1 /* Taken from depthcharge: src/base/device_tree.c */
2 /* SPDX-License-Identifier: GPL-2.0-or-later */
3
4 #include <assert.h>
5 #include <commonlib/device_tree.h>
6 #include <ctype.h>
7 #include <endian.h>
8 #include <stdbool.h>
9 #include <stdint.h>
10 #ifdef __COREBOOT__
11 #include <console/console.h>
12 #else
13 #include <stdio.h>
14 #define printk(level, ...) printf(__VA_ARGS__)
15 #endif
16 #include <stdio.h>
17 #include <string.h>
18 #include <stddef.h>
19 #include <stdlib.h>
20 #include <limits.h>
21
22 #define FDT_PATH_MAX_DEPTH 10 // should be a good enough upper bound
23 #define FDT_PATH_MAX_LEN 128 // should be a good enough upper bound
24 #define FDT_MAX_MEMORY_NODES 4 // should be a good enough upper bound
25 #define FDT_MAX_MEMORY_REGIONS 16 // should be a good enough upper bound
26
27 /*
28 * libpayload's malloc() has a linear allocation complexity, which means that it
29 * degrades massively if we make a few thousand small allocations. Preventing
30 * that problem with a custom scratchpad is well-worth some increase in BSS
31 * size (64 * 2000 + 40 * 10000 = ~1/2 MB).
32 */
33
34 /* Try to give these a healthy margin above what the average kernel DT needs. */
35 #define LP_ALLOC_NODE_SCRATCH_COUNT 2000
36 #define LP_ALLOC_PROP_SCRATCH_COUNT 10000
37
alloc_node(void)38 static struct device_tree_node *alloc_node(void)
39 {
40 #ifndef __COREBOOT__
41 static struct device_tree_node scratch[LP_ALLOC_NODE_SCRATCH_COUNT];
42 static int counter = 0;
43
44 if (counter < ARRAY_SIZE(scratch))
45 return &scratch[counter++];
46 #endif
47 return xzalloc(sizeof(struct device_tree_node));
48 }
49
alloc_prop(void)50 static struct device_tree_property *alloc_prop(void)
51 {
52 #ifndef __COREBOOT__
53 static struct device_tree_property scratch[LP_ALLOC_PROP_SCRATCH_COUNT];
54 static int counter = 0;
55
56 if (counter < ARRAY_SIZE(scratch))
57 return &scratch[counter++];
58 #endif
59 return xzalloc(sizeof(struct device_tree_property));
60 }
61
62 /*
63 * Functions for picking apart flattened trees.
64 */
65
fdt_skip_nops(const void * blob,uint32_t offset)66 static int fdt_skip_nops(const void *blob, uint32_t offset)
67 {
68 uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
69
70 int index = 0;
71 while (be32toh(ptr[index]) == FDT_TOKEN_NOP)
72 index++;
73
74 return index * sizeof(uint32_t);
75 }
76
fdt_next_property(const void * blob,uint32_t offset,struct fdt_property * prop)77 int fdt_next_property(const void *blob, uint32_t offset,
78 struct fdt_property *prop)
79 {
80 struct fdt_header *header = (struct fdt_header *)blob;
81 uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
82
83 // skip NOP tokens
84 offset += fdt_skip_nops(blob, offset);
85
86 int index = 0;
87 if (be32toh(ptr[index++]) != FDT_TOKEN_PROPERTY)
88 return 0;
89
90 uint32_t size = be32toh(ptr[index++]);
91 uint32_t name_offset = be32toh(ptr[index++]);
92 name_offset += be32toh(header->strings_offset);
93
94 if (prop) {
95 prop->name = (char *)((uint8_t *)blob + name_offset);
96 prop->data = &ptr[index];
97 prop->size = size;
98 }
99
100 index += DIV_ROUND_UP(size, sizeof(uint32_t));
101
102 return index * sizeof(uint32_t);
103 }
104
105 /*
106 * fdt_next_node_name reads a node name
107 *
108 * @params blob address of FDT
109 * @params offset offset to the node to read the name from
110 * @params name parameter to hold the name that has been read or NULL
111 *
112 * @returns Either 0 on error or offset to the properties that come after the node name
113 */
fdt_next_node_name(const void * blob,uint32_t offset,const char ** name)114 int fdt_next_node_name(const void *blob, uint32_t offset, const char **name)
115 {
116 // skip NOP tokens
117 offset += fdt_skip_nops(blob, offset);
118
119 char *ptr = ((char *)blob) + offset;
120 if (be32dec(ptr) != FDT_TOKEN_BEGIN_NODE)
121 return 0;
122
123 ptr += 4;
124 if (name)
125 *name = ptr;
126
127 return ALIGN_UP(strlen(ptr) + 1, 4) + 4;
128 }
129
130 /*
131 * A utility function to skip past nodes in flattened trees.
132 */
fdt_skip_node(const void * blob,uint32_t start_offset)133 int fdt_skip_node(const void *blob, uint32_t start_offset)
134 {
135 uint32_t offset = start_offset;
136
137 const char *name;
138 int size = fdt_next_node_name(blob, offset, &name);
139 if (!size)
140 return 0;
141 offset += size;
142
143 while ((size = fdt_next_property(blob, offset, NULL)))
144 offset += size;
145
146 while ((size = fdt_skip_node(blob, offset)))
147 offset += size;
148
149 // skip NOP tokens
150 offset += fdt_skip_nops(blob, offset);
151
152 return offset - start_offset + sizeof(uint32_t);
153 }
154
155 /*
156 * fdt_read_prop reads a property inside a node
157 *
158 * @params blob address of FDT
159 * @params node_offset offset to the node to read the property from
160 * @params prop_name name of the property to read
161 * @params fdt_prop property is saved inside this parameter
162 *
163 * @returns Either 0 if no property has been found or an offset that points to the location
164 * of the property
165 */
fdt_read_prop(const void * blob,u32 node_offset,const char * prop_name,struct fdt_property * fdt_prop)166 u32 fdt_read_prop(const void *blob, u32 node_offset, const char *prop_name,
167 struct fdt_property *fdt_prop)
168 {
169 u32 offset = node_offset;
170
171 offset += fdt_next_node_name(blob, offset, NULL); // skip node name
172
173 size_t size;
174 while ((size = fdt_next_property(blob, offset, fdt_prop))) {
175 if (strcmp(fdt_prop->name, prop_name) == 0)
176 return offset;
177 offset += size;
178 }
179 return 0; // property not found
180 }
181
182 /*
183 * fdt_read_reg_prop reads the reg property inside a node
184 *
185 * @params blob address of FDT
186 * @params node_offset offset to the node to read the reg property from
187 * @params addr_cells number of cells used for one address
188 * @params size_cells number of cells used for one size
189 * @params regions all regions that are read inside the reg property are saved inside
190 * this array
191 * @params regions_count maximum number of entries that can be saved inside the regions array.
192 *
193 * Returns: Either 0 on error or returns the number of regions put into the regions array.
194 */
fdt_read_reg_prop(const void * blob,u32 node_offset,u32 addr_cells,u32 size_cells,struct device_tree_region regions[],size_t regions_count)195 u32 fdt_read_reg_prop(const void *blob, u32 node_offset, u32 addr_cells, u32 size_cells,
196 struct device_tree_region regions[], size_t regions_count)
197 {
198 struct fdt_property prop;
199 u32 offset = fdt_read_prop(blob, node_offset, "reg", &prop);
200
201 if (!offset) {
202 printk(BIOS_DEBUG, "no reg property found in node_offset: %x\n", node_offset);
203 return 0;
204 }
205
206 // we found the reg property, now need to parse all regions in 'reg'
207 size_t count = prop.size / (4 * addr_cells + 4 * size_cells);
208 if (count > regions_count) {
209 printk(BIOS_ERR, "reg property at node_offset: %x has more entries (%zd) than regions array can hold (%zd)\n", node_offset, count, regions_count);
210 count = regions_count;
211 }
212 if (addr_cells > 2 || size_cells > 2) {
213 printk(BIOS_ERR, "addr_cells (%d) or size_cells (%d) bigger than 2\n",
214 addr_cells, size_cells);
215 return 0;
216 }
217 uint32_t *ptr = prop.data;
218 for (int i = 0; i < count; i++) {
219 if (addr_cells == 1)
220 regions[i].addr = be32dec(ptr);
221 else if (addr_cells == 2)
222 regions[i].addr = be64dec(ptr);
223 ptr += addr_cells;
224 if (size_cells == 1)
225 regions[i].size = be32dec(ptr);
226 else if (size_cells == 2)
227 regions[i].size = be64dec(ptr);
228 ptr += size_cells;
229 }
230
231 return count; // return the number of regions found in the reg property
232 }
233
fdt_read_cell_props(const void * blob,u32 node_offset,u32 * addrcp,u32 * sizecp)234 static u32 fdt_read_cell_props(const void *blob, u32 node_offset, u32 *addrcp, u32 *sizecp)
235 {
236 struct fdt_property prop;
237 u32 offset = node_offset;
238 size_t size;
239 while ((size = fdt_next_property(blob, offset, &prop))) {
240 if (addrcp && !strcmp(prop.name, "#address-cells"))
241 *addrcp = be32dec(prop.data);
242 if (sizecp && !strcmp(prop.name, "#size-cells"))
243 *sizecp = be32dec(prop.data);
244 offset += size;
245 }
246 return offset;
247 }
248
249 /*
250 * fdt_find_node searches for a node relative to another node
251 *
252 * @params blob address of FDT
253 *
254 * @params parent_node_offset offset to node from which to traverse the tree
255 *
256 * @params path null terminated array of node names specifying a
257 * relative path (e.g: { "cpus", "cpu0", NULL })
258 *
259 * @params addrcp/sizecp If any address-cells and size-cells properties are found that are
260 * part of the parent node of the node we are looking, addrcp and sizecp
261 * are set to these respectively.
262 *
263 * @returns: Either 0 if no node has been found or the offset to the node found
264 */
fdt_find_node(const void * blob,u32 parent_node_offset,char ** path,u32 * addrcp,u32 * sizecp)265 static u32 fdt_find_node(const void *blob, u32 parent_node_offset, char **path,
266 u32 *addrcp, u32 *sizecp)
267 {
268 if (*path == NULL)
269 return parent_node_offset; // node found
270
271 size_t size = fdt_next_node_name(blob, parent_node_offset, NULL); // skip node name
272
273 /*
274 * get address-cells and size-cells properties while skipping the others.
275 * According to spec address-cells and size-cells are not inherited, but we
276 * intentionally follow the Linux implementation here and treat them as inheritable.
277 */
278 u32 node_offset = fdt_read_cell_props(blob, parent_node_offset + size, addrcp, sizecp);
279
280 const char *node_name;
281 // walk all children nodes
282 while ((size = fdt_next_node_name(blob, node_offset, &node_name))) {
283 if (!strcmp(*path, node_name)) {
284 // traverse one level deeper into the path
285 return fdt_find_node(blob, node_offset, path + 1, addrcp, sizecp);
286 }
287 // node is not the correct one. skip current node
288 node_offset += fdt_skip_node(blob, node_offset);
289 }
290
291 // we have searched everything and could not find a fitting node
292 return 0;
293 }
294
295 /*
296 * fdt_find_node_by_path finds a node behind a given node path
297 *
298 * @params blob address of FDT
299 * @params path absolute path to the node that should be searched for
300 *
301 * @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
302 * value found in the node of the node specified by node_offset. Either
303 * may be NULL to ignore. If no #address-cells and #size-cells is found
304 * default values of #address-cells=2 and #size-cells=1 are returned.
305 *
306 * @returns Either 0 on error or the offset to the node found behind the path
307 */
fdt_find_node_by_path(const void * blob,const char * path,u32 * addrcp,u32 * sizecp)308 u32 fdt_find_node_by_path(const void *blob, const char *path, u32 *addrcp, u32 *sizecp)
309 {
310 // sanity check
311 if (path[0] != '/') {
312 printk(BIOS_ERR, "devicetree path must start with a /\n");
313 return 0;
314 }
315 if (!blob) {
316 printk(BIOS_ERR, "devicetree blob is NULL\n");
317 return 0;
318 }
319
320 if (addrcp)
321 *addrcp = 2;
322 if (sizecp)
323 *sizecp = 1;
324
325 struct fdt_header *fdt_hdr = (struct fdt_header *)blob;
326
327 /*
328 * split path into separate nodes
329 * e.g: "/cpus/cpu0" -> { "cpus", "cpu0" }
330 */
331 char *path_array[FDT_PATH_MAX_DEPTH];
332 size_t path_size = strlen(path);
333 assert(path_size < FDT_PATH_MAX_LEN);
334 char path_copy[FDT_PATH_MAX_LEN];
335 memcpy(path_copy, path, path_size + 1);
336 char *cur = path_copy;
337 int i;
338 for (i = 0; i < FDT_PATH_MAX_DEPTH; i++) {
339 path_array[i] = strtok_r(NULL, "/", &cur);
340 if (!path_array[i])
341 break;
342 }
343 assert(i < FDT_PATH_MAX_DEPTH);
344
345 return fdt_find_node(blob, be32toh(fdt_hdr->structure_offset), path_array, addrcp, sizecp);
346 }
347
348 /*
349 * fdt_find_subnodes_by_prefix finds a node with a given prefix relative to a parent node
350 *
351 * @params blob The FDT to search.
352 *
353 * @params node_offset offset to the node of which the children should be searched
354 *
355 * @params prefix A string to search for a node with a given prefix. This can for example
356 * be 'cpu' to look for all nodes matching this prefix. Only children of
357 * node_offset are searched. Therefore in order to search all nodes matching
358 * the 'cpu' prefix, node_offset should probably point to the 'cpus' node.
359 * An empty prefix ("") searches for all children nodes of node_offset.
360 *
361 * @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
362 * value found in the node of the node specified by node_offset. Either
363 * may be NULL to ignore. If no #address-cells and #size-cells is found
364 * addrcp and sizecp are left untouched.
365 *
366 * @params results Array of offsets pointing to each node matching the given prefix.
367 * @params results_len Number of entries allocated for the 'results' array
368 *
369 * @returns offset to last node found behind path or 0 if no node has been found
370 */
fdt_find_subnodes_by_prefix(const void * blob,u32 node_offset,const char * prefix,u32 * addrcp,u32 * sizecp,u32 * results,size_t results_len)371 size_t fdt_find_subnodes_by_prefix(const void *blob, u32 node_offset, const char *prefix,
372 u32 *addrcp, u32 *sizecp, u32 *results, size_t results_len)
373 {
374 // sanity checks
375 if (!blob || !results || !prefix) {
376 printk(BIOS_ERR, "%s: input parameter cannot be null/\n", __func__);
377 return 0;
378 }
379
380 u32 offset = node_offset;
381
382 // we don't care about the name of the current node
383 u32 size = fdt_next_node_name(blob, offset, NULL);
384 if (!size) {
385 printk(BIOS_ERR, "%s: node_offset: %x does not point to a node\n",
386 __func__, node_offset);
387 return 0;
388 }
389 offset += size;
390
391 /*
392 * update addrcp and sizecp if the node contains an address-cells and size-cells
393 * property. Otherwise use addrcp and sizecp provided by caller.
394 */
395 offset = fdt_read_cell_props(blob, offset, addrcp, sizecp);
396
397 size_t count_results = 0;
398 int prefix_len = strlen(prefix);
399 const char *node_name;
400 // walk all children nodes of offset
401 while ((size = fdt_next_node_name(blob, offset, &node_name))) {
402
403 if (count_results >= results_len) {
404 printk(BIOS_WARNING,
405 "%s: results_len (%zd) smaller than count_results (%zd)\n",
406 __func__, results_len, count_results);
407 break;
408 }
409
410 if (!strncmp(prefix, node_name, prefix_len)) {
411 // we found a node that matches the prefix
412 results[count_results++] = offset;
413 }
414
415 // node does not match the prefix. skip current node
416 offset += fdt_skip_node(blob, offset);
417 }
418
419 // return last occurrence
420 return count_results;
421 }
422
fdt_read_alias_prop(const void * blob,const char * alias_name)423 static const char *fdt_read_alias_prop(const void *blob, const char *alias_name)
424 {
425 u32 node_offset = fdt_find_node_by_path(blob, "/aliases", NULL, NULL);
426 if (!node_offset) {
427 printk(BIOS_DEBUG, "no /aliases node found\n");
428 return NULL;
429 }
430 struct fdt_property alias_prop;
431 if (!fdt_read_prop(blob, node_offset, alias_name, &alias_prop)) {
432 printk(BIOS_DEBUG, "property %s in /aliases node not found\n", alias_name);
433 return NULL;
434 }
435 return (const char *)alias_prop.data;
436 }
437
438 /*
439 * Find a node in the tree from a string device tree path.
440 *
441 * @params blob Address to the FDT
442 * @params alias_name node name alias that should be searched for.
443 * @params addrcp/sizecp Pointer that will be updated with any #address-cells and #size-cells
444 * value found in the node of the node specified by node_offset. Either
445 * may be NULL to ignore. If no #address-cells and #size-cells is found
446 * default values of #address-cells=2 and #size-cells=1 are returned.
447 *
448 * @returns offset to last node found behind path or 0 if no node has been found
449 */
fdt_find_node_by_alias(const void * blob,const char * alias_name,u32 * addrcp,u32 * sizecp)450 u32 fdt_find_node_by_alias(const void *blob, const char *alias_name, u32 *addrcp, u32 *sizecp)
451 {
452 const char *node_name = fdt_read_alias_prop(blob, alias_name);
453 if (!node_name) {
454 printk(BIOS_DEBUG, "alias %s not found\n", alias_name);
455 return 0;
456 }
457
458 u32 node_offset = fdt_find_node_by_path(blob, node_name, addrcp, sizecp);
459 if (!node_offset) {
460 // This should not happen (invalid devicetree)
461 printk(BIOS_WARNING,
462 "Could not find node '%s', which alias was referring to '%s'\n",
463 node_name, alias_name);
464 return 0;
465 }
466 return node_offset;
467 }
468
469
470 /*
471 * Functions for printing flattened trees.
472 */
473
print_indent(int depth)474 static void print_indent(int depth)
475 {
476 printk(BIOS_DEBUG, "%*s", depth * 8, "");
477 }
478
print_property(const struct fdt_property * prop,int depth)479 static void print_property(const struct fdt_property *prop, int depth)
480 {
481 int is_string = prop->size > 0 &&
482 ((char *)prop->data)[prop->size - 1] == '\0';
483
484 if (is_string) {
485 for (int i = 0; i < prop->size - 1; i++) {
486 if (!isprint(((char *)prop->data)[i])) {
487 is_string = 0;
488 break;
489 }
490 }
491 }
492
493 print_indent(depth);
494 if (is_string) {
495 printk(BIOS_DEBUG, "%s = \"%s\";\n",
496 prop->name, (const char *)prop->data);
497 } else {
498 printk(BIOS_DEBUG, "%s = < ", prop->name);
499 for (int i = 0; i < MIN(128, prop->size); i += 4) {
500 uint32_t val = 0;
501 for (int j = 0; j < MIN(4, prop->size - i); j++)
502 val |= ((uint8_t *)prop->data)[i + j] <<
503 (24 - j * 8);
504 printk(BIOS_DEBUG, "%#.2x ", val);
505 }
506 if (prop->size > 128)
507 printk(BIOS_DEBUG, "...");
508 printk(BIOS_DEBUG, ">;\n");
509 }
510 }
511
print_flat_node(const void * blob,uint32_t start_offset,int depth)512 static int print_flat_node(const void *blob, uint32_t start_offset, int depth)
513 {
514 int offset = start_offset;
515 const char *name;
516 int size;
517
518 size = fdt_next_node_name(blob, offset, &name);
519 if (!size)
520 return 0;
521 offset += size;
522
523 print_indent(depth);
524 printk(BIOS_DEBUG, "%s {\n", name);
525
526 struct fdt_property prop;
527 while ((size = fdt_next_property(blob, offset, &prop))) {
528 print_property(&prop, depth + 1);
529
530 offset += size;
531 }
532
533 printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
534
535 while ((size = print_flat_node(blob, offset, depth + 1)))
536 offset += size;
537
538 print_indent(depth);
539 printk(BIOS_DEBUG, "}\n");
540
541 return offset - start_offset + sizeof(uint32_t);
542 }
543
fdt_print_node(const void * blob,uint32_t offset)544 void fdt_print_node(const void *blob, uint32_t offset)
545 {
546 print_flat_node(blob, offset, 0);
547 }
548
549 /*
550 * fdt_read_memory_regions finds memory ranges from a flat device-tree
551 *
552 * @params blob address of FDT
553 * @params regions all regions that are read inside the reg property of
554 * memory nodes are saved inside this array
555 * @params regions_count maximum number of entries that can be saved inside
556 * the regions array.
557 *
558 * Returns: Either 0 on error or returns the number of regions put into the regions array.
559 */
fdt_read_memory_regions(const void * blob,struct device_tree_region regions[],size_t regions_count)560 size_t fdt_read_memory_regions(const void *blob,
561 struct device_tree_region regions[],
562 size_t regions_count)
563 {
564 u32 node, root, addrcp, sizecp;
565 u32 nodes[FDT_MAX_MEMORY_NODES] = {0};
566 size_t region_idx = 0;
567 size_t node_count = 0;
568
569 if (!fdt_is_valid(blob))
570 return 0;
571
572 node = fdt_find_node_by_path(blob, "/memory", &addrcp, &sizecp);
573 if (node) {
574 region_idx += fdt_read_reg_prop(blob, node, addrcp, sizecp,
575 regions, regions_count);
576 if (region_idx >= regions_count) {
577 printk(BIOS_WARNING, "FDT: Too many memory regions\n");
578 goto out;
579 }
580 }
581
582 root = fdt_find_node_by_path(blob, "/", &addrcp, &sizecp);
583 node_count = fdt_find_subnodes_by_prefix(blob, root, "memory@",
584 &addrcp, &sizecp, nodes,
585 FDT_MAX_MEMORY_NODES);
586 if (node_count >= FDT_MAX_MEMORY_NODES) {
587 printk(BIOS_WARNING, "FDT: Too many memory nodes\n");
588 /* Can still reading the regions for those we got */
589 }
590
591 for (size_t i = 0; i < MIN(node_count, FDT_MAX_MEMORY_NODES); i++) {
592 region_idx += fdt_read_reg_prop(blob, nodes[i], addrcp, sizecp,
593 ®ions[region_idx],
594 regions_count - region_idx);
595 if (region_idx >= regions_count) {
596 printk(BIOS_WARNING, "FDT: Too many memory regions\n");
597 goto out;
598 }
599 }
600
601 out:
602 for (size_t i = 0; i < MIN(region_idx, regions_count); i++) {
603 printk(BIOS_DEBUG, "FDT: Memory region [%#llx - %#llx]\n",
604 regions[i].addr, regions[i].addr + regions[i].size);
605 }
606
607 return region_idx;
608 }
609
610 /*
611 * fdt_get_memory_top finds top of memory from a flat device-tree
612 *
613 * @params blob address of FDT
614 *
615 * Returns: Either 0 on error or returns the maximum memory address
616 */
fdt_get_memory_top(const void * blob)617 uint64_t fdt_get_memory_top(const void *blob)
618 {
619 struct device_tree_region regions[FDT_MAX_MEMORY_REGIONS] = {0};
620 uint64_t top = 0;
621 uint64_t total = 0;
622 size_t count;
623
624 if (!fdt_is_valid(blob))
625 return 0;
626
627 count = fdt_read_memory_regions(blob, regions, FDT_MAX_MEMORY_REGIONS);
628 for (size_t i = 0; i < MIN(count, FDT_MAX_MEMORY_REGIONS); i++) {
629 top = MAX(top, regions[i].addr + regions[i].size);
630 total += regions[i].size;
631 }
632
633 printk(BIOS_DEBUG, "FDT: Found %u MiB of RAM\n",
634 (uint32_t)(total / MiB));
635
636 return top;
637 }
638
639 /*
640 * Functions to turn a flattened tree into an unflattened one.
641 */
642
dt_prop_is_phandle(struct device_tree_property * prop)643 static int dt_prop_is_phandle(struct device_tree_property *prop)
644 {
645 return !(strcmp("phandle", prop->prop.name) &&
646 strcmp("linux,phandle", prop->prop.name));
647 }
648
fdt_unflatten_node(const void * blob,uint32_t start_offset,struct device_tree * tree,struct device_tree_node ** new_node)649 static int fdt_unflatten_node(const void *blob, uint32_t start_offset,
650 struct device_tree *tree,
651 struct device_tree_node **new_node)
652 {
653 struct list_node *last;
654 int offset = start_offset;
655 const char *name;
656 int size;
657
658 size = fdt_next_node_name(blob, offset, &name);
659 if (!size)
660 return 0;
661 offset += size;
662
663 struct device_tree_node *node = alloc_node();
664 *new_node = node;
665 node->name = name;
666
667 struct fdt_property fprop;
668 last = &node->properties;
669 while ((size = fdt_next_property(blob, offset, &fprop))) {
670 struct device_tree_property *prop = alloc_prop();
671 prop->prop = fprop;
672
673 if (dt_prop_is_phandle(prop)) {
674 node->phandle = be32dec(prop->prop.data);
675 if (node->phandle > tree->max_phandle)
676 tree->max_phandle = node->phandle;
677 }
678
679 list_insert_after(&prop->list_node, last);
680 last = &prop->list_node;
681
682 offset += size;
683 }
684
685 struct device_tree_node *child;
686 last = &node->children;
687 while ((size = fdt_unflatten_node(blob, offset, tree, &child))) {
688 list_insert_after(&child->list_node, last);
689 last = &child->list_node;
690
691 offset += size;
692 }
693
694 return offset - start_offset + sizeof(uint32_t);
695 }
696
fdt_unflatten_map_entry(const void * blob,uint32_t offset,struct device_tree_reserve_map_entry ** new)697 static int fdt_unflatten_map_entry(const void *blob, uint32_t offset,
698 struct device_tree_reserve_map_entry **new)
699 {
700 const uint64_t *ptr = (const uint64_t *)(((uint8_t *)blob) + offset);
701 const uint64_t start = be64toh(ptr[0]);
702 const uint64_t size = be64toh(ptr[1]);
703
704 if (!size)
705 return 0;
706
707 struct device_tree_reserve_map_entry *entry = xzalloc(sizeof(*entry));
708 *new = entry;
709 entry->start = start;
710 entry->size = size;
711
712 return sizeof(uint64_t) * 2;
713 }
714
fdt_is_valid(const void * blob)715 bool fdt_is_valid(const void *blob)
716 {
717 const struct fdt_header *header = (const struct fdt_header *)blob;
718
719 uint32_t magic = be32toh(header->magic);
720 uint32_t version = be32toh(header->version);
721 uint32_t last_comp_version = be32toh(header->last_comp_version);
722
723 if (magic != FDT_HEADER_MAGIC) {
724 printk(BIOS_ERR, "Invalid device tree magic %#.8x!\n", magic);
725 return false;
726 }
727 if (last_comp_version > FDT_SUPPORTED_VERSION) {
728 printk(BIOS_ERR, "Unsupported device tree version %u(>=%u)\n",
729 version, last_comp_version);
730 return false;
731 }
732 if (version > FDT_SUPPORTED_VERSION)
733 printk(BIOS_NOTICE, "FDT version %u too new, should add support!\n",
734 version);
735 return true;
736 }
737
fdt_unflatten(const void * blob)738 struct device_tree *fdt_unflatten(const void *blob)
739 {
740 struct device_tree *tree = xzalloc(sizeof(*tree));
741 const struct fdt_header *header = (const struct fdt_header *)blob;
742 tree->header = header;
743
744 if (!fdt_is_valid(blob))
745 return NULL;
746
747 uint32_t struct_offset = be32toh(header->structure_offset);
748 uint32_t strings_offset = be32toh(header->strings_offset);
749 uint32_t reserve_offset = be32toh(header->reserve_map_offset);
750 uint32_t min_offset = 0;
751 min_offset = MIN(struct_offset, strings_offset);
752 min_offset = MIN(min_offset, reserve_offset);
753 /* Assume everything up to the first non-header component is part of
754 the header and needs to be preserved. This will protect us against
755 new elements being added in the future. */
756 tree->header_size = min_offset;
757
758 struct device_tree_reserve_map_entry *entry;
759 uint32_t offset = reserve_offset;
760 int size;
761 struct list_node *last = &tree->reserve_map;
762 while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
763 list_insert_after(&entry->list_node, last);
764 last = &entry->list_node;
765
766 offset += size;
767 }
768
769 fdt_unflatten_node(blob, struct_offset, tree, &tree->root);
770
771 return tree;
772 }
773
774
775
776 /*
777 * Functions to find the size of the device tree if it was flattened.
778 */
779
dt_flat_prop_size(struct device_tree_property * prop,uint32_t * struct_size,uint32_t * strings_size)780 static void dt_flat_prop_size(struct device_tree_property *prop,
781 uint32_t *struct_size, uint32_t *strings_size)
782 {
783 /* Starting token. */
784 *struct_size += sizeof(uint32_t);
785 /* Size. */
786 *struct_size += sizeof(uint32_t);
787 /* Name offset. */
788 *struct_size += sizeof(uint32_t);
789 /* Property value. */
790 *struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
791
792 /* Property name. */
793 *strings_size += strlen(prop->prop.name) + 1;
794 }
795
dt_flat_node_size(struct device_tree_node * node,uint32_t * struct_size,uint32_t * strings_size)796 static void dt_flat_node_size(struct device_tree_node *node,
797 uint32_t *struct_size, uint32_t *strings_size)
798 {
799 /* Starting token. */
800 *struct_size += sizeof(uint32_t);
801 /* Node name. */
802 *struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
803
804 struct device_tree_property *prop;
805 list_for_each(prop, node->properties, list_node)
806 dt_flat_prop_size(prop, struct_size, strings_size);
807
808 struct device_tree_node *child;
809 list_for_each(child, node->children, list_node)
810 dt_flat_node_size(child, struct_size, strings_size);
811
812 /* End token. */
813 *struct_size += sizeof(uint32_t);
814 }
815
dt_flat_size(const struct device_tree * tree)816 uint32_t dt_flat_size(const struct device_tree *tree)
817 {
818 uint32_t size = tree->header_size;
819 struct device_tree_reserve_map_entry *entry;
820 list_for_each(entry, tree->reserve_map, list_node)
821 size += sizeof(uint64_t) * 2;
822 size += sizeof(uint64_t) * 2;
823
824 uint32_t struct_size = 0;
825 uint32_t strings_size = 0;
826 dt_flat_node_size(tree->root, &struct_size, &strings_size);
827
828 size += struct_size;
829 /* End token. */
830 size += sizeof(uint32_t);
831
832 size += strings_size;
833
834 return size;
835 }
836
837
838
839 /*
840 * Functions to flatten a device tree.
841 */
842
dt_flatten_map_entry(struct device_tree_reserve_map_entry * entry,void ** map_start)843 static void dt_flatten_map_entry(struct device_tree_reserve_map_entry *entry,
844 void **map_start)
845 {
846 ((uint64_t *)*map_start)[0] = htobe64(entry->start);
847 ((uint64_t *)*map_start)[1] = htobe64(entry->size);
848 *map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
849 }
850
dt_flatten_prop(struct device_tree_property * prop,void ** struct_start,void * strings_base,void ** strings_start)851 static void dt_flatten_prop(struct device_tree_property *prop,
852 void **struct_start, void *strings_base,
853 void **strings_start)
854 {
855 uint8_t *dstruct = (uint8_t *)*struct_start;
856 uint8_t *dstrings = (uint8_t *)*strings_start;
857
858 be32enc(dstruct, FDT_TOKEN_PROPERTY);
859 dstruct += sizeof(uint32_t);
860
861 be32enc(dstruct, prop->prop.size);
862 dstruct += sizeof(uint32_t);
863
864 uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
865 be32enc(dstruct, name_offset);
866 dstruct += sizeof(uint32_t);
867
868 strcpy((char *)dstrings, prop->prop.name);
869 dstrings += strlen(prop->prop.name) + 1;
870
871 memcpy(dstruct, prop->prop.data, prop->prop.size);
872 dstruct += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
873
874 *struct_start = dstruct;
875 *strings_start = dstrings;
876 }
877
dt_flatten_node(const struct device_tree_node * node,void ** struct_start,void * strings_base,void ** strings_start)878 static void dt_flatten_node(const struct device_tree_node *node,
879 void **struct_start, void *strings_base,
880 void **strings_start)
881 {
882 uint8_t *dstruct = (uint8_t *)*struct_start;
883 uint8_t *dstrings = (uint8_t *)*strings_start;
884
885 be32enc(dstruct, FDT_TOKEN_BEGIN_NODE);
886 dstruct += sizeof(uint32_t);
887
888 strcpy((char *)dstruct, node->name);
889 dstruct += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
890
891 struct device_tree_property *prop;
892 list_for_each(prop, node->properties, list_node)
893 dt_flatten_prop(prop, (void **)&dstruct, strings_base,
894 (void **)&dstrings);
895
896 struct device_tree_node *child;
897 list_for_each(child, node->children, list_node)
898 dt_flatten_node(child, (void **)&dstruct, strings_base,
899 (void **)&dstrings);
900
901 be32enc(dstruct, FDT_TOKEN_END_NODE);
902 dstruct += sizeof(uint32_t);
903
904 *struct_start = dstruct;
905 *strings_start = dstrings;
906 }
907
dt_flatten(const struct device_tree * tree,void * start_dest)908 void dt_flatten(const struct device_tree *tree, void *start_dest)
909 {
910 uint8_t *dest = (uint8_t *)start_dest;
911
912 memcpy(dest, tree->header, tree->header_size);
913 struct fdt_header *header = (struct fdt_header *)dest;
914 dest += tree->header_size;
915
916 struct device_tree_reserve_map_entry *entry;
917 list_for_each(entry, tree->reserve_map, list_node)
918 dt_flatten_map_entry(entry, (void **)&dest);
919 ((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
920 dest += sizeof(uint64_t) * 2;
921
922 uint32_t struct_size = 0;
923 uint32_t strings_size = 0;
924 dt_flat_node_size(tree->root, &struct_size, &strings_size);
925
926 uint8_t *struct_start = dest;
927 header->structure_offset = htobe32(dest - (uint8_t *)start_dest);
928 header->structure_size = htobe32(struct_size);
929 dest += struct_size;
930
931 *((uint32_t *)dest) = htobe32(FDT_TOKEN_END);
932 dest += sizeof(uint32_t);
933
934 uint8_t *strings_start = dest;
935 header->strings_offset = htobe32(dest - (uint8_t *)start_dest);
936 header->strings_size = htobe32(strings_size);
937 dest += strings_size;
938
939 dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
940 (void **)&strings_start);
941
942 header->totalsize = htobe32(dest - (uint8_t *)start_dest);
943 }
944
945
946
947 /*
948 * Functions for printing a non-flattened device tree.
949 */
950
print_node(const struct device_tree_node * node,int depth)951 static void print_node(const struct device_tree_node *node, int depth)
952 {
953 print_indent(depth);
954 if (depth == 0) /* root node has no name, print a starting slash */
955 printk(BIOS_DEBUG, "/");
956 printk(BIOS_DEBUG, "%s {\n", node->name);
957
958 struct device_tree_property *prop;
959 list_for_each(prop, node->properties, list_node)
960 print_property(&prop->prop, depth + 1);
961
962 printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
963
964 struct device_tree_node *child;
965 list_for_each(child, node->children, list_node)
966 print_node(child, depth + 1);
967
968 print_indent(depth);
969 printk(BIOS_DEBUG, "};\n");
970 }
971
dt_print_node(const struct device_tree_node * node)972 void dt_print_node(const struct device_tree_node *node)
973 {
974 print_node(node, 0);
975 }
976
977
978
979 /*
980 * Functions for reading and manipulating an unflattened device tree.
981 */
982
983 /*
984 * Read #address-cells and #size-cells properties from a node.
985 *
986 * @param node The device tree node to read from.
987 * @param addrcp Pointer to store #address-cells in, skipped if NULL.
988 * @param sizecp Pointer to store #size-cells in, skipped if NULL.
989 */
dt_read_cell_props(const struct device_tree_node * node,u32 * addrcp,u32 * sizecp)990 void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp,
991 u32 *sizecp)
992 {
993 struct device_tree_property *prop;
994 list_for_each(prop, node->properties, list_node) {
995 if (addrcp && !strcmp("#address-cells", prop->prop.name))
996 *addrcp = be32dec(prop->prop.data);
997 if (sizecp && !strcmp("#size-cells", prop->prop.name))
998 *sizecp = be32dec(prop->prop.data);
999 }
1000 }
1001
1002 /*
1003 * Find a node from a device tree path, relative to a parent node.
1004 *
1005 * @param parent The node from which to start the relative path lookup.
1006 * @param path An array of path component strings that will be looked
1007 * up in order to find the node. Must be terminated with
1008 * a NULL pointer. Example: {'firmware', 'coreboot', NULL}
1009 * @param addrcp Pointer that will be updated with any #address-cells
1010 * value found in the path. May be NULL to ignore.
1011 * @param sizecp Pointer that will be updated with any #size-cells
1012 * value found in the path. May be NULL to ignore.
1013 * @param create 1: Create node(s) if not found. 0: Return NULL instead.
1014 * @return The found/created node, or NULL.
1015 */
dt_find_node(struct device_tree_node * parent,const char ** path,u32 * addrcp,u32 * sizecp,int create)1016 struct device_tree_node *dt_find_node(struct device_tree_node *parent,
1017 const char **path, u32 *addrcp,
1018 u32 *sizecp, int create)
1019 {
1020 struct device_tree_node *node, *found = NULL;
1021
1022 /* Update #address-cells and #size-cells for this level. */
1023 dt_read_cell_props(parent, addrcp, sizecp);
1024
1025 if (!*path)
1026 return parent;
1027
1028 /* Find the next node in the path, if it exists. */
1029 list_for_each(node, parent->children, list_node) {
1030 if (!strcmp(node->name, *path)) {
1031 found = node;
1032 break;
1033 }
1034 }
1035
1036 /* Otherwise create it or return NULL. */
1037 if (!found) {
1038 if (!create)
1039 return NULL;
1040
1041 found = alloc_node();
1042 found->name = strdup(*path);
1043 if (!found->name)
1044 return NULL;
1045
1046 list_insert_after(&found->list_node, &parent->children);
1047 }
1048
1049 return dt_find_node(found, path + 1, addrcp, sizecp, create);
1050 }
1051
1052 /*
1053 * Find a node in the tree from a string device tree path.
1054 *
1055 * @param tree The device tree to search.
1056 * @param path A string representing a path in the device tree, with
1057 * nodes separated by '/'. Example: "/firmware/coreboot"
1058 * @param addrcp Pointer that will be updated with any #address-cells
1059 * value found in the path. May be NULL to ignore.
1060 * @param sizecp Pointer that will be updated with any #size-cells
1061 * value found in the path. May be NULL to ignore.
1062 * @param create 1: Create node(s) if not found. 0: Return NULL instead.
1063 * @return The found/created node, or NULL.
1064 *
1065 * It is the caller responsibility to provide a path string that doesn't end
1066 * with a '/' and doesn't contain any "//". If the path does not start with a
1067 * '/', the first segment is interpreted as an alias. */
dt_find_node_by_path(struct device_tree * tree,const char * path,u32 * addrcp,u32 * sizecp,int create)1068 struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
1069 const char *path, u32 *addrcp,
1070 u32 *sizecp, int create)
1071 {
1072 char *sub_path;
1073 char *duped_str;
1074 struct device_tree_node *parent;
1075 char *next_slash;
1076 /* Hopefully enough depth for any node. */
1077 const char *path_array[15];
1078 int i;
1079 struct device_tree_node *node = NULL;
1080
1081 if (path[0] == '/') { /* regular path */
1082 if (path[1] == '\0') { /* special case: "/" is root node */
1083 dt_read_cell_props(tree->root, addrcp, sizecp);
1084 return tree->root;
1085 }
1086
1087 sub_path = duped_str = strdup(&path[1]);
1088 if (!sub_path)
1089 return NULL;
1090
1091 parent = tree->root;
1092 } else { /* alias */
1093 char *alias;
1094
1095 alias = duped_str = strdup(path);
1096 if (!alias)
1097 return NULL;
1098
1099 sub_path = strchr(alias, '/');
1100 if (sub_path)
1101 *sub_path = '\0';
1102
1103 parent = dt_find_node_by_alias(tree, alias);
1104 if (!parent) {
1105 printk(BIOS_DEBUG,
1106 "Could not find node '%s', alias '%s' does not exist\n",
1107 path, alias);
1108 free(duped_str);
1109 return NULL;
1110 }
1111
1112 if (!sub_path) {
1113 /* it's just the alias, no sub-path */
1114 free(duped_str);
1115 return parent;
1116 }
1117
1118 sub_path++;
1119 }
1120
1121 next_slash = sub_path;
1122 path_array[0] = sub_path;
1123 for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
1124 next_slash = strchr(next_slash, '/');
1125 if (!next_slash)
1126 break;
1127
1128 *next_slash++ = '\0';
1129 path_array[i] = next_slash;
1130 }
1131
1132 if (!next_slash) {
1133 path_array[i] = NULL;
1134 node = dt_find_node(parent, path_array,
1135 addrcp, sizecp, create);
1136 }
1137
1138 free(duped_str);
1139 return node;
1140 }
1141
1142 /*
1143 * Find a node from an alias
1144 *
1145 * @param tree The device tree.
1146 * @param alias The alias name.
1147 * @return The found node, or NULL.
1148 */
dt_find_node_by_alias(struct device_tree * tree,const char * alias)1149 struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree,
1150 const char *alias)
1151 {
1152 struct device_tree_node *node;
1153 const char *alias_path;
1154
1155 node = dt_find_node_by_path(tree, "/aliases", NULL, NULL, 0);
1156 if (!node)
1157 return NULL;
1158
1159 alias_path = dt_find_string_prop(node, alias);
1160 if (!alias_path)
1161 return NULL;
1162
1163 return dt_find_node_by_path(tree, alias_path, NULL, NULL, 0);
1164 }
1165
dt_find_node_by_phandle(struct device_tree_node * root,uint32_t phandle)1166 struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root,
1167 uint32_t phandle)
1168 {
1169 if (!root)
1170 return NULL;
1171
1172 if (root->phandle == phandle)
1173 return root;
1174
1175 struct device_tree_node *node;
1176 struct device_tree_node *result;
1177 list_for_each(node, root->children, list_node) {
1178 result = dt_find_node_by_phandle(node, phandle);
1179 if (result)
1180 return result;
1181 }
1182
1183 return NULL;
1184 }
1185
1186 /*
1187 * Check if given node is compatible.
1188 *
1189 * @param node The node which is to be checked for compatible property.
1190 * @param compat The compatible string to match.
1191 * @return 1 = compatible, 0 = not compatible.
1192 */
dt_check_compat_match(struct device_tree_node * node,const char * compat)1193 static int dt_check_compat_match(struct device_tree_node *node,
1194 const char *compat)
1195 {
1196 struct device_tree_property *prop;
1197
1198 list_for_each(prop, node->properties, list_node) {
1199 if (!strcmp("compatible", prop->prop.name)) {
1200 size_t bytes = prop->prop.size;
1201 const char *str = prop->prop.data;
1202 while (bytes > 0) {
1203 if (!strncmp(compat, str, bytes))
1204 return 1;
1205 size_t len = strnlen(str, bytes) + 1;
1206 if (bytes <= len)
1207 break;
1208 str += len;
1209 bytes -= len;
1210 }
1211 break;
1212 }
1213 }
1214
1215 return 0;
1216 }
1217
1218 /*
1219 * Find a node from a compatible string, in the subtree of a parent node.
1220 *
1221 * @param parent The parent node under which to look.
1222 * @param compat The compatible string to find.
1223 * @return The found node, or NULL.
1224 */
dt_find_compat(struct device_tree_node * parent,const char * compat)1225 struct device_tree_node *dt_find_compat(struct device_tree_node *parent,
1226 const char *compat)
1227 {
1228 /* Check if the parent node itself is compatible. */
1229 if (dt_check_compat_match(parent, compat))
1230 return parent;
1231
1232 struct device_tree_node *child;
1233 list_for_each(child, parent->children, list_node) {
1234 struct device_tree_node *found = dt_find_compat(child, compat);
1235 if (found)
1236 return found;
1237 }
1238
1239 return NULL;
1240 }
1241
1242 /*
1243 * Find the next compatible child of a given parent. All children up to the
1244 * child passed in by caller are ignored. If child is NULL, it considers all the
1245 * children to find the first child which is compatible.
1246 *
1247 * @param parent The parent node under which to look.
1248 * @param child The child node to start search from (exclusive). If NULL
1249 * consider all children.
1250 * @param compat The compatible string to find.
1251 * @return The found node, or NULL.
1252 */
1253 struct device_tree_node *
dt_find_next_compat_child(struct device_tree_node * parent,struct device_tree_node * child,const char * compat)1254 dt_find_next_compat_child(struct device_tree_node *parent,
1255 struct device_tree_node *child,
1256 const char *compat)
1257 {
1258 struct device_tree_node *next;
1259 int ignore = 0;
1260
1261 if (child)
1262 ignore = 1;
1263
1264 list_for_each(next, parent->children, list_node) {
1265 if (ignore) {
1266 if (child == next)
1267 ignore = 0;
1268 continue;
1269 }
1270
1271 if (dt_check_compat_match(next, compat))
1272 return next;
1273 }
1274
1275 return NULL;
1276 }
1277
1278 /*
1279 * Find a node with matching property value, in the subtree of a parent node.
1280 *
1281 * @param parent The parent node under which to look.
1282 * @param name The property name to look for.
1283 * @param data The property value to look for.
1284 * @param size The property size.
1285 */
dt_find_prop_value(struct device_tree_node * parent,const char * name,void * data,size_t size)1286 struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent,
1287 const char *name, void *data,
1288 size_t size)
1289 {
1290 struct device_tree_property *prop;
1291
1292 /* Check if parent itself has the required property value. */
1293 list_for_each(prop, parent->properties, list_node) {
1294 if (!strcmp(name, prop->prop.name)) {
1295 size_t bytes = prop->prop.size;
1296 const void *prop_data = prop->prop.data;
1297 if (size != bytes)
1298 break;
1299 if (!memcmp(data, prop_data, size))
1300 return parent;
1301 break;
1302 }
1303 }
1304
1305 struct device_tree_node *child;
1306 list_for_each(child, parent->children, list_node) {
1307 struct device_tree_node *found = dt_find_prop_value(child, name,
1308 data, size);
1309 if (found)
1310 return found;
1311 }
1312 return NULL;
1313 }
1314
1315 /*
1316 * Write an arbitrary sized big-endian integer into a pointer.
1317 *
1318 * @param dest Pointer to the DT property data buffer to write.
1319 * @param src The integer to write (in CPU endianness).
1320 * @param length the length of the destination integer in bytes.
1321 */
dt_write_int(u8 * dest,u64 src,size_t length)1322 void dt_write_int(u8 *dest, u64 src, size_t length)
1323 {
1324 while (length--) {
1325 dest[length] = (u8)src;
1326 src >>= 8;
1327 }
1328 }
1329
1330 /*
1331 * Delete a property by name in a given node if it exists.
1332 *
1333 * @param node The device tree node to operate on.
1334 * @param name The name of the property to delete.
1335 */
dt_delete_prop(struct device_tree_node * node,const char * name)1336 void dt_delete_prop(struct device_tree_node *node, const char *name)
1337 {
1338 struct device_tree_property *prop;
1339
1340 list_for_each(prop, node->properties, list_node) {
1341 if (!strcmp(prop->prop.name, name)) {
1342 list_remove(&prop->list_node);
1343 return;
1344 }
1345 }
1346 }
1347
1348 /*
1349 * Add an arbitrary property to a node, or update it if it already exists.
1350 *
1351 * @param node The device tree node to add to.
1352 * @param name The name of the new property.
1353 * @param data The raw data blob to be stored in the property.
1354 * @param size The size of data in bytes.
1355 */
dt_add_bin_prop(struct device_tree_node * node,const char * name,void * data,size_t size)1356 void dt_add_bin_prop(struct device_tree_node *node, const char *name,
1357 void *data, size_t size)
1358 {
1359 struct device_tree_property *prop;
1360
1361 list_for_each(prop, node->properties, list_node) {
1362 if (!strcmp(prop->prop.name, name)) {
1363 prop->prop.data = data;
1364 prop->prop.size = size;
1365 return;
1366 }
1367 }
1368
1369 prop = alloc_prop();
1370 list_insert_after(&prop->list_node, &node->properties);
1371 prop->prop.name = name;
1372 prop->prop.data = data;
1373 prop->prop.size = size;
1374 }
1375
1376 /*
1377 * Find given string property in a node and return its content.
1378 *
1379 * @param node The device tree node to search.
1380 * @param name The name of the property.
1381 * @return The found string, or NULL.
1382 */
dt_find_string_prop(const struct device_tree_node * node,const char * name)1383 const char *dt_find_string_prop(const struct device_tree_node *node,
1384 const char *name)
1385 {
1386 const void *content;
1387 size_t size;
1388
1389 dt_find_bin_prop(node, name, &content, &size);
1390
1391 return content;
1392 }
1393
1394 /*
1395 * Find given property in a node.
1396 *
1397 * @param node The device tree node to search.
1398 * @param name The name of the property.
1399 * @param data Pointer to return raw data blob in the property.
1400 * @param size Pointer to return the size of data in bytes.
1401 */
dt_find_bin_prop(const struct device_tree_node * node,const char * name,const void ** data,size_t * size)1402 void dt_find_bin_prop(const struct device_tree_node *node, const char *name,
1403 const void **data, size_t *size)
1404 {
1405 struct device_tree_property *prop;
1406
1407 *data = NULL;
1408 *size = 0;
1409
1410 list_for_each(prop, node->properties, list_node) {
1411 if (!strcmp(prop->prop.name, name)) {
1412 *data = prop->prop.data;
1413 *size = prop->prop.size;
1414 return;
1415 }
1416 }
1417 }
1418
1419 /*
1420 * Add a string property to a node, or update it if it already exists.
1421 *
1422 * @param node The device tree node to add to.
1423 * @param name The name of the new property.
1424 * @param str The zero-terminated string to be stored in the property.
1425 */
dt_add_string_prop(struct device_tree_node * node,const char * name,const char * str)1426 void dt_add_string_prop(struct device_tree_node *node, const char *name,
1427 const char *str)
1428 {
1429 dt_add_bin_prop(node, name, (char *)str, strlen(str) + 1);
1430 }
1431
1432 /*
1433 * Add a 32-bit integer property to a node, or update it if it already exists.
1434 *
1435 * @param node The device tree node to add to.
1436 * @param name The name of the new property.
1437 * @param val The integer to be stored in the property.
1438 */
dt_add_u32_prop(struct device_tree_node * node,const char * name,u32 val)1439 void dt_add_u32_prop(struct device_tree_node *node, const char *name, u32 val)
1440 {
1441 u32 *val_ptr = xmalloc(sizeof(val));
1442 *val_ptr = htobe32(val);
1443 dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
1444 }
1445
1446 /*
1447 * Add a 64-bit integer property to a node, or update it if it already exists.
1448 *
1449 * @param node The device tree node to add to.
1450 * @param name The name of the new property.
1451 * @param val The integer to be stored in the property.
1452 */
dt_add_u64_prop(struct device_tree_node * node,const char * name,u64 val)1453 void dt_add_u64_prop(struct device_tree_node *node, const char *name, u64 val)
1454 {
1455 u64 *val_ptr = xmalloc(sizeof(val));
1456 *val_ptr = htobe64(val);
1457 dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
1458 }
1459
1460 /*
1461 * Add a 'reg' address list property to a node, or update it if it exists.
1462 *
1463 * @param node The device tree node to add to.
1464 * @param regions Array of address values to be stored in the property.
1465 * @param sizes Array of corresponding size values to 'addrs'.
1466 * @param count Number of values in 'addrs' and 'sizes' (must be equal).
1467 * @param addr_cells Value of #address-cells property valid for this node.
1468 * @param size_cells Value of #size-cells property valid for this node.
1469 */
dt_add_reg_prop(struct device_tree_node * node,u64 * addrs,u64 * sizes,int count,u32 addr_cells,u32 size_cells)1470 void dt_add_reg_prop(struct device_tree_node *node, u64 *addrs, u64 *sizes,
1471 int count, u32 addr_cells, u32 size_cells)
1472 {
1473 int i;
1474 size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
1475 u8 *data = xmalloc(length);
1476 u8 *cur = data;
1477
1478 for (i = 0; i < count; i++) {
1479 dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
1480 cur += addr_cells * sizeof(u32);
1481 dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
1482 cur += size_cells * sizeof(u32);
1483 }
1484
1485 dt_add_bin_prop(node, "reg", data, length);
1486 }
1487
1488 /*
1489 * Fixups to apply to a kernel's device tree before booting it.
1490 */
1491
1492 struct list_node device_tree_fixups;
1493
dt_apply_fixups(struct device_tree * tree)1494 int dt_apply_fixups(struct device_tree *tree)
1495 {
1496 struct device_tree_fixup *fixup;
1497 list_for_each(fixup, device_tree_fixups, list_node) {
1498 assert(fixup->fixup);
1499 if (fixup->fixup(fixup, tree))
1500 return 1;
1501 }
1502 return 0;
1503 }
1504
dt_set_bin_prop_by_path(struct device_tree * tree,const char * path,void * data,size_t data_size,int create)1505 int dt_set_bin_prop_by_path(struct device_tree *tree, const char *path,
1506 void *data, size_t data_size, int create)
1507 {
1508 char *path_copy, *prop_name;
1509 struct device_tree_node *dt_node;
1510
1511 path_copy = strdup(path);
1512
1513 if (!path_copy) {
1514 printk(BIOS_ERR, "Failed to allocate a copy of path %s\n",
1515 path);
1516 return 1;
1517 }
1518
1519 prop_name = strrchr(path_copy, '/');
1520 if (!prop_name) {
1521 free(path_copy);
1522 printk(BIOS_ERR, "Path %s does not include '/'\n", path);
1523 return 1;
1524 }
1525
1526 *prop_name++ = '\0'; /* Separate path from the property name. */
1527
1528 dt_node = dt_find_node_by_path(tree, path_copy, NULL,
1529 NULL, create);
1530
1531 if (!dt_node) {
1532 printk(BIOS_ERR, "Failed to %s %s in the device tree\n",
1533 create ? "create" : "find", path_copy);
1534 free(path_copy);
1535 return 1;
1536 }
1537
1538 dt_add_bin_prop(dt_node, prop_name, data, data_size);
1539 free(path_copy);
1540
1541 return 0;
1542 }
1543
1544 /*
1545 * Prepare the /reserved-memory/ node.
1546 *
1547 * Technically, this can be called more than one time, to init and/or retrieve
1548 * the node. But dt_add_u32_prop() may leak a bit of memory if you do.
1549 *
1550 * @tree: Device tree to add/retrieve from.
1551 * @return: The /reserved-memory/ node (or NULL, if error).
1552 */
dt_init_reserved_memory_node(struct device_tree * tree)1553 struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree)
1554 {
1555 struct device_tree_node *reserved;
1556 u32 addr = 0, size = 0;
1557
1558 reserved = dt_find_node_by_path(tree, "/reserved-memory", &addr,
1559 &size, 1);
1560 if (!reserved)
1561 return NULL;
1562
1563 /* Binding doc says this should have the same #{address,size}-cells as
1564 the root. */
1565 dt_add_u32_prop(reserved, "#address-cells", addr);
1566 dt_add_u32_prop(reserved, "#size-cells", size);
1567 /* Binding doc says this should be empty (1:1 mapping from root). */
1568 dt_add_bin_prop(reserved, "ranges", NULL, 0);
1569
1570 return reserved;
1571 }
1572
1573 /*
1574 * Increment a single phandle in prop at a given offset by a given adjustment.
1575 *
1576 * @param prop Property whose phandle should be adjusted.
1577 * @param adjustment Value that should be added to the existing phandle.
1578 * @param offset Byte offset of the phandle in the property data.
1579 *
1580 * @return New phandle value, or 0 on error.
1581 */
dt_adjust_phandle(struct device_tree_property * prop,uint32_t adjustment,uint32_t offset)1582 static uint32_t dt_adjust_phandle(struct device_tree_property *prop,
1583 uint32_t adjustment, uint32_t offset)
1584 {
1585 if (offset + 4 > prop->prop.size)
1586 return 0;
1587
1588 uint32_t phandle = be32dec(prop->prop.data + offset);
1589 if (phandle == 0 ||
1590 phandle == FDT_PHANDLE_ILLEGAL ||
1591 phandle == 0xffffffff)
1592 return 0;
1593
1594 phandle += adjustment;
1595 if (phandle >= FDT_PHANDLE_ILLEGAL)
1596 return 0;
1597
1598 be32enc(prop->prop.data + offset, phandle);
1599 return phandle;
1600 }
1601
1602 /*
1603 * Adjust all phandles in subtree by adding a new base offset.
1604 *
1605 * @param node Root node of the subtree to work on.
1606 * @param base New phandle base to be added to all phandles.
1607 *
1608 * @return New highest phandle in the subtree, or 0 on error.
1609 */
dt_adjust_all_phandles(struct device_tree_node * node,uint32_t base)1610 static uint32_t dt_adjust_all_phandles(struct device_tree_node *node,
1611 uint32_t base)
1612 {
1613 uint32_t new_max = MAX(base, 1); /* make sure we don't return 0 */
1614 struct device_tree_property *prop;
1615 struct device_tree_node *child;
1616
1617 if (!node)
1618 return new_max;
1619
1620 list_for_each(prop, node->properties, list_node)
1621 if (dt_prop_is_phandle(prop)) {
1622 node->phandle = dt_adjust_phandle(prop, base, 0);
1623 if (!node->phandle)
1624 return 0;
1625 new_max = MAX(new_max, node->phandle);
1626 } /* no break -- can have more than one phandle prop */
1627
1628 list_for_each(child, node->children, list_node)
1629 new_max = MAX(new_max, dt_adjust_all_phandles(child, base));
1630
1631 return new_max;
1632 }
1633
1634 /*
1635 * Apply a /__local_fixup__ subtree to the corresponding overlay subtree.
1636 *
1637 * @param node Root node of the overlay subtree to fix up.
1638 * @param node Root node of the /__local_fixup__ subtree.
1639 * @param base Adjustment that was added to phandles in the overlay.
1640 *
1641 * @return 0 on success, -1 on error.
1642 */
dt_fixup_locals(struct device_tree_node * node,struct device_tree_node * fixup,uint32_t base)1643 static int dt_fixup_locals(struct device_tree_node *node,
1644 struct device_tree_node *fixup, uint32_t base)
1645 {
1646 struct device_tree_property *prop;
1647 struct device_tree_property *fixup_prop;
1648 struct device_tree_node *child;
1649 struct device_tree_node *fixup_child;
1650 int i;
1651
1652 /*
1653 * For local fixups the /__local_fixup__ subtree contains the same node
1654 * hierarchy as the main tree we're fixing up. Each property contains
1655 * the fixup offsets for the respective property in the main tree. For
1656 * each property in the fixup node, find the corresponding property in
1657 * the base node and apply fixups to all offsets it specifies.
1658 */
1659 list_for_each(fixup_prop, fixup->properties, list_node) {
1660 struct device_tree_property *base_prop = NULL;
1661 list_for_each(prop, node->properties, list_node)
1662 if (!strcmp(prop->prop.name, fixup_prop->prop.name)) {
1663 base_prop = prop;
1664 break;
1665 }
1666
1667 /* We should always find a corresponding base prop for a fixup,
1668 and fixup props contain a list of 32-bit fixup offsets. */
1669 if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t))
1670 return -1;
1671
1672 for (i = 0; i < fixup_prop->prop.size; i += sizeof(uint32_t))
1673 if (!dt_adjust_phandle(base_prop, base, be32dec(
1674 fixup_prop->prop.data + i)))
1675 return -1;
1676 }
1677
1678 /* Now recursively descend both the base tree and the /__local_fixups__
1679 subtree in sync to apply all fixups. */
1680 list_for_each(fixup_child, fixup->children, list_node) {
1681 struct device_tree_node *base_child = NULL;
1682 list_for_each(child, node->children, list_node)
1683 if (!strcmp(child->name, fixup_child->name)) {
1684 base_child = child;
1685 break;
1686 }
1687
1688 /* All fixup nodes should have a corresponding base node. */
1689 if (!base_child)
1690 return -1;
1691
1692 if (dt_fixup_locals(base_child, fixup_child, base) < 0)
1693 return -1;
1694 }
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * Update all /__symbols__ properties in an overlay that start with
1701 * "/fragment@X/__overlay__" with corresponding path prefix in the base tree.
1702 *
1703 * @param symbols /__symbols__ done to update.
1704 * @param fragment /fragment@X node that references to should be updated.
1705 * @param base_path Path of base tree node that the fragment overlaid.
1706 */
dt_fix_symbols(struct device_tree_node * symbols,struct device_tree_node * fragment,const char * base_path)1707 static void dt_fix_symbols(struct device_tree_node *symbols,
1708 struct device_tree_node *fragment,
1709 const char *base_path)
1710 {
1711 struct device_tree_property *prop;
1712 char buf[512]; /* Should be enough for maximum DT path length? */
1713 char node_path[64]; /* easily enough for /fragment@XXXX/__overlay__ */
1714
1715 if (!symbols) /* If the overlay has no /__symbols__ node, we're done! */
1716 return;
1717
1718 int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__",
1719 fragment->name);
1720
1721 list_for_each(prop, symbols->properties, list_node)
1722 if (!strncmp(prop->prop.data, node_path, len)) {
1723 prop->prop.size = snprintf(buf, sizeof(buf), "%s%s",
1724 base_path, (char *)prop->prop.data + len) + 1;
1725 free(prop->prop.data);
1726 prop->prop.data = strdup(buf);
1727 }
1728 }
1729
1730 /*
1731 * Fix up overlay according to a property in /__fixup__. If the fixed property
1732 * is a /fragment@X:target, also update /__symbols__ references to fragment.
1733 *
1734 * @params overlay Overlay to fix up.
1735 * @params fixup /__fixup__ property.
1736 * @params phandle phandle value to insert where the fixup points to.
1737 * @params base_path Path to the base DT node that the fixup points to.
1738 * @params overlay_symbols /__symbols__ node of the overlay.
1739 *
1740 * @return 0 on success, -1 on error.
1741 */
dt_fixup_external(struct device_tree * overlay,struct device_tree_property * fixup,uint32_t phandle,const char * base_path,struct device_tree_node * overlay_symbols)1742 static int dt_fixup_external(struct device_tree *overlay,
1743 struct device_tree_property *fixup,
1744 uint32_t phandle, const char *base_path,
1745 struct device_tree_node *overlay_symbols)
1746 {
1747 struct device_tree_property *prop;
1748
1749 /* External fixup properties are encoded as "<path>:<prop>:<offset>". */
1750 char *entry = fixup->prop.data;
1751 while ((void *)entry < fixup->prop.data + fixup->prop.size) {
1752 /* okay to destroy fixup property value, won't need it again */
1753 char *node_path = entry;
1754 entry = strchr(node_path, ':');
1755 if (!entry)
1756 return -1;
1757 *entry++ = '\0';
1758
1759 char *prop_name = entry;
1760 entry = strchr(prop_name, ':');
1761 if (!entry)
1762 return -1;
1763 *entry++ = '\0';
1764
1765 struct device_tree_node *ovl_node = dt_find_node_by_path(
1766 overlay, node_path, NULL, NULL, 0);
1767 if (!ovl_node || !isdigit(*entry))
1768 return -1;
1769
1770 struct device_tree_property *ovl_prop = NULL;
1771 list_for_each(prop, ovl_node->properties, list_node)
1772 if (!strcmp(prop->prop.name, prop_name)) {
1773 ovl_prop = prop;
1774 break;
1775 }
1776
1777 /* Move entry to first char after number, must be a '\0'. */
1778 uint32_t offset = skip_atoi(&entry);
1779 if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0])
1780 return -1;
1781 entry++; /* jump over '\0' to potential next fixup */
1782
1783 be32enc(ovl_prop->prop.data + offset, phandle);
1784
1785 /* If this is a /fragment@X:target property, update references
1786 to this fragment in the overlay __symbols__ now. */
1787 if (offset == 0 && !strcmp(prop_name, "target") &&
1788 !strchr(node_path + 1, '/')) /* only toplevel nodes */
1789 dt_fix_symbols(overlay_symbols, ovl_node, base_path);
1790 }
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * Apply all /__fixup__ properties in the overlay. This will destroy the
1797 * property data in /__fixup__ and it should not be accessed again.
1798 *
1799 * @params tree Base device tree that the overlay updates.
1800 * @params symbols /__symbols__ node of the base device tree.
1801 * @params overlay Overlay to fix up.
1802 * @params fixups /__fixup__ node in the overlay.
1803 * @params overlay_symbols /__symbols__ node of the overlay.
1804 *
1805 * @return 0 on success, -1 on error.
1806 */
dt_fixup_all_externals(struct device_tree * tree,struct device_tree_node * symbols,struct device_tree * overlay,struct device_tree_node * fixups,struct device_tree_node * overlay_symbols)1807 static int dt_fixup_all_externals(struct device_tree *tree,
1808 struct device_tree_node *symbols,
1809 struct device_tree *overlay,
1810 struct device_tree_node *fixups,
1811 struct device_tree_node *overlay_symbols)
1812 {
1813 struct device_tree_property *fix;
1814
1815 /* If we have any external fixups, base tree must have /__symbols__. */
1816 if (!symbols)
1817 return -1;
1818
1819 /*
1820 * Unlike /__local_fixups__, /__fixups__ is not a whole subtree that
1821 * mirrors the node hierarchy. It's just a directory of fixup properties
1822 * that each directly contain all information necessary to apply them.
1823 */
1824 list_for_each(fix, fixups->properties, list_node) {
1825 /* The name of a fixup property is the label of the node we want
1826 a property to phandle-reference. Look up in /__symbols__. */
1827 const char *path = dt_find_string_prop(symbols, fix->prop.name);
1828 if (!path)
1829 return -1;
1830
1831 /* Find node the label pointed to figure out its phandle. */
1832 struct device_tree_node *node = dt_find_node_by_path(tree, path,
1833 NULL, NULL, 0);
1834 if (!node)
1835 return -1;
1836
1837 /* Write into the overlay property(s) pointing to that node. */
1838 if (dt_fixup_external(overlay, fix, node->phandle,
1839 path, overlay_symbols) < 0)
1840 return -1;
1841 }
1842
1843 return 0;
1844 }
1845
1846 /*
1847 * Copy all nodes and properties from one DT subtree into another. This is a
1848 * shallow copy so both trees will point to the same property data afterwards.
1849 *
1850 * @params dst Destination subtree to copy into.
1851 * @params src Source subtree to copy from.
1852 * @params upd 1 to overwrite same-name properties, 0 to discard them.
1853 */
dt_copy_subtree(struct device_tree_node * dst,struct device_tree_node * src,int upd)1854 static void dt_copy_subtree(struct device_tree_node *dst,
1855 struct device_tree_node *src, int upd)
1856 {
1857 struct device_tree_property *prop;
1858 struct device_tree_property *src_prop;
1859 list_for_each(src_prop, src->properties, list_node) {
1860 if (dt_prop_is_phandle(src_prop) ||
1861 !strcmp(src_prop->prop.name, "name")) {
1862 printk(BIOS_DEBUG,
1863 "WARNING: ignoring illegal overlay prop '%s'\n",
1864 src_prop->prop.name);
1865 continue;
1866 }
1867
1868 struct device_tree_property *dst_prop = NULL;
1869 list_for_each(prop, dst->properties, list_node)
1870 if (!strcmp(prop->prop.name, src_prop->prop.name)) {
1871 dst_prop = prop;
1872 break;
1873 }
1874
1875 if (dst_prop) {
1876 if (!upd) {
1877 printk(BIOS_DEBUG,
1878 "WARNING: ignoring prop update '%s'\n",
1879 src_prop->prop.name);
1880 continue;
1881 }
1882 } else {
1883 dst_prop = alloc_prop();
1884 list_insert_after(&dst_prop->list_node,
1885 &dst->properties);
1886 }
1887
1888 dst_prop->prop = src_prop->prop;
1889 }
1890
1891 struct device_tree_node *node;
1892 struct device_tree_node *src_node;
1893 list_for_each(src_node, src->children, list_node) {
1894 struct device_tree_node *dst_node = NULL;
1895 list_for_each(node, dst->children, list_node)
1896 if (!strcmp(node->name, src_node->name)) {
1897 dst_node = node;
1898 break;
1899 }
1900
1901 if (!dst_node) {
1902 dst_node = alloc_node();
1903 *dst_node = *src_node;
1904 list_insert_after(&dst_node->list_node, &dst->children);
1905 } else {
1906 dt_copy_subtree(dst_node, src_node, upd);
1907 }
1908 }
1909 }
1910
1911 /*
1912 * Apply an overlay /fragment@X node to a base device tree.
1913 *
1914 * @param tree Base device tree.
1915 * @param fragment /fragment@X node.
1916 * @params overlay_symbols /__symbols__ node of the overlay.
1917 *
1918 * @return 0 on success, -1 on error.
1919 */
dt_import_fragment(struct device_tree * tree,struct device_tree_node * fragment,struct device_tree_node * overlay_symbols)1920 static int dt_import_fragment(struct device_tree *tree,
1921 struct device_tree_node *fragment,
1922 struct device_tree_node *overlay_symbols)
1923 {
1924 /* The actual overlaid nodes/props are in an __overlay__ child node. */
1925 static const char *overlay_path[] = { "__overlay__", NULL };
1926 struct device_tree_node *overlay = dt_find_node(fragment, overlay_path,
1927 NULL, NULL, 0);
1928
1929 /* If it doesn't have an __overlay__ child, it's not a fragment. */
1930 if (!overlay)
1931 return 0;
1932
1933 /* Target node of the fragment can be given by path or by phandle. */
1934 struct device_tree_property *prop;
1935 struct device_tree_property *phandle = NULL;
1936 struct device_tree_property *path = NULL;
1937 list_for_each(prop, fragment->properties, list_node) {
1938 if (!strcmp(prop->prop.name, "target")) {
1939 phandle = prop;
1940 break; /* phandle target has priority, stop looking */
1941 }
1942 if (!strcmp(prop->prop.name, "target-path"))
1943 path = prop;
1944 }
1945
1946 struct device_tree_node *target = NULL;
1947 if (phandle) {
1948 if (phandle->prop.size != sizeof(uint32_t))
1949 return -1;
1950 target = dt_find_node_by_phandle(tree->root,
1951 be32dec(phandle->prop.data));
1952 /* Symbols already updated as part of dt_fixup_external(). */
1953 } else if (path) {
1954 target = dt_find_node_by_path(tree, path->prop.data,
1955 NULL, NULL, 0);
1956 dt_fix_symbols(overlay_symbols, fragment, path->prop.data);
1957 }
1958 if (!target)
1959 return -1;
1960
1961 dt_copy_subtree(target, overlay, 1);
1962 return 0;
1963 }
1964
1965 /*
1966 * Apply a device tree overlay to a base device tree. This will
1967 * destroy/incorporate the overlay data, so it should not be freed or reused.
1968 * See dtc.git/Documentation/dt-object-internal.txt for overlay format details.
1969 *
1970 * @param tree Unflattened base device tree to add the overlay into.
1971 * @param overlay Unflattened overlay device tree to apply to the base.
1972 *
1973 * @return 0 on success, -1 on error.
1974 */
dt_apply_overlay(struct device_tree * tree,struct device_tree * overlay)1975 int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
1976 {
1977 /*
1978 * First, we need to make sure phandles inside the overlay don't clash
1979 * with those in the base tree. We just define the highest phandle value
1980 * in the base tree as the "phandle offset" for this overlay and
1981 * increment all phandles in it by that value.
1982 */
1983 uint32_t phandle_base = tree->max_phandle;
1984 uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base);
1985 if (!new_max) {
1986 printk(BIOS_ERR, "invalid phandles in overlay\n");
1987 return -1;
1988 }
1989 tree->max_phandle = new_max;
1990
1991 /* Now that we changed phandles in the overlay, we need to update any
1992 nodes referring to them. Those are listed in /__local_fixups__. */
1993 struct device_tree_node *local_fixups = dt_find_node_by_path(overlay,
1994 "/__local_fixups__", NULL, NULL, 0);
1995 if (local_fixups && dt_fixup_locals(overlay->root, local_fixups,
1996 phandle_base) < 0) {
1997 printk(BIOS_ERR, "invalid local fixups in overlay\n");
1998 return -1;
1999 }
2000
2001 /*
2002 * Besides local phandle references (from nodes within the overlay to
2003 * other nodes within the overlay), the overlay may also contain phandle
2004 * references to the base tree. These are stored with invalid values and
2005 * must be updated now. /__symbols__ contains a list of all labels in
2006 * the base tree, and /__fixups__ describes all nodes in the overlay
2007 * that contain external phandle references.
2008 * We also take this opportunity to update all /fragment@X/__overlay__/
2009 * prefixes in the overlay's /__symbols__ node to the correct path that
2010 * the fragment will be placed in later, since this is the only step
2011 * where we have all necessary information for that easily available.
2012 */
2013 struct device_tree_node *symbols = dt_find_node_by_path(tree,
2014 "/__symbols__", NULL, NULL, 0);
2015 struct device_tree_node *fixups = dt_find_node_by_path(overlay,
2016 "/__fixups__", NULL, NULL, 0);
2017 struct device_tree_node *overlay_symbols = dt_find_node_by_path(overlay,
2018 "/__symbols__", NULL, NULL, 0);
2019 if (fixups && dt_fixup_all_externals(tree, symbols, overlay,
2020 fixups, overlay_symbols) < 0) {
2021 printk(BIOS_ERR, "cannot match external fixups from overlay\n");
2022 return -1;
2023 }
2024
2025 /* After all this fixing up, we can finally merge overlay into the tree
2026 (one fragment at a time, because for some reason it's split up). */
2027 struct device_tree_node *fragment;
2028 list_for_each(fragment, overlay->root->children, list_node)
2029 if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) {
2030 printk(BIOS_ERR, "bad DT fragment '%s'\n",
2031 fragment->name);
2032 return -1;
2033 }
2034
2035 /*
2036 * We need to also update /__symbols__ to include labels from this
2037 * overlay, in case we want to load further overlays with external
2038 * phandle references to it. If the base tree already has a /__symbols__
2039 * we merge them together, otherwise we just insert the overlay's
2040 * /__symbols__ node into the base tree root.
2041 */
2042 if (overlay_symbols) {
2043 if (symbols)
2044 dt_copy_subtree(symbols, overlay_symbols, 0);
2045 else
2046 list_insert_after(&overlay_symbols->list_node,
2047 &tree->root->children);
2048 }
2049
2050 return 0;
2051 }
2052