1 // Copyright 2011 The Chromium Authors 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 // 5 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 6 // PLEASE READ: Do you really need a singleton? If possible, use a 7 // function-local static of type base::NoDestructor<T> instead: 8 // 9 // Factory& Factory::GetInstance() { 10 // static base::NoDestructor<Factory> instance; 11 // return *instance; 12 // } 13 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 14 // 15 // Singletons make it hard to determine the lifetime of an object, which can 16 // lead to buggy code and spurious crashes. 17 // 18 // Instead of adding another singleton into the mix, try to identify either: 19 // a) An existing singleton that can manage your object's lifetime 20 // b) Locations where you can deterministically create the object and pass 21 // into other objects 22 // 23 // If you absolutely need a singleton, please keep them as trivial as possible 24 // and ideally a leaf dependency. Singletons get problematic when they attempt 25 // to do too much in their destructor or have circular dependencies. 26 27 #ifndef BASE_MEMORY_SINGLETON_H_ 28 #define BASE_MEMORY_SINGLETON_H_ 29 30 #include <atomic> 31 32 #include "base/dcheck_is_on.h" 33 #include "base/lazy_instance_helpers.h" 34 #include "base/threading/thread_restrictions.h" 35 36 namespace base { 37 38 // Default traits for Singleton<Type>. Calls operator new and operator delete on 39 // the object. Registers automatic deletion at process exit. 40 // Overload if you need arguments or another memory allocation function. 41 template<typename Type> 42 struct DefaultSingletonTraits { 43 // Allocates the object. NewDefaultSingletonTraits44 static Type* New() { 45 // The parenthesis is very important here; it forces POD type 46 // initialization. 47 return new Type(); 48 } 49 50 // Destroys the object. DeleteDefaultSingletonTraits51 static void Delete(Type* x) { 52 delete x; 53 } 54 55 // Set to true to automatically register deletion of the object on process 56 // exit. See below for the required call that makes this happen. 57 static const bool kRegisterAtExit = true; 58 59 #if DCHECK_IS_ON() 60 // Set to false to disallow access on a non-joinable thread. This is 61 // different from kRegisterAtExit because StaticMemorySingletonTraits allows 62 // access on non-joinable threads, and gracefully handles this. 63 static const bool kAllowedToAccessOnNonjoinableThread = false; 64 #endif 65 }; 66 67 68 // Alternate traits for use with the Singleton<Type>. Identical to 69 // DefaultSingletonTraits except that the Singleton will not be cleaned up 70 // at exit. 71 template<typename Type> 72 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { 73 static const bool kRegisterAtExit = false; 74 #if DCHECK_IS_ON() 75 static const bool kAllowedToAccessOnNonjoinableThread = true; 76 #endif 77 }; 78 79 // Alternate traits for use with the Singleton<Type>. Allocates memory 80 // for the singleton instance from a static buffer. The singleton will 81 // be cleaned up at exit, but can't be revived after destruction unless 82 // the ResurrectForTesting() method is called. 83 // 84 // This is useful for a certain category of things, notably logging and 85 // tracing, where the singleton instance is of a type carefully constructed to 86 // be safe to access post-destruction. 87 // In logging and tracing you'll typically get stray calls at odd times, like 88 // during static destruction, thread teardown and the like, and there's a 89 // termination race on the heap-based singleton - e.g. if one thread calls 90 // get(), but then another thread initiates AtExit processing, the first thread 91 // may call into an object residing in unallocated memory. If the instance is 92 // allocated from the data segment, then this is survivable. 93 // 94 // The destructor is to deallocate system resources, in this case to unregister 95 // a callback the system will invoke when logging levels change. Note that 96 // this is also used in e.g. Chrome Frame, where you have to allow for the 97 // possibility of loading briefly into someone else's process space, and 98 // so leaking is not an option, as that would sabotage the state of your host 99 // process once you've unloaded. 100 template <typename Type> 101 struct StaticMemorySingletonTraits { 102 // WARNING: User has to support a New() which returns null. NewStaticMemorySingletonTraits103 static Type* New() { 104 // Only constructs once and returns pointer; otherwise returns null. 105 if (dead_.exchange(true, std::memory_order_relaxed)) 106 return nullptr; 107 108 return new (buffer_) Type(); 109 } 110 DeleteStaticMemorySingletonTraits111 static void Delete(Type* p) { 112 if (p) 113 p->Type::~Type(); 114 } 115 116 static const bool kRegisterAtExit = true; 117 118 #if DCHECK_IS_ON() 119 static const bool kAllowedToAccessOnNonjoinableThread = true; 120 #endif 121 ResurrectForTestingStaticMemorySingletonTraits122 static void ResurrectForTesting() { 123 dead_.store(false, std::memory_order_relaxed); 124 } 125 126 private: 127 alignas(Type) static char buffer_[sizeof(Type)]; 128 // Signal the object was already deleted, so it is not revived. 129 static std::atomic<bool> dead_; 130 }; 131 132 template <typename Type> 133 alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)]; 134 template <typename Type> 135 std::atomic<bool> StaticMemorySingletonTraits<Type>::dead_ = false; 136 137 // The Singleton<Type, Traits, DifferentiatingType> class manages a single 138 // instance of Type which will be created on first use and will be destroyed at 139 // normal process exit). The Trait::Delete function will not be called on 140 // abnormal process exit. 141 // 142 // DifferentiatingType is used as a key to differentiate two different 143 // singletons having the same memory allocation functions but serving a 144 // different purpose. This is mainly used for Locks serving different purposes. 145 // 146 // Example usage: 147 // 148 // In your header: 149 // namespace base { 150 // template <typename T> 151 // struct DefaultSingletonTraits; 152 // } 153 // class FooClass { 154 // public: 155 // static FooClass* GetInstance(); <-- See comment below on this. 156 // 157 // FooClass(const FooClass&) = delete; 158 // FooClass& operator=(const FooClass&) = delete; 159 // 160 // void Bar() { ... } 161 // 162 // private: 163 // FooClass() { ... } 164 // friend struct base::DefaultSingletonTraits<FooClass>; 165 // }; 166 // 167 // In your source file: 168 // #include "base/memory/singleton.h" 169 // FooClass* FooClass::GetInstance() { 170 // return base::Singleton<FooClass>::get(); 171 // } 172 // 173 // Or for leaky singletons: 174 // #include "base/memory/singleton.h" 175 // FooClass* FooClass::GetInstance() { 176 // return base::Singleton< 177 // FooClass, base::LeakySingletonTraits<FooClass>>::get(); 178 // } 179 // 180 // And to call methods on FooClass: 181 // FooClass::GetInstance()->Bar(); 182 // 183 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance 184 // and it is important that FooClass::GetInstance() is not inlined in the 185 // header. This makes sure that when source files from multiple targets include 186 // this header they don't end up with different copies of the inlined code 187 // creating multiple copies of the singleton. 188 // 189 // Singleton<> has no non-static members and doesn't need to actually be 190 // instantiated. 191 // 192 // This class is itself thread-safe. The underlying Type must of course be 193 // thread-safe if you want to use it concurrently. Two parameters may be tuned 194 // depending on the user's requirements. 195 // 196 // Glossary: 197 // RAE = kRegisterAtExit 198 // 199 // On every platform, if Traits::RAE is true, the singleton will be destroyed at 200 // process exit. More precisely it uses AtExitManager which requires an 201 // object of this type to be instantiated. AtExitManager mimics the semantics 202 // of atexit() such as LIFO order but under Windows is safer to call. For more 203 // information see at_exit.h. 204 // 205 // If Traits::RAE is false, the singleton will not be freed at process exit, 206 // thus the singleton will be leaked if it is ever accessed. Traits::RAE 207 // shouldn't be false unless absolutely necessary. Remember that the heap where 208 // the object is allocated may be destroyed by the CRT anyway. 209 // 210 // Caveats: 211 // (a) Every call to get(), operator->() and operator*() incurs some overhead 212 // (16ns on my P4/2.8GHz) to check whether the object has already been 213 // initialized. You may wish to cache the result of get(); it will not 214 // change. 215 // 216 // (b) Your factory function must never throw an exception. This class is not 217 // exception-safe. 218 // 219 220 template <typename Type, 221 typename Traits = DefaultSingletonTraits<Type>, 222 typename DifferentiatingType = Type> 223 class Singleton { 224 private: 225 // A class T using the Singleton<T> pattern should declare a GetInstance() 226 // method and call Singleton::get() from within that. T may also declare a 227 // GetInstanceIfExists() method to invoke Singleton::GetIfExists(). 228 friend Type; 229 230 // This class is safe to be constructed and copy-constructed since it has no 231 // member. 232 233 // Returns a pointer to the one true instance of the class. get()234 static Type* get() { 235 #if DCHECK_IS_ON() 236 if (!Traits::kAllowedToAccessOnNonjoinableThread) 237 internal::AssertSingletonAllowed(); 238 #endif 239 240 return subtle::GetOrCreateLazyPointer( 241 instance_, &CreatorFunc, nullptr, 242 Traits::kRegisterAtExit ? OnExit : nullptr, nullptr); 243 } 244 245 // Returns the same result as get() if the instance exists but doesn't 246 // construct it (and returns null) if it doesn't. GetIfExists()247 static Type* GetIfExists() { 248 #if DCHECK_IS_ON() 249 if (!Traits::kAllowedToAccessOnNonjoinableThread) 250 internal::AssertSingletonAllowed(); 251 #endif 252 253 if (!instance_.load(std::memory_order_relaxed)) 254 return nullptr; 255 256 // Need to invoke get() nonetheless as some Traits return null after 257 // destruction (even though |instance_| still holds garbage). 258 return get(); 259 } 260 261 // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use 262 // outside of that use case. CreatorFunc(void *)263 static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); } 264 265 // Adapter function for use with AtExit(). This should be called single 266 // threaded, so don't use atomic operations. 267 // Calling OnExit while singleton is in use by other threads is a mistake. OnExit(void *)268 static void OnExit(void* /*unused*/) { 269 // AtExit should only ever be register after the singleton instance was 270 // created. We should only ever get here with a valid instance_ pointer. 271 Traits::Delete( 272 reinterpret_cast<Type*>(instance_.load(std::memory_order_relaxed))); 273 instance_.store(0, std::memory_order_relaxed); 274 } 275 static std::atomic<uintptr_t> instance_; 276 }; 277 278 template <typename Type, typename Traits, typename DifferentiatingType> 279 std::atomic<uintptr_t> Singleton<Type, Traits, DifferentiatingType>::instance_ = 280 0; 281 282 } // namespace base 283 284 #endif // BASE_MEMORY_SINGLETON_H_ 285