1 // Copyright 2017 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef BASE_CONTAINERS_CIRCULAR_DEQUE_H_
6 #define BASE_CONTAINERS_CIRCULAR_DEQUE_H_
7
8 #include <algorithm>
9 #include <cstddef>
10 #include <iterator>
11 #include <type_traits>
12 #include <utility>
13
14 #include "base/check.h"
15 #include "base/containers/vector_buffer.h"
16 #include "base/dcheck_is_on.h"
17 #include "base/memory/raw_ptr_exclusion.h"
18 #include "base/ranges/algorithm.h"
19 #include "base/template_util.h"
20
21 #if DCHECK_IS_ON()
22 #include <ostream>
23 #endif
24
25 // base::circular_deque is similar to std::deque. Unlike std::deque, the
26 // storage is provided in a flat circular buffer conceptually similar to a
27 // vector. The beginning and end will wrap around as necessary so that
28 // pushes and pops will be constant time as long as a capacity expansion is
29 // not required.
30 //
31 // The API should be identical to std::deque with the following differences:
32 //
33 // - ITERATORS ARE NOT STABLE. Mutating the container will invalidate all
34 // iterators.
35 //
36 // - Insertions may resize the vector and so are not constant time (std::deque
37 // guarantees constant time for insertions at the ends).
38 //
39 // - Container-wide comparisons are not implemented. If you want to compare
40 // two containers, use an algorithm so the expensive iteration is explicit.
41 //
42 // If you want a similar container with only a queue API, use base::queue in
43 // base/containers/queue.h.
44 //
45 // Constructors:
46 // circular_deque();
47 // circular_deque(size_t count);
48 // circular_deque(size_t count, const T& value);
49 // circular_deque(InputIterator first, InputIterator last);
50 // circular_deque(const circular_deque&);
51 // circular_deque(circular_deque&&);
52 // circular_deque(std::initializer_list<value_type>);
53 //
54 // Assignment functions:
55 // circular_deque& operator=(const circular_deque&);
56 // circular_deque& operator=(circular_deque&&);
57 // circular_deque& operator=(std::initializer_list<T>);
58 // void assign(size_t count, const T& value);
59 // void assign(InputIterator first, InputIterator last);
60 // void assign(std::initializer_list<T> value);
61 //
62 // Random accessors:
63 // T& at(size_t);
64 // const T& at(size_t) const;
65 // T& operator[](size_t);
66 // const T& operator[](size_t) const;
67 //
68 // End accessors:
69 // T& front();
70 // const T& front() const;
71 // T& back();
72 // const T& back() const;
73 //
74 // Iterator functions:
75 // iterator begin();
76 // const_iterator begin() const;
77 // const_iterator cbegin() const;
78 // iterator end();
79 // const_iterator end() const;
80 // const_iterator cend() const;
81 // reverse_iterator rbegin();
82 // const_reverse_iterator rbegin() const;
83 // const_reverse_iterator crbegin() const;
84 // reverse_iterator rend();
85 // const_reverse_iterator rend() const;
86 // const_reverse_iterator crend() const;
87 //
88 // Memory management:
89 // void reserve(size_t); // SEE IMPLEMENTATION FOR SOME GOTCHAS.
90 // size_t capacity() const;
91 // void shrink_to_fit();
92 //
93 // Size management:
94 // void clear();
95 // bool empty() const;
96 // size_t size() const;
97 // void resize(size_t);
98 // void resize(size_t count, const T& value);
99 //
100 // Positional insert and erase:
101 // void insert(const_iterator pos, size_type count, const T& value);
102 // void insert(const_iterator pos,
103 // InputIterator first, InputIterator last);
104 // iterator insert(const_iterator pos, const T& value);
105 // iterator insert(const_iterator pos, T&& value);
106 // iterator emplace(const_iterator pos, Args&&... args);
107 // iterator erase(const_iterator pos);
108 // iterator erase(const_iterator first, const_iterator last);
109 //
110 // End insert and erase:
111 // void push_front(const T&);
112 // void push_front(T&&);
113 // void push_back(const T&);
114 // void push_back(T&&);
115 // T& emplace_front(Args&&...);
116 // T& emplace_back(Args&&...);
117 // void pop_front();
118 // void pop_back();
119 //
120 // General:
121 // void swap(circular_deque&);
122
123 namespace base {
124
125 template <class T>
126 class circular_deque;
127
128 namespace internal {
129
130 // Start allocating nonempty buffers with this many entries. This is the
131 // external capacity so the internal buffer will be one larger (= 4) which is
132 // more even for the allocator. See the descriptions of internal vs. external
133 // capacity on the comment above the buffer_ variable below.
134 constexpr size_t kCircularBufferInitialCapacity = 3;
135
136 template <typename T>
137 class circular_deque_const_iterator {
138 public:
139 using difference_type = std::ptrdiff_t;
140 using value_type = T;
141 using pointer = const T*;
142 using reference = const T&;
143 using iterator_category = std::random_access_iterator_tag;
144
circular_deque_const_iterator()145 circular_deque_const_iterator() : parent_deque_(nullptr), index_(0) {
146 #if DCHECK_IS_ON()
147 created_generation_ = 0;
148 #endif // DCHECK_IS_ON()
149 }
150
151 // Dereferencing.
152 const T& operator*() const {
153 CheckUnstableUsage();
154 parent_deque_->CheckValidIndex(index_);
155 return parent_deque_->buffer_[index_];
156 }
157 const T* operator->() const {
158 CheckUnstableUsage();
159 parent_deque_->CheckValidIndex(index_);
160 return &parent_deque_->buffer_[index_];
161 }
162 const value_type& operator[](difference_type i) const { return *(*this + i); }
163
164 // Increment and decrement.
165 circular_deque_const_iterator& operator++() {
166 Increment();
167 return *this;
168 }
169 circular_deque_const_iterator operator++(int) {
170 circular_deque_const_iterator ret = *this;
171 Increment();
172 return ret;
173 }
174 circular_deque_const_iterator& operator--() {
175 Decrement();
176 return *this;
177 }
178 circular_deque_const_iterator operator--(int) {
179 circular_deque_const_iterator ret = *this;
180 Decrement();
181 return ret;
182 }
183
184 // Random access mutation.
185 friend circular_deque_const_iterator operator+(
186 const circular_deque_const_iterator& iter,
187 difference_type offset) {
188 circular_deque_const_iterator ret = iter;
189 ret.Add(offset);
190 return ret;
191 }
192 circular_deque_const_iterator& operator+=(difference_type offset) {
193 Add(offset);
194 return *this;
195 }
196 friend circular_deque_const_iterator operator-(
197 const circular_deque_const_iterator& iter,
198 difference_type offset) {
199 circular_deque_const_iterator ret = iter;
200 ret.Add(-offset);
201 return ret;
202 }
203 circular_deque_const_iterator& operator-=(difference_type offset) {
204 Add(-offset);
205 return *this;
206 }
207
208 friend std::ptrdiff_t operator-(const circular_deque_const_iterator& lhs,
209 const circular_deque_const_iterator& rhs) {
210 lhs.CheckComparable(rhs);
211 return static_cast<std::ptrdiff_t>(lhs.OffsetFromBegin() -
212 rhs.OffsetFromBegin());
213 }
214
215 // Comparisons.
216 friend bool operator==(const circular_deque_const_iterator& lhs,
217 const circular_deque_const_iterator& rhs) {
218 lhs.CheckComparable(rhs);
219 return lhs.index_ == rhs.index_;
220 }
221 friend std::strong_ordering operator<=>(
222 const circular_deque_const_iterator& lhs,
223 const circular_deque_const_iterator& rhs) {
224 lhs.CheckComparable(rhs);
225 // The order is based on the position of the element in the circular_dequeue
226 // rather than `index_` at which the element is stored in the ring buffer.
227 return lhs.OffsetFromBegin() <=> rhs.OffsetFromBegin();
228 }
229
230 protected:
231 friend class circular_deque<T>;
232
circular_deque_const_iterator(const circular_deque<T> * parent,size_t index)233 circular_deque_const_iterator(const circular_deque<T>* parent, size_t index)
234 : parent_deque_(parent), index_(index) {
235 #if DCHECK_IS_ON()
236 created_generation_ = parent->generation_;
237 #endif // DCHECK_IS_ON()
238 }
239
240 // Returns the offset from the beginning index of the buffer to the current
241 // item.
OffsetFromBegin()242 size_t OffsetFromBegin() const {
243 if (index_ >= parent_deque_->begin_)
244 return index_ - parent_deque_->begin_; // On the same side as begin.
245 return parent_deque_->buffer_.capacity() - parent_deque_->begin_ + index_;
246 }
247
248 // Most uses will be ++ and -- so use a simplified implementation.
Increment()249 void Increment() {
250 CheckUnstableUsage();
251 parent_deque_->CheckValidIndex(index_);
252 index_++;
253 if (index_ == parent_deque_->buffer_.capacity())
254 index_ = 0;
255 }
Decrement()256 void Decrement() {
257 CheckUnstableUsage();
258 parent_deque_->CheckValidIndexOrEnd(index_);
259 if (index_ == 0)
260 index_ = parent_deque_->buffer_.capacity() - 1;
261 else
262 index_--;
263 }
Add(difference_type delta)264 void Add(difference_type delta) {
265 CheckUnstableUsage();
266 #if DCHECK_IS_ON()
267 if (delta <= 0)
268 parent_deque_->CheckValidIndexOrEnd(index_);
269 else
270 parent_deque_->CheckValidIndex(index_);
271 #endif
272 // It should be valid to add 0 to any iterator, even if the container is
273 // empty and the iterator points to end(). The modulo below will divide
274 // by 0 if the buffer capacity is empty, so it's important to check for
275 // this case explicitly.
276 if (delta == 0)
277 return;
278
279 difference_type new_offset = OffsetFromBegin() + delta;
280 DCHECK(new_offset >= 0 &&
281 new_offset <= static_cast<difference_type>(parent_deque_->size()));
282 index_ = (new_offset + parent_deque_->begin_) %
283 parent_deque_->buffer_.capacity();
284 }
285
286 #if DCHECK_IS_ON()
CheckUnstableUsage()287 void CheckUnstableUsage() const {
288 DCHECK(parent_deque_);
289 // Since circular_deque doesn't guarantee stability, any attempt to
290 // dereference this iterator after a mutation (i.e. the generation doesn't
291 // match the original) in the container is illegal.
292 DCHECK(created_generation_ == parent_deque_->generation_)
293 << "circular_deque iterator dereferenced after mutation.";
294 }
CheckComparable(const circular_deque_const_iterator & other)295 void CheckComparable(const circular_deque_const_iterator& other) const {
296 DCHECK(parent_deque_ == other.parent_deque_);
297 // Since circular_deque doesn't guarantee stability, two iterators that
298 // are compared must have been generated without mutating the container.
299 // If this fires, the container was mutated between generating the two
300 // iterators being compared.
301 DCHECK(created_generation_ == other.created_generation_);
302 }
303 #else
CheckUnstableUsage()304 inline void CheckUnstableUsage() const {}
CheckComparable(const circular_deque_const_iterator &)305 inline void CheckComparable(const circular_deque_const_iterator&) const {}
306 #endif // DCHECK_IS_ON()
307
308 // `parent_deque_` is not a raw_ptr<...> for performance reasons: Usually
309 // on-stack pointer, pointing back to the collection being iterated, owned by
310 // object that iterates over it. Additionally this is supported by the
311 // analysis of sampling profiler data and tab_search:top100:2020.
312 RAW_PTR_EXCLUSION const circular_deque<T>* parent_deque_;
313
314 size_t index_;
315
316 #if DCHECK_IS_ON()
317 // The generation of the parent deque when this iterator was created. The
318 // container will update the generation for every modification so we can
319 // test if the container was modified by comparing them.
320 uint64_t created_generation_;
321 #endif // DCHECK_IS_ON()
322 };
323
324 template <typename T>
325 class circular_deque_iterator : public circular_deque_const_iterator<T> {
326 using base = circular_deque_const_iterator<T>;
327
328 public:
329 friend class circular_deque<T>;
330
331 using difference_type = std::ptrdiff_t;
332 using value_type = T;
333 using pointer = T*;
334 using reference = T&;
335 using iterator_category = std::random_access_iterator_tag;
336
337 // Expose the base class' constructor.
circular_deque_iterator()338 circular_deque_iterator() : circular_deque_const_iterator<T>() {}
339
340 // Dereferencing.
341 T& operator*() const { return const_cast<T&>(base::operator*()); }
342 T* operator->() const { return const_cast<T*>(base::operator->()); }
343 T& operator[](difference_type i) {
344 return const_cast<T&>(base::operator[](i));
345 }
346
347 // Random access mutation.
348 friend circular_deque_iterator operator+(const circular_deque_iterator& iter,
349 difference_type offset) {
350 circular_deque_iterator ret = iter;
351 ret.Add(offset);
352 return ret;
353 }
354 circular_deque_iterator& operator+=(difference_type offset) {
355 base::Add(offset);
356 return *this;
357 }
358 friend circular_deque_iterator operator-(const circular_deque_iterator& iter,
359 difference_type offset) {
360 circular_deque_iterator ret = iter;
361 ret.Add(-offset);
362 return ret;
363 }
364 circular_deque_iterator& operator-=(difference_type offset) {
365 base::Add(-offset);
366 return *this;
367 }
368
369 // Increment and decrement.
370 circular_deque_iterator& operator++() {
371 base::Increment();
372 return *this;
373 }
374 circular_deque_iterator operator++(int) {
375 circular_deque_iterator ret = *this;
376 base::Increment();
377 return ret;
378 }
379 circular_deque_iterator& operator--() {
380 base::Decrement();
381 return *this;
382 }
383 circular_deque_iterator operator--(int) {
384 circular_deque_iterator ret = *this;
385 base::Decrement();
386 return ret;
387 }
388
389 private:
circular_deque_iterator(const circular_deque<T> * parent,size_t index)390 circular_deque_iterator(const circular_deque<T>* parent, size_t index)
391 : circular_deque_const_iterator<T>(parent, index) {}
392 };
393
394 } // namespace internal
395
396 template <typename T>
397 class circular_deque {
398 private:
399 using VectorBuffer = internal::VectorBuffer<T>;
400
401 public:
402 using value_type = T;
403 using size_type = std::size_t;
404 using difference_type = std::ptrdiff_t;
405 using reference = value_type&;
406 using const_reference = const value_type&;
407 using pointer = value_type*;
408 using const_pointer = const value_type*;
409
410 using iterator = internal::circular_deque_iterator<T>;
411 using const_iterator = internal::circular_deque_const_iterator<T>;
412 using reverse_iterator = std::reverse_iterator<iterator>;
413 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
414
415 // ---------------------------------------------------------------------------
416 // Constructor
417
418 constexpr circular_deque() = default;
419
420 // Constructs with |count| copies of |value| or default constructed version.
circular_deque(size_type count)421 explicit circular_deque(size_type count) { resize(count); }
circular_deque(size_type count,const T & value)422 circular_deque(size_type count, const T& value) { resize(count, value); }
423
424 // Range constructor.
425 template <class InputIterator>
circular_deque(InputIterator first,InputIterator last)426 circular_deque(InputIterator first, InputIterator last) {
427 assign(first, last);
428 }
429
430 // Copy/move.
circular_deque(const circular_deque & other)431 circular_deque(const circular_deque& other) : buffer_(other.size() + 1) {
432 assign(other.begin(), other.end());
433 }
circular_deque(circular_deque && other)434 circular_deque(circular_deque&& other) noexcept
435 : buffer_(std::move(other.buffer_)),
436 begin_(other.begin_),
437 end_(other.end_) {
438 other.begin_ = 0;
439 other.end_ = 0;
440 }
441
circular_deque(std::initializer_list<value_type> init)442 circular_deque(std::initializer_list<value_type> init) { assign(init); }
443
~circular_deque()444 ~circular_deque() { DestructRange(begin_, end_); }
445
446 // ---------------------------------------------------------------------------
447 // Assignments.
448 //
449 // All of these may invalidate iterators and references.
450
451 circular_deque& operator=(const circular_deque& other) {
452 if (&other == this)
453 return *this;
454
455 reserve(other.size());
456 assign(other.begin(), other.end());
457 return *this;
458 }
459 circular_deque& operator=(circular_deque&& other) noexcept {
460 if (&other == this)
461 return *this;
462
463 // We're about to overwrite the buffer, so don't free it in clear to
464 // avoid doing it twice.
465 ClearRetainCapacity();
466 buffer_ = std::move(other.buffer_);
467 begin_ = other.begin_;
468 end_ = other.end_;
469
470 other.begin_ = 0;
471 other.end_ = 0;
472
473 IncrementGeneration();
474 return *this;
475 }
476 circular_deque& operator=(std::initializer_list<value_type> ilist) {
477 reserve(ilist.size());
478 assign(std::begin(ilist), std::end(ilist));
479 return *this;
480 }
481
assign(size_type count,const value_type & value)482 void assign(size_type count, const value_type& value) {
483 ClearRetainCapacity();
484 reserve(count);
485 for (size_t i = 0; i < count; i++)
486 emplace_back(value);
487 IncrementGeneration();
488 }
489
490 // This variant should be enabled only when InputIterator is an iterator.
491 template <typename InputIterator>
492 std::enable_if_t<::base::internal::is_iterator<InputIterator>::value, void>
assign(InputIterator first,InputIterator last)493 assign(InputIterator first, InputIterator last) {
494 // Possible future enhancement, dispatch on iterator tag type. For forward
495 // iterators we can use std::difference to preallocate the space required
496 // and only do one copy.
497 ClearRetainCapacity();
498 for (; first != last; ++first)
499 emplace_back(*first);
500 IncrementGeneration();
501 }
502
assign(std::initializer_list<value_type> value)503 void assign(std::initializer_list<value_type> value) {
504 reserve(std::distance(value.begin(), value.end()));
505 assign(value.begin(), value.end());
506 }
507
508 // ---------------------------------------------------------------------------
509 // Accessors.
510 //
511 // Since this class assumes no exceptions, at() and operator[] are equivalent.
512
at(size_type i)513 const value_type& at(size_type i) const {
514 DCHECK(i < size());
515 size_t right_size = buffer_.capacity() - begin_;
516 if (begin_ <= end_ || i < right_size)
517 return buffer_[begin_ + i];
518 return buffer_[i - right_size];
519 }
at(size_type i)520 value_type& at(size_type i) {
521 return const_cast<value_type&>(std::as_const(*this).at(i));
522 }
523
524 value_type& operator[](size_type i) {
525 return const_cast<value_type&>(std::as_const(*this)[i]);
526 }
527
528 const value_type& operator[](size_type i) const { return at(i); }
529
front()530 value_type& front() {
531 DCHECK(!empty());
532 return buffer_[begin_];
533 }
front()534 const value_type& front() const {
535 DCHECK(!empty());
536 return buffer_[begin_];
537 }
538
back()539 value_type& back() {
540 DCHECK(!empty());
541 return *(--end());
542 }
back()543 const value_type& back() const {
544 DCHECK(!empty());
545 return *(--end());
546 }
547
548 // ---------------------------------------------------------------------------
549 // Iterators.
550
begin()551 iterator begin() { return iterator(this, begin_); }
begin()552 const_iterator begin() const { return const_iterator(this, begin_); }
cbegin()553 const_iterator cbegin() const { return const_iterator(this, begin_); }
554
end()555 iterator end() { return iterator(this, end_); }
end()556 const_iterator end() const { return const_iterator(this, end_); }
cend()557 const_iterator cend() const { return const_iterator(this, end_); }
558
rbegin()559 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()560 const_reverse_iterator rbegin() const {
561 return const_reverse_iterator(end());
562 }
crbegin()563 const_reverse_iterator crbegin() const { return rbegin(); }
564
rend()565 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()566 const_reverse_iterator rend() const {
567 return const_reverse_iterator(begin());
568 }
crend()569 const_reverse_iterator crend() const { return rend(); }
570
571 // ---------------------------------------------------------------------------
572 // Memory management.
573
574 // IMPORTANT NOTE ON reserve(...): This class implements auto-shrinking of
575 // the buffer when elements are deleted and there is "too much" wasted space.
576 // So if you call reserve() with a large size in anticipation of pushing many
577 // elements, but pop an element before the queue is full, the capacity you
578 // reserved may be lost.
579 //
580 // As a result, it's only worthwhile to call reserve() when you're adding
581 // many things at once with no intermediate operations.
reserve(size_type new_capacity)582 void reserve(size_type new_capacity) {
583 if (new_capacity > capacity())
584 SetCapacityTo(new_capacity);
585 }
586
capacity()587 size_type capacity() const {
588 // One item is wasted to indicate end().
589 return buffer_.capacity() == 0 ? 0 : buffer_.capacity() - 1;
590 }
591
shrink_to_fit()592 void shrink_to_fit() {
593 if (empty()) {
594 // Optimize empty case to really delete everything if there was
595 // something.
596 if (buffer_.capacity())
597 buffer_ = VectorBuffer();
598 } else {
599 SetCapacityTo(size());
600 }
601 }
602
603 // ---------------------------------------------------------------------------
604 // Size management.
605
606 // This will additionally reset the capacity() to 0.
clear()607 void clear() {
608 // This can't resize(0) because that requires a default constructor to
609 // compile, which not all contained classes may implement.
610 ClearRetainCapacity();
611 buffer_ = VectorBuffer();
612 }
613
empty()614 bool empty() const { return begin_ == end_; }
615
size()616 size_type size() const {
617 if (begin_ <= end_)
618 return end_ - begin_;
619 return buffer_.capacity() - begin_ + end_;
620 }
621
622 // When reducing size, the elements are deleted from the end. When expanding
623 // size, elements are added to the end with |value| or the default
624 // constructed version. Even when using resize(count) to shrink, a default
625 // constructor is required for the code to compile, even though it will not
626 // be called.
627 //
628 // There are two versions rather than using a default value to avoid
629 // creating a temporary when shrinking (when it's not needed). Plus if
630 // the default constructor is desired when expanding usually just calling it
631 // for each element is faster than making a default-constructed temporary and
632 // copying it.
resize(size_type count)633 void resize(size_type count) {
634 // SEE BELOW VERSION if you change this. The code is mostly the same.
635 if (count > size()) {
636 // This could be slighly more efficient but expanding a queue with
637 // identical elements is unusual and the extra computations of emplacing
638 // one-by-one will typically be small relative to calling the constructor
639 // for every item.
640 ExpandCapacityIfNecessary(count - size());
641 while (size() < count)
642 emplace_back();
643 } else if (count < size()) {
644 size_t new_end = (begin_ + count) % buffer_.capacity();
645 DestructRange(new_end, end_);
646 end_ = new_end;
647
648 ShrinkCapacityIfNecessary();
649 }
650 IncrementGeneration();
651 }
resize(size_type count,const value_type & value)652 void resize(size_type count, const value_type& value) {
653 // SEE ABOVE VERSION if you change this. The code is mostly the same.
654 if (count > size()) {
655 ExpandCapacityIfNecessary(count - size());
656 while (size() < count)
657 emplace_back(value);
658 } else if (count < size()) {
659 size_t new_end = (begin_ + count) % buffer_.capacity();
660 DestructRange(new_end, end_);
661 end_ = new_end;
662
663 ShrinkCapacityIfNecessary();
664 }
665 IncrementGeneration();
666 }
667
668 // ---------------------------------------------------------------------------
669 // Insert and erase.
670 //
671 // Insertion and deletion in the middle is O(n) and invalidates all existing
672 // iterators.
673 //
674 // The implementation of insert isn't optimized as much as it could be. If
675 // the insertion requires that the buffer be grown, it will first be grown
676 // and everything moved, and then the items will be inserted, potentially
677 // moving some items twice. This simplifies the implemntation substantially
678 // and means less generated templatized code. Since this is an uncommon
679 // operation for deques, and already relatively slow, it doesn't seem worth
680 // the benefit to optimize this.
681
insert(const_iterator pos,size_type count,const T & value)682 void insert(const_iterator pos, size_type count, const T& value) {
683 ValidateIterator(pos);
684
685 // Optimize insert at the beginning.
686 if (pos == begin()) {
687 ExpandCapacityIfNecessary(count);
688 for (size_t i = 0; i < count; i++)
689 push_front(value);
690 return;
691 }
692
693 iterator insert_cur(this, pos.index_);
694 iterator insert_end;
695 MakeRoomFor(count, &insert_cur, &insert_end);
696 while (insert_cur < insert_end) {
697 new (&buffer_[insert_cur.index_]) T(value);
698 ++insert_cur;
699 }
700
701 IncrementGeneration();
702 }
703
704 // This enable_if keeps this call from getting confused with the (pos, count,
705 // value) version when value is an integer.
706 template <class InputIterator>
707 std::enable_if_t<::base::internal::is_iterator<InputIterator>::value, void>
insert(const_iterator pos,InputIterator first,InputIterator last)708 insert(const_iterator pos, InputIterator first, InputIterator last) {
709 ValidateIterator(pos);
710
711 const difference_type inserted_items_signed = std::distance(first, last);
712 if (inserted_items_signed == 0)
713 return; // Can divide by 0 when doing modulo below, so return early.
714 CHECK(inserted_items_signed > 0);
715 const size_type inserted_items =
716 static_cast<size_type>(inserted_items_signed);
717
718 // Make a hole to copy the items into.
719 iterator insert_cur;
720 iterator insert_end;
721 if (pos == begin()) {
722 // Optimize insert at the beginning, nothing needs to be shifted and the
723 // hole is the |inserted_items| block immediately before |begin_|.
724 ExpandCapacityIfNecessary(inserted_items);
725 insert_end = begin();
726 begin_ =
727 (begin_ + buffer_.capacity() - inserted_items) % buffer_.capacity();
728 insert_cur = begin();
729 } else {
730 insert_cur = iterator(this, pos.index_);
731 MakeRoomFor(inserted_items, &insert_cur, &insert_end);
732 }
733
734 // Copy the items.
735 while (insert_cur < insert_end) {
736 new (&buffer_[insert_cur.index_]) T(*first);
737 ++insert_cur;
738 ++first;
739 }
740
741 IncrementGeneration();
742 }
743
744 // These all return an iterator to the inserted item. Existing iterators will
745 // be invalidated.
insert(const_iterator pos,const T & value)746 iterator insert(const_iterator pos, const T& value) {
747 return emplace(pos, value);
748 }
insert(const_iterator pos,T && value)749 iterator insert(const_iterator pos, T&& value) {
750 return emplace(pos, std::move(value));
751 }
752 template <class... Args>
emplace(const_iterator pos,Args &&...args)753 iterator emplace(const_iterator pos, Args&&... args) {
754 ValidateIterator(pos);
755
756 // Optimize insert at beginning which doesn't require shifting.
757 if (pos == cbegin()) {
758 emplace_front(std::forward<Args>(args)...);
759 return begin();
760 }
761
762 // Do this before we make the new iterators we return.
763 IncrementGeneration();
764
765 iterator insert_begin(this, pos.index_);
766 iterator insert_end;
767 MakeRoomFor(1, &insert_begin, &insert_end);
768 new (&buffer_[insert_begin.index_]) T(std::forward<Args>(args)...);
769
770 return insert_begin;
771 }
772
773 // Calling erase() won't automatically resize the buffer smaller like resize
774 // or the pop functions. Erase is slow and relatively uncommon, and for
775 // normal deque usage a pop will normally be done on a regular basis that
776 // will prevent excessive buffer usage over long periods of time. It's not
777 // worth having the extra code for every template instantiation of erase()
778 // to resize capacity downward to a new buffer.
erase(const_iterator pos)779 iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
erase(const_iterator first,const_iterator last)780 iterator erase(const_iterator first, const_iterator last) {
781 ValidateIterator(first);
782 ValidateIterator(last);
783
784 IncrementGeneration();
785
786 // First, call the destructor on the deleted items.
787 if (first.index_ == last.index_) {
788 // Nothing deleted. Need to return early to avoid falling through to
789 // moving items on top of themselves.
790 return iterator(this, first.index_);
791 } else if (first.index_ < last.index_) {
792 // Contiguous range.
793 buffer_.DestructRange(&buffer_[first.index_], &buffer_[last.index_]);
794 } else {
795 // Deleted range wraps around.
796 buffer_.DestructRange(&buffer_[first.index_],
797 &buffer_[buffer_.capacity()]);
798 buffer_.DestructRange(&buffer_[0], &buffer_[last.index_]);
799 }
800
801 if (first.index_ == begin_) {
802 // This deletion is from the beginning. Nothing needs to be copied, only
803 // begin_ needs to be updated.
804 begin_ = last.index_;
805 return iterator(this, last.index_);
806 }
807
808 // In an erase operation, the shifted items all move logically to the left,
809 // so move them from left-to-right.
810 iterator move_src(this, last.index_);
811 iterator move_src_end = end();
812 iterator move_dest(this, first.index_);
813 for (; move_src < move_src_end; move_src++, move_dest++) {
814 buffer_.MoveRange(&buffer_[move_src.index_],
815 &buffer_[move_src.index_ + 1],
816 &buffer_[move_dest.index_]);
817 }
818
819 end_ = move_dest.index_;
820
821 // Since we did not reallocate and only changed things after the erase
822 // element(s), the input iterator's index points to the thing following the
823 // deletion.
824 return iterator(this, first.index_);
825 }
826
827 // ---------------------------------------------------------------------------
828 // Begin/end operations.
829
push_front(const T & value)830 void push_front(const T& value) { emplace_front(value); }
push_front(T && value)831 void push_front(T&& value) { emplace_front(std::move(value)); }
832
push_back(const T & value)833 void push_back(const T& value) { emplace_back(value); }
push_back(T && value)834 void push_back(T&& value) { emplace_back(std::move(value)); }
835
836 template <class... Args>
emplace_front(Args &&...args)837 reference emplace_front(Args&&... args) {
838 ExpandCapacityIfNecessary(1);
839 if (begin_ == 0)
840 begin_ = buffer_.capacity() - 1;
841 else
842 begin_--;
843 IncrementGeneration();
844 new (&buffer_[begin_]) T(std::forward<Args>(args)...);
845 return front();
846 }
847
848 template <class... Args>
emplace_back(Args &&...args)849 reference emplace_back(Args&&... args) {
850 ExpandCapacityIfNecessary(1);
851 new (&buffer_[end_]) T(std::forward<Args>(args)...);
852 if (end_ == buffer_.capacity() - 1)
853 end_ = 0;
854 else
855 end_++;
856 IncrementGeneration();
857 return back();
858 }
859
pop_front()860 void pop_front() {
861 DCHECK(size());
862 buffer_.DestructRange(&buffer_[begin_], &buffer_[begin_ + 1]);
863 begin_++;
864 if (begin_ == buffer_.capacity())
865 begin_ = 0;
866
867 ShrinkCapacityIfNecessary();
868
869 // Technically popping will not invalidate any iterators since the
870 // underlying buffer will be stable. But in the future we may want to add a
871 // feature that resizes the buffer smaller if there is too much wasted
872 // space. This ensures we can make such a change safely.
873 IncrementGeneration();
874 }
pop_back()875 void pop_back() {
876 DCHECK(size());
877 if (end_ == 0)
878 end_ = buffer_.capacity() - 1;
879 else
880 end_--;
881 buffer_.DestructRange(&buffer_[end_], &buffer_[end_ + 1]);
882
883 ShrinkCapacityIfNecessary();
884
885 // See pop_front comment about why this is here.
886 IncrementGeneration();
887 }
888
889 // ---------------------------------------------------------------------------
890 // General operations.
891
swap(circular_deque & other)892 void swap(circular_deque& other) {
893 std::swap(buffer_, other.buffer_);
894 std::swap(begin_, other.begin_);
895 std::swap(end_, other.end_);
896 IncrementGeneration();
897 }
898
swap(circular_deque & lhs,circular_deque & rhs)899 friend void swap(circular_deque& lhs, circular_deque& rhs) { lhs.swap(rhs); }
900
901 private:
902 friend internal::circular_deque_iterator<T>;
903 friend internal::circular_deque_const_iterator<T>;
904
905 // Moves the items in the given circular buffer to the current one. The
906 // source is moved from so will become invalid. The destination buffer must
907 // have already been allocated with enough size.
MoveBuffer(VectorBuffer & from_buf,size_t from_begin,size_t from_end,VectorBuffer * to_buf,size_t * to_begin,size_t * to_end)908 static void MoveBuffer(VectorBuffer& from_buf,
909 size_t from_begin,
910 size_t from_end,
911 VectorBuffer* to_buf,
912 size_t* to_begin,
913 size_t* to_end) {
914 size_t from_capacity = from_buf.capacity();
915
916 *to_begin = 0;
917 if (from_begin < from_end) {
918 // Contiguous.
919 from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_end],
920 to_buf->begin());
921 *to_end = from_end - from_begin;
922 } else if (from_begin > from_end) {
923 // Discontiguous, copy the right side to the beginning of the new buffer.
924 from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_capacity],
925 to_buf->begin());
926 size_t right_size = from_capacity - from_begin;
927 // Append the left side.
928 from_buf.MoveRange(&from_buf[0], &from_buf[from_end],
929 &(*to_buf)[right_size]);
930 *to_end = right_size + from_end;
931 } else {
932 // No items.
933 *to_end = 0;
934 }
935 }
936
937 // Expands the buffer size. This assumes the size is larger than the
938 // number of elements in the vector (it won't call delete on anything).
SetCapacityTo(size_t new_capacity)939 void SetCapacityTo(size_t new_capacity) {
940 // Use the capacity + 1 as the internal buffer size to differentiate
941 // empty and full (see definition of buffer_ below).
942 VectorBuffer new_buffer(new_capacity + 1);
943 MoveBuffer(buffer_, begin_, end_, &new_buffer, &begin_, &end_);
944 buffer_ = std::move(new_buffer);
945 }
ExpandCapacityIfNecessary(size_t additional_elts)946 void ExpandCapacityIfNecessary(size_t additional_elts) {
947 size_t min_new_capacity = size() + additional_elts;
948 if (capacity() >= min_new_capacity)
949 return; // Already enough room.
950
951 min_new_capacity =
952 std::max(min_new_capacity, internal::kCircularBufferInitialCapacity);
953
954 // std::vector always grows by at least 50%. WTF::Deque grows by at least
955 // 25%. We expect queue workloads to generally stay at a similar size and
956 // grow less than a vector might, so use 25%.
957 size_t new_capacity =
958 std::max(min_new_capacity, capacity() + capacity() / 4);
959 SetCapacityTo(new_capacity);
960 }
961
ShrinkCapacityIfNecessary()962 void ShrinkCapacityIfNecessary() {
963 // Don't auto-shrink below this size.
964 if (capacity() <= internal::kCircularBufferInitialCapacity)
965 return;
966
967 // Shrink when 100% of the size() is wasted.
968 size_t sz = size();
969 size_t empty_spaces = capacity() - sz;
970 if (empty_spaces < sz)
971 return;
972
973 // Leave 1/4 the size as free capacity, not going below the initial
974 // capacity.
975 size_t new_capacity =
976 std::max(internal::kCircularBufferInitialCapacity, sz + sz / 4);
977 if (new_capacity < capacity()) {
978 // Count extra item to convert to internal capacity.
979 SetCapacityTo(new_capacity);
980 }
981 }
982
983 // Backend for clear() but does not resize the internal buffer.
ClearRetainCapacity()984 void ClearRetainCapacity() {
985 // This can't resize(0) because that requires a default constructor to
986 // compile, which not all contained classes may implement.
987 DestructRange(begin_, end_);
988 begin_ = 0;
989 end_ = 0;
990 IncrementGeneration();
991 }
992
993 // Calls destructors for the given begin->end indices. The indices may wrap
994 // around. The buffer is not resized, and the begin_ and end_ members are
995 // not changed.
DestructRange(size_t begin,size_t end)996 void DestructRange(size_t begin, size_t end) {
997 if (end == begin) {
998 return;
999 } else if (end > begin) {
1000 buffer_.DestructRange(&buffer_[begin], &buffer_[end]);
1001 } else {
1002 buffer_.DestructRange(&buffer_[begin], &buffer_[buffer_.capacity()]);
1003 buffer_.DestructRange(&buffer_[0], &buffer_[end]);
1004 }
1005 }
1006
1007 // Makes room for |count| items starting at |*insert_begin|. Since iterators
1008 // are not stable across buffer resizes, |*insert_begin| will be updated to
1009 // point to the beginning of the newly opened position in the new array (it's
1010 // in/out), and the end of the newly opened position (it's out-only).
MakeRoomFor(size_t count,iterator * insert_begin,iterator * insert_end)1011 void MakeRoomFor(size_t count, iterator* insert_begin, iterator* insert_end) {
1012 if (count == 0) {
1013 *insert_end = *insert_begin;
1014 return;
1015 }
1016
1017 // The offset from the beginning will be stable across reallocations.
1018 size_t begin_offset = insert_begin->OffsetFromBegin();
1019 ExpandCapacityIfNecessary(count);
1020
1021 insert_begin->index_ = (begin_ + begin_offset) % buffer_.capacity();
1022 *insert_end =
1023 iterator(this, (insert_begin->index_ + count) % buffer_.capacity());
1024
1025 // Update the new end and prepare the iterators for copying.
1026 iterator src = end();
1027 end_ = (end_ + count) % buffer_.capacity();
1028 iterator dest = end();
1029
1030 // Move the elements. This will always involve shifting logically to the
1031 // right, so move in a right-to-left order.
1032 while (true) {
1033 if (src == *insert_begin)
1034 break;
1035 --src;
1036 --dest;
1037 buffer_.MoveRange(&buffer_[src.index_], &buffer_[src.index_ + 1],
1038 &buffer_[dest.index_]);
1039 }
1040 }
1041
1042 #if DCHECK_IS_ON()
1043 // Asserts the given index is dereferencable. The index is an index into the
1044 // buffer, not an index used by operator[] or at() which will be offsets from
1045 // begin.
CheckValidIndex(size_t i)1046 void CheckValidIndex(size_t i) const {
1047 if (begin_ <= end_)
1048 DCHECK(i >= begin_ && i < end_);
1049 else
1050 DCHECK((i >= begin_ && i < buffer_.capacity()) || i < end_);
1051 }
1052
1053 // Asserts the given index is either dereferencable or points to end().
CheckValidIndexOrEnd(size_t i)1054 void CheckValidIndexOrEnd(size_t i) const {
1055 if (i != end_)
1056 CheckValidIndex(i);
1057 }
1058
ValidateIterator(const const_iterator & i)1059 void ValidateIterator(const const_iterator& i) const {
1060 DCHECK(i.parent_deque_ == this);
1061 i.CheckUnstableUsage();
1062 }
1063
1064 // See generation_ below.
IncrementGeneration()1065 void IncrementGeneration() { generation_++; }
1066 #else
1067 // No-op versions of these functions for release builds.
CheckValidIndex(size_t)1068 void CheckValidIndex(size_t) const {}
CheckValidIndexOrEnd(size_t)1069 void CheckValidIndexOrEnd(size_t) const {}
ValidateIterator(const const_iterator & i)1070 void ValidateIterator(const const_iterator& i) const {}
IncrementGeneration()1071 void IncrementGeneration() {}
1072 #endif
1073
1074 // Danger, the buffer_.capacity() is the "internal capacity" which is
1075 // capacity() + 1 since there is an extra item to indicate the end. Otherwise
1076 // being completely empty and completely full are indistinguishable (begin ==
1077 // end). We could add a separate flag to avoid it, but that adds significant
1078 // extra complexity since every computation will have to check for it. Always
1079 // keeping one extra unused element in the buffer makes iterator computations
1080 // much simpler.
1081 //
1082 // Container internal code will want to use buffer_.capacity() for offset
1083 // computations rather than capacity().
1084 VectorBuffer buffer_;
1085 size_type begin_ = 0;
1086 size_type end_ = 0;
1087
1088 #if DCHECK_IS_ON()
1089 // Incremented every time a modification is made that could affect iterator
1090 // invalidations.
1091 uint64_t generation_ = 0;
1092 #endif
1093 };
1094
1095 // Implementations of base::Erase[If] (see base/stl_util.h).
1096 template <class T, class Value>
Erase(circular_deque<T> & container,const Value & value)1097 size_t Erase(circular_deque<T>& container, const Value& value) {
1098 auto it = ranges::remove(container, value);
1099 size_t removed = std::distance(it, container.end());
1100 container.erase(it, container.end());
1101 return removed;
1102 }
1103
1104 template <class T, class Predicate>
EraseIf(circular_deque<T> & container,Predicate pred)1105 size_t EraseIf(circular_deque<T>& container, Predicate pred) {
1106 auto it = ranges::remove_if(container, pred);
1107 size_t removed = std::distance(it, container.end());
1108 container.erase(it, container.end());
1109 return removed;
1110 }
1111
1112 } // namespace base
1113
1114 #endif // BASE_CONTAINERS_CIRCULAR_DEQUE_H_
1115