1 #include <stdio.h>
2 #include <stdint.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <malloc.h>
6 #include <errno.h>
7 #include <sys/types.h>
8
9 #include <cpuinfo.h>
10 #include <cpuinfo/internal-api.h>
11 #include <cpuinfo/log.h>
12
13 #include "windows-arm-init.h"
14
15 #define MAX_NR_OF_CACHES (cpuinfo_cache_level_max - 1)
16
17 /* Call chain:
18 * cpu_info_init_by_logical_sys_info
19 * read_packages_for_processors
20 * read_cores_for_processors
21 * read_caches_for_processors
22 * read_all_logical_processor_info_of_relation
23 * parse_relation_processor_info
24 * store_package_info_per_processor
25 * store_core_info_per_processor
26 * parse_relation_cache_info
27 * store_cache_info_per_processor
28 */
29
30 static uint32_t count_logical_processors(
31 const uint32_t max_group_count,
32 uint32_t* global_proc_index_per_group);
33
34 static uint32_t read_packages_for_processors(
35 struct cpuinfo_processor* processors,
36 const uint32_t number_of_processors,
37 const uint32_t* global_proc_index_per_group,
38 const struct woa_chip_info *chip_info);
39
40 static uint32_t read_cores_for_processors(
41 struct cpuinfo_processor* processors,
42 const uint32_t number_of_processors,
43 const uint32_t* global_proc_index_per_group,
44 struct cpuinfo_core* cores,
45 const struct woa_chip_info *chip_info);
46
47 static uint32_t read_caches_for_processors(
48 struct cpuinfo_processor *processors,
49 const uint32_t number_of_processors,
50 struct cpuinfo_cache *caches,
51 uint32_t* numbers_of_caches,
52 const uint32_t* global_proc_index_per_group,
53 const struct woa_chip_info *chip_info);
54
55 static uint32_t read_all_logical_processor_info_of_relation(
56 LOGICAL_PROCESSOR_RELATIONSHIP info_type,
57 struct cpuinfo_processor* processors,
58 const uint32_t number_of_processors,
59 struct cpuinfo_cache* caches,
60 uint32_t* numbers_of_caches,
61 struct cpuinfo_core* cores,
62 const uint32_t* global_proc_index_per_group,
63 const struct woa_chip_info *chip_info);
64
65 static bool parse_relation_processor_info(
66 struct cpuinfo_processor* processors,
67 uint32_t nr_of_processors,
68 const uint32_t* global_proc_index_per_group,
69 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
70 const uint32_t info_id,
71 struct cpuinfo_core* cores,
72 const struct woa_chip_info *chip_info);
73
74 static bool parse_relation_cache_info(
75 struct cpuinfo_processor* processors,
76 struct cpuinfo_cache* caches,
77 uint32_t* numbers_of_caches,
78 const uint32_t* global_proc_index_per_group,
79 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info);
80
81 static void store_package_info_per_processor(
82 struct cpuinfo_processor* processors,
83 const uint32_t processor_global_index,
84 const uint32_t package_id,
85 const uint32_t group_id,
86 const uint32_t processor_id_in_group);
87
88 static void store_core_info_per_processor(
89 struct cpuinfo_processor* processors,
90 const uint32_t processor_global_index,
91 const uint32_t core_id,
92 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
93 struct cpuinfo_core* cores,
94 const struct woa_chip_info *chip_info);
95
96 static void store_cache_info_per_processor(
97 struct cpuinfo_processor* processors,
98 const uint32_t processor_global_index,
99 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
100 struct cpuinfo_cache* current_cache);
101
102 static bool connect_packages_cores_clusters_by_processors(
103 struct cpuinfo_processor* processors,
104 const uint32_t nr_of_processors,
105 struct cpuinfo_package* packages,
106 const uint32_t nr_of_packages,
107 struct cpuinfo_cluster* clusters,
108 struct cpuinfo_core* cores,
109 const uint32_t nr_of_cores,
110 const struct woa_chip_info* chip_info,
111 enum cpuinfo_vendor vendor);
112
113 static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity);
114
115
cpu_info_init_by_logical_sys_info(const struct woa_chip_info * chip_info,const enum cpuinfo_vendor vendor)116 bool cpu_info_init_by_logical_sys_info(
117 const struct woa_chip_info *chip_info,
118 const enum cpuinfo_vendor vendor)
119 {
120 struct cpuinfo_processor* processors = NULL;
121 struct cpuinfo_package* packages = NULL;
122 struct cpuinfo_cluster* clusters = NULL;
123 struct cpuinfo_core* cores = NULL;
124 struct cpuinfo_cache* caches = NULL;
125 struct cpuinfo_uarch_info* uarchs = NULL;
126
127 uint32_t nr_of_packages = 0;
128 uint32_t nr_of_cores = 0;
129 uint32_t nr_of_all_caches = 0;
130 uint32_t numbers_of_caches[MAX_NR_OF_CACHES] = {0};
131
132 uint32_t nr_of_uarchs = 0;
133 bool result = false;
134
135 HANDLE heap = GetProcessHeap();
136
137 /* 1. Count available logical processor groups and processors */
138 const uint32_t max_group_count = (uint32_t) GetMaximumProcessorGroupCount();
139 cpuinfo_log_debug("detected %"PRIu32" processor group(s)", max_group_count);
140 /* We need to store the absolute processor ID offsets for every groups, because
141 * 1. We can't assume every processor groups include the same number of
142 * logical processors.
143 * 2. Every processor groups know its group number and processor IDs within
144 * the group, but not the global processor IDs.
145 * 3. We need to list every logical processors by global IDs.
146 */
147 uint32_t* global_proc_index_per_group =
148 (uint32_t*) HeapAlloc(heap, 0, max_group_count * sizeof(uint32_t));
149 if (global_proc_index_per_group == NULL) {
150 cpuinfo_log_error(
151 "failed to allocate %zu bytes for descriptions of %"PRIu32" processor groups",
152 max_group_count * sizeof(struct cpuinfo_processor), max_group_count);
153 goto clean_up;
154 }
155
156 uint32_t nr_of_processors =
157 count_logical_processors(max_group_count, global_proc_index_per_group);
158 processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_processors * sizeof(struct cpuinfo_processor));
159 if (processors == NULL) {
160 cpuinfo_log_error(
161 "failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
162 nr_of_processors * sizeof(struct cpuinfo_processor), nr_of_processors);
163 goto clean_up;
164 }
165
166 /* 2. Read topology information via MSDN API: packages, cores and caches*/
167 nr_of_packages = read_packages_for_processors(
168 processors, nr_of_processors,
169 global_proc_index_per_group,
170 chip_info);
171 if (!nr_of_packages) {
172 cpuinfo_log_error("error in reading package information");
173 goto clean_up;
174 }
175 cpuinfo_log_debug("detected %"PRIu32" processor package(s)", nr_of_packages);
176
177 /* We need the EfficiencyClass to parse uarch from the core information,
178 * but we need to iterate first to count cores and allocate memory then
179 * we will iterate again to read and store data to cpuinfo_core structures.
180 */
181 nr_of_cores = read_cores_for_processors(
182 processors, nr_of_processors,
183 global_proc_index_per_group, NULL,
184 chip_info);
185 if (!nr_of_cores) {
186 cpuinfo_log_error("error in reading core information");
187 goto clean_up;
188 }
189 cpuinfo_log_debug("detected %"PRIu32" processor core(s)", nr_of_cores);
190
191 /* There is no API to read number of caches, so we need to iterate twice on caches:
192 1. Count all type of caches -> allocate memory
193 2. Read out cache data and store to allocated memory
194 */
195 nr_of_all_caches = read_caches_for_processors(
196 processors, nr_of_processors,
197 caches, numbers_of_caches,
198 global_proc_index_per_group, chip_info);
199 if (!nr_of_all_caches) {
200 cpuinfo_log_error("error in reading cache information");
201 goto clean_up;
202 }
203 cpuinfo_log_debug("detected %"PRIu32" processor cache(s)", nr_of_all_caches);
204
205 /* 3. Allocate memory for package, cluster, core and cache structures */
206 packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_packages * sizeof(struct cpuinfo_package));
207 if (packages == NULL) {
208 cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
209 nr_of_packages * sizeof(struct cpuinfo_package), nr_of_packages);
210 goto clean_up;
211 }
212
213 /* We don't have cluster information so we explicitly set clusters to equal to cores. */
214 clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_cluster));
215 if (clusters == NULL) {
216 cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
217 nr_of_cores * sizeof(struct cpuinfo_cluster), nr_of_cores);
218 goto clean_up;
219 }
220
221 cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_cores * sizeof(struct cpuinfo_core));
222 if (cores == NULL) {
223 cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
224 nr_of_cores * sizeof(struct cpuinfo_core), nr_of_cores);
225 goto clean_up;
226 }
227
228 /* We allocate one contiguous cache array for all caches, then use offsets per cache type. */
229 caches = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_all_caches * sizeof(struct cpuinfo_cache));
230 if (caches == NULL) {
231 cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" caches",
232 nr_of_all_caches * sizeof(struct cpuinfo_cache), nr_of_all_caches);
233 goto clean_up;
234 }
235
236 /* 4.Read missing topology information that can't be saved without counted
237 * allocate structures in the first round.
238 */
239 nr_of_all_caches = read_caches_for_processors(
240 processors, nr_of_processors,
241 caches, numbers_of_caches, global_proc_index_per_group, chip_info);
242 if (!nr_of_all_caches) {
243 cpuinfo_log_error("error in reading cache information");
244 goto clean_up;
245 }
246
247 nr_of_cores = read_cores_for_processors(
248 processors, nr_of_processors,
249 global_proc_index_per_group, cores,
250 chip_info);
251 if (!nr_of_cores) {
252 cpuinfo_log_error("error in reading core information");
253 goto clean_up;
254 }
255
256 /* 5. Now that we read out everything from the system we can, fill the package, cluster
257 * and core structures respectively.
258 */
259 result = connect_packages_cores_clusters_by_processors(
260 processors, nr_of_processors,
261 packages, nr_of_packages,
262 clusters,
263 cores, nr_of_cores,
264 chip_info,
265 vendor);
266 if(!result) {
267 cpuinfo_log_error("error in connecting information");
268 goto clean_up;
269 }
270
271 /* 6. Count and store uarchs of cores, assuming same uarchs are neighbors */
272 enum cpuinfo_uarch prev_uarch = cpuinfo_uarch_unknown;
273 for (uint32_t i = 0; i < nr_of_cores; i++) {
274 if (prev_uarch != cores[i].uarch) {
275 nr_of_uarchs++;
276 prev_uarch = cores[i].uarch;
277 }
278 }
279 uarchs = HeapAlloc(heap, HEAP_ZERO_MEMORY, nr_of_uarchs * sizeof(struct cpuinfo_uarch_info));
280 if (uarchs == NULL) {
281 cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" uarchs",
282 nr_of_uarchs * sizeof(struct cpuinfo_uarch_info), nr_of_uarchs);
283 goto clean_up;
284 }
285 prev_uarch = cpuinfo_uarch_unknown;
286 for (uint32_t i = 0, uarch_counter = 0; i < nr_of_cores; i++) {
287 if (prev_uarch != cores[i].uarch) {
288 prev_uarch = cores[i].uarch;
289 uarchs[uarch_counter].uarch = cores[i].uarch;
290 uarchs[uarch_counter].core_count = 1;
291 uarchs[uarch_counter].processor_count = cores[i].processor_count;
292 uarch_counter++;
293 } else if (prev_uarch != cpuinfo_uarch_unknown) {
294 uarchs[uarch_counter].core_count++;
295 uarchs[uarch_counter].processor_count += cores[i].processor_count;
296 }
297 }
298
299 /* 7. Commit changes */
300 cpuinfo_processors = processors;
301 cpuinfo_packages = packages;
302 cpuinfo_clusters = clusters;
303 cpuinfo_cores = cores;
304 cpuinfo_uarchs = uarchs;
305
306 cpuinfo_processors_count = nr_of_processors;
307 cpuinfo_packages_count = nr_of_packages;
308 cpuinfo_clusters_count = nr_of_cores;
309 cpuinfo_cores_count = nr_of_cores;
310 cpuinfo_uarchs_count = nr_of_uarchs;
311
312 for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
313 cpuinfo_cache_count[i] = numbers_of_caches[i];
314 }
315 cpuinfo_cache[cpuinfo_cache_level_1i] = caches;
316 cpuinfo_cache[cpuinfo_cache_level_1d] = cpuinfo_cache[cpuinfo_cache_level_1i] + cpuinfo_cache_count[cpuinfo_cache_level_1i];
317 cpuinfo_cache[cpuinfo_cache_level_2] = cpuinfo_cache[cpuinfo_cache_level_1d] + cpuinfo_cache_count[cpuinfo_cache_level_1d];
318 cpuinfo_cache[cpuinfo_cache_level_3] = cpuinfo_cache[cpuinfo_cache_level_2] + cpuinfo_cache_count[cpuinfo_cache_level_2];
319 cpuinfo_cache[cpuinfo_cache_level_4] = cpuinfo_cache[cpuinfo_cache_level_3] + cpuinfo_cache_count[cpuinfo_cache_level_3];
320 cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);
321
322 result = true;
323 MemoryBarrier();
324
325 processors = NULL;
326 packages = NULL;
327 clusters = NULL;
328 cores = NULL;
329 caches = NULL;
330 uarchs = NULL;
331
332 clean_up:
333 /* The propagated pointers, shouldn't be freed, only in case of error
334 * and unfinished init.
335 */
336 if (processors != NULL) {
337 HeapFree(heap, 0, processors);
338 }
339 if (packages != NULL) {
340 HeapFree(heap, 0, packages);
341 }
342 if (clusters != NULL) {
343 HeapFree(heap, 0, clusters);
344 }
345 if (cores != NULL) {
346 HeapFree(heap, 0, cores);
347 }
348 if (caches != NULL) {
349 HeapFree(heap, 0, caches);
350 }
351 if (uarchs != NULL) {
352 HeapFree(heap, 0, uarchs);
353 }
354
355 /* Free the locally used temporary pointers */
356 HeapFree(heap, 0, global_proc_index_per_group);
357 global_proc_index_per_group = NULL;
358 return result;
359 }
360
count_logical_processors(const uint32_t max_group_count,uint32_t * global_proc_index_per_group)361 static uint32_t count_logical_processors(
362 const uint32_t max_group_count,
363 uint32_t* global_proc_index_per_group)
364 {
365 uint32_t nr_of_processors = 0;
366
367 for (uint32_t i = 0; i < max_group_count; i++) {
368 uint32_t nr_of_processors_per_group = GetMaximumProcessorCount((WORD) i);
369 cpuinfo_log_debug("detected %"PRIu32" processor(s) in group %"PRIu32"",
370 nr_of_processors_per_group, i);
371 global_proc_index_per_group[i] = nr_of_processors;
372 nr_of_processors += nr_of_processors_per_group;
373 }
374 return nr_of_processors;
375 }
376
read_packages_for_processors(struct cpuinfo_processor * processors,const uint32_t number_of_processors,const uint32_t * global_proc_index_per_group,const struct woa_chip_info * chip_info)377 static uint32_t read_packages_for_processors(
378 struct cpuinfo_processor* processors,
379 const uint32_t number_of_processors,
380 const uint32_t* global_proc_index_per_group,
381 const struct woa_chip_info *chip_info)
382 {
383 return read_all_logical_processor_info_of_relation(
384 RelationProcessorPackage,
385 processors,
386 number_of_processors,
387 NULL,
388 NULL,
389 NULL,
390 global_proc_index_per_group,
391 chip_info);
392 }
393
read_cores_for_processors(struct cpuinfo_processor * processors,const uint32_t number_of_processors,const uint32_t * global_proc_index_per_group,struct cpuinfo_core * cores,const struct woa_chip_info * chip_info)394 uint32_t read_cores_for_processors(
395 struct cpuinfo_processor* processors,
396 const uint32_t number_of_processors,
397 const uint32_t* global_proc_index_per_group,
398 struct cpuinfo_core* cores,
399 const struct woa_chip_info *chip_info)
400 {
401 return read_all_logical_processor_info_of_relation(
402 RelationProcessorCore,
403 processors,
404 number_of_processors,
405 NULL,
406 NULL,
407 cores,
408 global_proc_index_per_group,
409 chip_info);
410 }
411
read_caches_for_processors(struct cpuinfo_processor * processors,const uint32_t number_of_processors,struct cpuinfo_cache * caches,uint32_t * numbers_of_caches,const uint32_t * global_proc_index_per_group,const struct woa_chip_info * chip_info)412 static uint32_t read_caches_for_processors(
413 struct cpuinfo_processor* processors,
414 const uint32_t number_of_processors,
415 struct cpuinfo_cache* caches,
416 uint32_t* numbers_of_caches,
417 const uint32_t* global_proc_index_per_group,
418 const struct woa_chip_info *chip_info)
419 {
420 /* Reset processor start indexes */
421 if (caches) {
422 uint32_t cache_offset = 0;
423 for (uint32_t i = 0; i < MAX_NR_OF_CACHES; i++) {
424 for (uint32_t j = 0; j < numbers_of_caches[i]; j++) {
425 caches[cache_offset + j].processor_start = UINT32_MAX;
426 }
427 cache_offset += numbers_of_caches[i];
428 }
429 }
430
431 return read_all_logical_processor_info_of_relation(
432 RelationCache,
433 processors,
434 number_of_processors,
435 caches,
436 numbers_of_caches,
437 NULL,
438 global_proc_index_per_group,
439 chip_info);
440 }
441
read_all_logical_processor_info_of_relation(LOGICAL_PROCESSOR_RELATIONSHIP info_type,struct cpuinfo_processor * processors,const uint32_t number_of_processors,struct cpuinfo_cache * caches,uint32_t * numbers_of_caches,struct cpuinfo_core * cores,const uint32_t * global_proc_index_per_group,const struct woa_chip_info * chip_info)442 static uint32_t read_all_logical_processor_info_of_relation(
443 LOGICAL_PROCESSOR_RELATIONSHIP info_type,
444 struct cpuinfo_processor* processors,
445 const uint32_t number_of_processors,
446 struct cpuinfo_cache* caches,
447 uint32_t* numbers_of_caches,
448 struct cpuinfo_core* cores,
449 const uint32_t* global_proc_index_per_group,
450 const struct woa_chip_info* chip_info)
451 {
452 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX infos = NULL;
453 uint32_t nr_of_structs = 0;
454 DWORD info_size = 0;
455 bool result = false;
456 HANDLE heap = GetProcessHeap();
457
458 /* 1. Query the size of the information structure first */
459 if (GetLogicalProcessorInformationEx(info_type, NULL, &info_size) == FALSE) {
460 const DWORD last_error = GetLastError();
461 if (last_error != ERROR_INSUFFICIENT_BUFFER) {
462 cpuinfo_log_error(
463 "failed to query size of processor %"PRIu32" information information: error %"PRIu32"",
464 (uint32_t)info_type, (uint32_t) last_error);
465 goto clean_up;
466 }
467 }
468 /* 2. Allocate memory for the information structure */
469 infos = HeapAlloc(heap, 0, info_size);
470 if (infos == NULL) {
471 cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
472 (uint32_t) info_size);
473 goto clean_up;
474 }
475 /* 3. Read the information structure */
476 if (GetLogicalProcessorInformationEx(info_type, infos, &info_size) == FALSE) {
477 cpuinfo_log_error("failed to query processor %"PRIu32" information: error %"PRIu32"",
478 (uint32_t)info_type, (uint32_t) GetLastError());
479 goto clean_up;
480 }
481
482 /* 4. Parse the structure and store relevant data */
483 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info_end =
484 (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) infos + info_size);
485 for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = infos;
486 info < info_end;
487 info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) info + info->Size))
488 {
489 if (info->Relationship != info_type) {
490 cpuinfo_log_warning(
491 "unexpected processor info type (%"PRIu32") for processor information",
492 (uint32_t) info->Relationship);
493 continue;
494 }
495
496 const uint32_t info_id = nr_of_structs++;
497
498 switch(info_type) {
499 case RelationProcessorPackage:
500 result = parse_relation_processor_info(
501 processors,
502 number_of_processors,
503 global_proc_index_per_group,
504 info,
505 info_id,
506 cores,
507 chip_info);
508 break;
509 case RelationProcessorCore:
510 result = parse_relation_processor_info(
511 processors,
512 number_of_processors,
513 global_proc_index_per_group,
514 info,
515 info_id,
516 cores,
517 chip_info);
518 break;
519 case RelationCache:
520 result = parse_relation_cache_info(
521 processors,
522 caches,
523 numbers_of_caches,
524 global_proc_index_per_group,
525 info);
526 break;
527 default:
528 cpuinfo_log_error(
529 "unexpected processor info type (%"PRIu32") for processor information",
530 (uint32_t) info->Relationship);
531 result = false;
532 break;
533 }
534 if (!result) {
535 nr_of_structs = 0;
536 goto clean_up;
537 }
538 }
539 clean_up:
540 /* 5. Release dynamically allocated info structure. */
541 HeapFree(heap, 0, infos);
542 infos = NULL;
543 return nr_of_structs;
544 }
545
parse_relation_processor_info(struct cpuinfo_processor * processors,uint32_t nr_of_processors,const uint32_t * global_proc_index_per_group,PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,const uint32_t info_id,struct cpuinfo_core * cores,const struct woa_chip_info * chip_info)546 static bool parse_relation_processor_info(
547 struct cpuinfo_processor* processors,
548 uint32_t nr_of_processors,
549 const uint32_t* global_proc_index_per_group,
550 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
551 const uint32_t info_id,
552 struct cpuinfo_core* cores,
553 const struct woa_chip_info *chip_info)
554 {
555 for (uint32_t i = 0; i < info->Processor.GroupCount; i++) {
556 const uint32_t group_id = info->Processor.GroupMask[i].Group;
557 /* Bitmask representing processors in this group belonging to this package */
558 KAFFINITY group_processors_mask = info->Processor.GroupMask[i].Mask;
559 while (group_processors_mask != 0) {
560 const uint32_t processor_id_in_group =
561 low_index_from_kaffinity(group_processors_mask);
562 const uint32_t processor_global_index =
563 global_proc_index_per_group[group_id] + processor_id_in_group;
564
565 if(processor_global_index >= nr_of_processors) {
566 cpuinfo_log_error("unexpected processor index %"PRIu32"",
567 processor_global_index);
568 return false;
569 }
570
571 switch(info->Relationship) {
572 case RelationProcessorPackage:
573 store_package_info_per_processor(
574 processors, processor_global_index, info_id,
575 group_id, processor_id_in_group);
576 break;
577 case RelationProcessorCore:
578 store_core_info_per_processor(
579 processors, processor_global_index,
580 info_id, info,
581 cores, chip_info);
582 break;
583 default:
584 cpuinfo_log_error(
585 "unexpected processor info type (%"PRIu32") for processor information",
586 (uint32_t) info->Relationship);
587 break;
588 }
589 /* Clear the bits in affinity mask, lower the least set bit. */
590 group_processors_mask &= (group_processors_mask - 1);
591 }
592 }
593 return true;
594 }
595
parse_relation_cache_info(struct cpuinfo_processor * processors,struct cpuinfo_cache * caches,uint32_t * numbers_of_caches,const uint32_t * global_proc_index_per_group,PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info)596 static bool parse_relation_cache_info(
597 struct cpuinfo_processor* processors,
598 struct cpuinfo_cache* caches,
599 uint32_t* numbers_of_caches,
600 const uint32_t* global_proc_index_per_group,
601 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info)
602 {
603 static uint32_t l1i_counter = 0;
604 static uint32_t l1d_counter = 0;
605 static uint32_t l2_counter = 0;
606 static uint32_t l3_counter = 0;
607
608 /* Count cache types for allocation at first. */
609 if (caches == NULL) {
610 switch(info->Cache.Level) {
611 case 1:
612 switch (info->Cache.Type) {
613 case CacheInstruction:
614 numbers_of_caches[cpuinfo_cache_level_1i]++;
615 break;
616 case CacheData:
617 numbers_of_caches[cpuinfo_cache_level_1d]++;
618 break;
619 case CacheUnified:
620 break;
621 case CacheTrace:
622 break;
623 default:
624 break;
625 }
626 break;
627 case 2:
628 numbers_of_caches[cpuinfo_cache_level_2]++;
629 break;
630 case 3:
631 numbers_of_caches[cpuinfo_cache_level_3]++;
632 break;
633 }
634 return true;
635 }
636 struct cpuinfo_cache* l1i_base = caches;
637 struct cpuinfo_cache* l1d_base = l1i_base + numbers_of_caches[cpuinfo_cache_level_1i];
638 struct cpuinfo_cache* l2_base = l1d_base + numbers_of_caches[cpuinfo_cache_level_1d];
639 struct cpuinfo_cache* l3_base = l2_base + numbers_of_caches[cpuinfo_cache_level_2];
640
641 cpuinfo_log_debug(
642 "info->Cache.GroupCount:%"PRIu32", info->Cache.GroupMask:%"PRIu32","
643 "info->Cache.Level:%"PRIu32", info->Cache.Associativity:%"PRIu32","
644 "info->Cache.LineSize:%"PRIu32","
645 "info->Cache.CacheSize:%"PRIu32", info->Cache.Type:%"PRIu32"",
646 info->Cache.GroupCount, (unsigned int)info->Cache.GroupMask.Mask,
647 info->Cache.Level, info->Cache.Associativity, info->Cache.LineSize,
648 info->Cache.CacheSize, info->Cache.Type);
649
650 struct cpuinfo_cache* current_cache = NULL;
651 switch (info->Cache.Level) {
652 case 1:
653 switch (info->Cache.Type) {
654 case CacheInstruction:
655 current_cache = l1i_base + l1i_counter;
656 l1i_counter++;
657 break;
658 case CacheData:
659 current_cache = l1d_base + l1d_counter;
660 l1d_counter++;
661 break;
662 case CacheUnified:
663 break;
664 case CacheTrace:
665 break;
666 default:
667 break;
668 }
669 break;
670 case 2:
671 current_cache = l2_base + l2_counter;
672 l2_counter++;
673 break;
674 case 3:
675 current_cache = l3_base + l3_counter;
676 l3_counter++;
677 break;
678 }
679 current_cache->size = info->Cache.CacheSize;
680 current_cache->line_size = info->Cache.LineSize;
681 current_cache->associativity = info->Cache.Associativity;
682 /* We don't have partition and set information of caches on Windows,
683 * so we set partitions to 1 and calculate the expected sets.
684 */
685 current_cache->partitions = 1;
686 current_cache->sets =
687 current_cache->size / current_cache->line_size / current_cache->associativity;
688 if (info->Cache.Type == CacheUnified) {
689 current_cache->flags = CPUINFO_CACHE_UNIFIED;
690 }
691
692 for (uint32_t i = 0; i <= info->Cache.GroupCount; i++) {
693 /* Zero GroupCount is valid, GroupMask still can store bits set. */
694 const uint32_t group_id = info->Cache.GroupMasks[i].Group;
695 /* Bitmask representing processors in this group belonging to this package */
696 KAFFINITY group_processors_mask = info->Cache.GroupMasks[i].Mask;
697 while (group_processors_mask != 0) {
698 const uint32_t processor_id_in_group =
699 low_index_from_kaffinity(group_processors_mask);
700 const uint32_t processor_global_index =
701 global_proc_index_per_group[group_id] + processor_id_in_group;
702
703 store_cache_info_per_processor(
704 processors, processor_global_index,
705 info, current_cache);
706
707 /* Clear the bits in affinity mask, lower the least set bit. */
708 group_processors_mask &= (group_processors_mask - 1);
709 }
710 }
711 return true;
712 }
713
store_package_info_per_processor(struct cpuinfo_processor * processors,const uint32_t processor_global_index,const uint32_t package_id,const uint32_t group_id,const uint32_t processor_id_in_group)714 static void store_package_info_per_processor(
715 struct cpuinfo_processor* processors,
716 const uint32_t processor_global_index,
717 const uint32_t package_id,
718 const uint32_t group_id,
719 const uint32_t processor_id_in_group)
720 {
721 processors[processor_global_index].windows_group_id =
722 (uint16_t) group_id;
723 processors[processor_global_index].windows_processor_id =
724 (uint16_t) processor_id_in_group;
725
726 /* As we're counting the number of packages now, we haven't allocated memory for
727 * cpuinfo_packages yet, so we only set the package pointer's offset now.
728 */
729 processors[processor_global_index].package =
730 (const struct cpuinfo_package*) NULL + package_id;
731 }
732
store_core_info_per_processor(struct cpuinfo_processor * processors,const uint32_t processor_global_index,const uint32_t core_id,PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,struct cpuinfo_core * cores,const struct woa_chip_info * chip_info)733 void store_core_info_per_processor(
734 struct cpuinfo_processor* processors,
735 const uint32_t processor_global_index,
736 const uint32_t core_id,
737 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info,
738 struct cpuinfo_core* cores,
739 const struct woa_chip_info *chip_info)
740 {
741 if (cores) {
742 processors[processor_global_index].core = cores + core_id;
743 cores[core_id].core_id = core_id;
744 get_core_uarch_for_efficiency(
745 chip_info->chip_name, core_info->Processor.EfficiencyClass,
746 &(cores[core_id].uarch), &(cores[core_id].frequency));
747
748 /* We don't have cluster information, so we handle it as
749 * fixed 1 to (cluster / cores).
750 * Set the cluster offset ID now, as soon as we have the
751 * cluster base address, we'll set the absolute address.
752 */
753 processors[processor_global_index].cluster =
754 (const struct cpuinfo_cluster*) NULL + core_id;
755 }
756 }
757
store_cache_info_per_processor(struct cpuinfo_processor * processors,const uint32_t processor_global_index,PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,struct cpuinfo_cache * current_cache)758 static void store_cache_info_per_processor(
759 struct cpuinfo_processor* processors,
760 const uint32_t processor_global_index,
761 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info,
762 struct cpuinfo_cache* current_cache)
763 {
764 if (current_cache->processor_start > processor_global_index) {
765 current_cache->processor_start = processor_global_index;
766 }
767 current_cache->processor_count++;
768
769 switch(info->Cache.Level) {
770 case 1:
771 switch (info->Cache.Type) {
772 case CacheInstruction:
773 processors[processor_global_index].cache.l1i = current_cache;
774 break;
775 case CacheData:
776 processors[processor_global_index].cache.l1d = current_cache;
777 break;
778 case CacheUnified:
779 break;
780 case CacheTrace:
781 break;
782 default:
783 break;
784 }
785 break;
786 case 2:
787 processors[processor_global_index].cache.l2 = current_cache;
788 break;
789 case 3:
790 processors[processor_global_index].cache.l3 = current_cache;
791 break;
792 }
793 }
794
connect_packages_cores_clusters_by_processors(struct cpuinfo_processor * processors,const uint32_t nr_of_processors,struct cpuinfo_package * packages,const uint32_t nr_of_packages,struct cpuinfo_cluster * clusters,struct cpuinfo_core * cores,const uint32_t nr_of_cores,const struct woa_chip_info * chip_info,enum cpuinfo_vendor vendor)795 static bool connect_packages_cores_clusters_by_processors(
796 struct cpuinfo_processor* processors,
797 const uint32_t nr_of_processors,
798 struct cpuinfo_package* packages,
799 const uint32_t nr_of_packages,
800 struct cpuinfo_cluster* clusters,
801 struct cpuinfo_core* cores,
802 const uint32_t nr_of_cores,
803 const struct woa_chip_info* chip_info,
804 enum cpuinfo_vendor vendor)
805 {
806 /* Adjust core and package pointers for all logical processors. */
807 for (uint32_t i = nr_of_processors; i != 0; i--) {
808 const uint32_t processor_id = i - 1;
809 struct cpuinfo_processor* processor = processors + processor_id;
810
811 struct cpuinfo_core* core = (struct cpuinfo_core*)processor->core;
812
813 /* We stored the offset of pointers when we haven't allocated memory
814 * for packages and clusters, so now add offsets to base addresses.
815 */
816 struct cpuinfo_package* package =
817 (struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
818 if (package < packages ||
819 package >= (packages + nr_of_packages)) {
820 cpuinfo_log_error("invalid package indexing");
821 return false;
822 }
823 processor->package = package;
824
825 struct cpuinfo_cluster* cluster =
826 (struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
827 if (cluster < clusters ||
828 cluster >= (clusters + nr_of_cores)) {
829 cpuinfo_log_error("invalid cluster indexing");
830 return false;
831 }
832 processor->cluster = cluster;
833
834 if (chip_info) {
835 strncpy_s(package->name, CPUINFO_PACKAGE_NAME_MAX, chip_info->chip_name_string,
836 strnlen(chip_info->chip_name_string, CPUINFO_PACKAGE_NAME_MAX));
837 }
838
839 /* Set start indexes and counts per packages / clusters / cores - going backwards */
840
841 /* This can be overwritten by lower-index processors on the same package. */
842 package->processor_start = processor_id;
843 package->processor_count++;
844
845 /* This can be overwritten by lower-index processors on the same cluster. */
846 cluster->processor_start = processor_id;
847 cluster->processor_count++;
848
849 /* This can be overwritten by lower-index processors on the same core. */
850 core->processor_start = processor_id;
851 core->processor_count++;
852 }
853 /* Fill cores */
854 for (uint32_t i = nr_of_cores; i != 0; i--) {
855 const uint32_t global_core_id = i - 1;
856 struct cpuinfo_core* core = cores + global_core_id;
857 const struct cpuinfo_processor* processor = processors + core->processor_start;
858 struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
859 struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;
860
861 core->package = package;
862 core->cluster = cluster;
863 core->vendor = vendor;
864
865 /* This can be overwritten by lower-index cores on the same cluster/package. */
866 cluster->core_start = global_core_id;
867 cluster->core_count++;
868 package->core_start = global_core_id;
869 package->core_count++;
870 package->cluster_start = global_core_id;
871 package->cluster_count = package->core_count;
872
873 cluster->package = package;
874 cluster->vendor = cores[cluster->core_start].vendor;
875 cluster->uarch = cores[cluster->core_start].uarch;
876 cluster->frequency = cores[cluster->core_start].frequency;
877 }
878 return true;
879 }
880
low_index_from_kaffinity(KAFFINITY kaffinity)881 static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
882 unsigned long index;
883 _BitScanForward64(&index, (unsigned __int64) kaffinity);
884 return (uint32_t) index;
885 }
886