst saturated = CommonMaxOrMin<Dst, Src>(
181         IsMaxInRangeForNumericType<Dst, Src>() ||
182         (!IsMinInRangeForNumericType<Dst, Src>() && IsValueNegative(value)));
183     return BASE_NUMERICS_LIKELY(IsValueInRangeForNumericType<Dst>(value))
184                ? static_cast<Dst>(value)
185                : saturated;
186   }
187 };
188 
189 // saturated_cast<> is analogous to static_cast<> for numeric types, except
190 // that the specified numeric conversion will saturate by default rather than
191 // overflow or underflow, and NaN assignment to an integral will return 0.
192 // All boundary condition behaviors can be overridden with a custom handler.
193 template <typename Dst,
194           template <typename> class SaturationHandler = SaturationDefaultLimits,
195           typename Src>
196 constexpr Dst saturated_cast(Src value) {
197   using SrcType = typename UnderlyingType<Src>::type;
198   return !IsConstantEvaluated() && SaturateFastOp<Dst, SrcType>::is_supported &&
199                  std::is_same_v<SaturationHandler<Dst>,
200                                 SaturationDefaultLimits<Dst>>
201              ? SaturateFastOp<Dst, SrcType>::Do(static_cast<SrcType>(value))
202              : saturated_cast_impl<Dst, SaturationHandler, SrcType>(
203                    static_cast<SrcType>(value),
204                    DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(
205                        static_cast<SrcType>(value)));
206 }
207 
208 // strict_cast<> is analogous to static_cast<> for numeric types, except that
209 // it will cause a compile failure if the destination type is not large enough
210 // to contain any value in the source type. It performs no runtime checking.
211 template <typename Dst, typename Src>
212 constexpr Dst strict_cast(Src value) {
213   using SrcType = typename UnderlyingType<Src>::type;
214   static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric.");
215   static_assert(std::is_arithmetic_v<Dst>, "Result must be numeric.");
216 
217   // If you got here from a compiler error, it's because you tried to assign
218   // from a source type to a destination type that has insufficient range.
219   // The solution may be to change the destination type you're assigning to,
220   // and use one large enough to represent the source.
221   // Alternatively, you may be better served with the checked_cast<> or
222   // saturated_cast<> template functions for your particular use case.
223   static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value ==
224                     NUMERIC_RANGE_CONTAINED,
225                 "The source type is out of range for the destination type. "
226                 "Please see strict_cast<> comments for more information.");
227 
228   return static_cast<Dst>(static_cast<SrcType>(value));
229 }
230 
231 // Some wrappers to statically check that a type is in range.
232 template <typename Dst, typename Src>
233 struct IsNumericRangeContained {
234   static constexpr bool value = false;
235 };
236 
237 template <typename Dst, typename Src>
238   requires(ArithmeticOrUnderlyingEnum<Dst>::value &&
239            ArithmeticOrUnderlyingEnum<Src>::value)
240 struct IsNumericRangeContained<Dst, Src> {
241   static constexpr bool value =
242       StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
243       NUMERIC_RANGE_CONTAINED;
244 };
245 
246 // StrictNumeric implements compile time range checking between numeric types by
247 // wrapping assignment operations in a strict_cast. This class is intended to be
248 // used for function arguments and return types, to ensure the destination type
249 // can always contain the source type. This is essentially the same as enforcing
250 // -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
251 // incrementally at API boundaries, making it easier to convert code so that it
252 // compiles cleanly with truncation warnings enabled.
253 // This template should introduce no runtime overhead, but it also provides no
254 // runtime checking of any of the associated mathematical operations. Use
255 // CheckedNumeric for runtime range checks of the actual value being assigned.
256 template <typename T>
257 class StrictNumeric {
258  public:
259   using type = T;
260 
261   constexpr StrictNumeric() : value_(0) {}
262 
263   // Copy constructor.
264   template <typename Src>
265   constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
266       : value_(strict_cast<T>(rhs.value_)) {}
267 
268   // Strictly speaking, this is not necessary, but declaring this allows class
269   // template argument deduction to be used so that it is possible to simply
270   // write `StrictNumeric(777)` instead of `StrictNumeric<int>(777)`.
271   // NOLINTNEXTLINE(google-explicit-constructor)
272   constexpr StrictNumeric(T value) : value_(value) {}
273 
274   // This is not an explicit constructor because we implicitly upgrade regular
275   // numerics to StrictNumerics to make them easier to use.
276   template <typename Src>
277   // NOLINTNEXTLINE(google-explicit-constructor)
278   constexpr StrictNumeric(Src value) : value_(strict_cast<T>(value)) {}
279 
280   // If you got here from a compiler error, it's because you tried to assign
281   // from a source type to a destination type that has insufficient range.
282   // The solution may be to change the destination type you're assigning to,
283   // and use one large enough to represent the source.
284   // If you're assigning from a CheckedNumeric<> class, you may be able to use
285   // the AssignIfValid() member function, specify a narrower destination type to
286   // the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
287   // of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
288   // If you've encountered an _ambiguous overload_ you can use a static_cast<>
289   // to explicitly cast the result to the destination type.
290   // If none of that works, you may be better served with the checked_cast<> or
291   // saturated_cast<> template functions for your particular use case.
292   template <typename Dst>
293     requires(IsNumericRangeContained<Dst, T>::value)
294   constexpr operator Dst() const {
295     return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_);
296   }
297 
298  private:
299   const T value_;
300 };
301 
302 // Convenience wrapper returns a StrictNumeric from the provided arithmetic
303 // type.
304 template <typename T>
305 constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
306     const T value) {
307   return value;
308 }
309 
310 #define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP)          \
311   template <typename L, typename R>                                 \
312     requires(internal::Is##CLASS##Op<L, R>::value)                  \
313   constexpr bool operator OP(const L lhs, const R rhs) {            \
314     return SafeCompare<NAME, typename UnderlyingType<L>::type,      \
315                        typename UnderlyingType<R>::type>(lhs, rhs); \
316   }
317 
318 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <)
319 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=)
320 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >)
321 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=)
322 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==)
323 BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=)
324 
325 }  // namespace internal
326 
327 using internal::as_signed;
328 using internal::as_unsigned;
329 using internal::checked_cast;
330 using internal::IsTypeInRangeForNumericType;
331 using internal::IsValueInRangeForNumericType;
332 using internal::IsValueNegative;
333 using internal::MakeStrictNum;
334 using internal::SafeUnsignedAbs;
335 using internal::saturated_cast;
336 using internal::strict_cast;
337 using internal::StrictNumeric;
338 
339 // Explicitly make a shorter size_t alias for convenience.
340 using SizeT = StrictNumeric<size_t>;
341 
342 // floating -> integral conversions that saturate and thus can actually return
343 // an integral type.
344 //
345 // Generally, what you want is saturated_cast<Dst>(std::nearbyint(x)), which
346 // rounds correctly according to IEEE-754 (round to nearest, ties go to nearest
347 // even number; this avoids bias). If your code is performance-critical
348 // and you are sure that you will never overflow, you can use std::lrint()
349 // or std::llrint(), which return a long or long long directly.
350 //
351 // Below are convenience functions around similar patterns, except that
352 // they round in nonstandard directions and will generally be slower.
353 
354 // Rounds towards negative infinity (i.e., down).
355 template <typename Dst = int, typename Src>
356   requires(std::integral<Dst> && std::floating_point<Src>)
357 Dst ClampFloor(Src value) {
358   return saturated_cast<Dst>(std::floor(value));
359 }
360 
361 // Rounds towards positive infinity (i.e., up).
362 template <typename Dst = int, typename Src>
363   requires(std::integral<Dst> && std::floating_point<Src>)
364 Dst ClampCeil(Src value) {
365   return saturated_cast<Dst>(std::ceil(value));
366 }
367 
368 // Rounds towards nearest integer, with ties away from zero.
369 // This means that 0.5 will be rounded to 1 and 1.5 will be rounded to 2.
370 // Similarly, -0.5 will be rounded to -1 and -1.5 will be rounded to -2.
371 //
372 // This is normally not what you want accuracy-wise (it introduces a small bias
373 // away from zero), and it is not the fastest option, but it is frequently what
374 // existing code expects. Compare with saturated_cast<Dst>(std::nearbyint(x))
375 // or std::lrint(x), which would round 0.5 and -0.5 to 0 but 1.5 to 2 and
376 // -1.5 to -2.
377 template <typename Dst = int, typename Src>
378   requires(std::integral<Dst> && std::floating_point<Src>)
379 Dst ClampRound(Src value) {
380   const Src rounded = std::round(value);
381   return saturated_cast<Dst>(rounded);
382 }
383 
384 }  // namespace base
385 
386 #endif  // BASE_NUMERICS_SAFE_CONVERSIONS_H_
387