xref: /aosp_15_r20/external/boringssl/src/ssl/test/handshake_util.cc (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (c) 2018, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include "handshake_util.h"
16 
17 #include <assert.h>
18 #if defined(HANDSHAKER_SUPPORTED)
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <spawn.h>
22 #include <sys/socket.h>
23 #include <sys/stat.h>
24 #include <sys/types.h>
25 #include <sys/wait.h>
26 #include <unistd.h>
27 #endif
28 
29 #include <functional>
30 #include <map>
31 #include <vector>
32 
33 #include "async_bio.h"
34 #include "packeted_bio.h"
35 #include "test_config.h"
36 #include "test_state.h"
37 
38 #include <openssl/bytestring.h>
39 #include <openssl/ssl.h>
40 
41 using namespace bssl;
42 
RetryAsync(SSL * ssl,int ret)43 bool RetryAsync(SSL *ssl, int ret) {
44   const TestConfig *config = GetTestConfig(ssl);
45   TestState *test_state = GetTestState(ssl);
46   if (ret >= 0) {
47     return false;
48   }
49 
50   int ssl_err = SSL_get_error(ssl, ret);
51   if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) {
52     test_state->explicit_renegotiates++;
53     return SSL_renegotiate(ssl);
54   }
55 
56   if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) {
57     return test_state->quic_transport->ReadHandshake();
58   }
59 
60   if (!config->async) {
61     // Only asynchronous tests should trigger other retries.
62     return false;
63   }
64 
65   if (test_state->packeted_bio != nullptr &&
66       PacketedBioAdvanceClock(test_state->packeted_bio)) {
67     // The DTLS retransmit logic silently ignores write failures. So the test
68     // may progress, allow writes through synchronously.
69     AsyncBioEnforceWriteQuota(test_state->async_bio, false);
70     int timeout_ret = DTLSv1_handle_timeout(ssl);
71     AsyncBioEnforceWriteQuota(test_state->async_bio, true);
72 
73     if (timeout_ret < 0) {
74       fprintf(stderr, "Error retransmitting.\n");
75       return false;
76     }
77     return true;
78   }
79 
80   // See if we needed to read or write more. If so, allow one byte through on
81   // the appropriate end to maximally stress the state machine.
82   switch (ssl_err) {
83     case SSL_ERROR_WANT_READ:
84       AsyncBioAllowRead(test_state->async_bio, 1);
85       return true;
86     case SSL_ERROR_WANT_WRITE:
87       AsyncBioAllowWrite(test_state->async_bio, 1);
88       return true;
89     case SSL_ERROR_WANT_X509_LOOKUP:
90       test_state->cert_ready = true;
91       return true;
92     case SSL_ERROR_PENDING_SESSION:
93       test_state->session = std::move(test_state->pending_session);
94       return true;
95     case SSL_ERROR_PENDING_CERTIFICATE:
96       test_state->early_callback_ready = true;
97       return true;
98     case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
99       test_state->private_key_retries++;
100       return true;
101     case SSL_ERROR_WANT_CERTIFICATE_VERIFY:
102       test_state->custom_verify_ready = true;
103       return true;
104     default:
105       return false;
106   }
107 }
108 
CheckIdempotentError(const char * name,SSL * ssl,std::function<int ()> func)109 int CheckIdempotentError(const char *name, SSL *ssl,
110                          std::function<int()> func) {
111   int ret = func();
112   int ssl_err = SSL_get_error(ssl, ret);
113   uint32_t err = ERR_peek_error();
114   if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) {
115     int ret2 = func();
116     int ssl_err2 = SSL_get_error(ssl, ret2);
117     uint32_t err2 = ERR_peek_error();
118     if (ret != ret2 || ssl_err != ssl_err2 || err != err2) {
119       fprintf(stderr, "Repeating %s did not replay the error.\n", name);
120       char buf[256];
121       ERR_error_string_n(err, buf, sizeof(buf));
122       fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf);
123       ERR_error_string_n(err2, buf, sizeof(buf));
124       fprintf(stderr, "Got:    %d %d %s\n", ret2, ssl_err2, buf);
125       // runner treats exit code 90 as always failing. Otherwise, it may
126       // accidentally consider the result an expected protocol failure.
127       exit(90);
128     }
129   }
130   return ret;
131 }
132 
133 #if defined(HANDSHAKER_SUPPORTED)
134 
135 // MoveBIOs moves the |BIO|s of |src| to |dst|.  It is used for handoff.
MoveBIOs(SSL * dest,SSL * src)136 static void MoveBIOs(SSL *dest, SSL *src) {
137   BIO *rbio = SSL_get_rbio(src);
138   BIO_up_ref(rbio);
139   SSL_set0_rbio(dest, rbio);
140 
141   BIO *wbio = SSL_get_wbio(src);
142   BIO_up_ref(wbio);
143   SSL_set0_wbio(dest, wbio);
144 
145   SSL_set0_rbio(src, nullptr);
146   SSL_set0_wbio(src, nullptr);
147 }
148 
HandoffReady(SSL * ssl,int ret)149 static bool HandoffReady(SSL *ssl, int ret) {
150   return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF;
151 }
152 
read_eintr(int fd,void * out,size_t len)153 static ssize_t read_eintr(int fd, void *out, size_t len) {
154   ssize_t ret;
155   do {
156     ret = read(fd, out, len);
157   } while (ret < 0 && errno == EINTR);
158   return ret;
159 }
160 
write_eintr(int fd,const void * in,size_t len)161 static ssize_t write_eintr(int fd, const void *in, size_t len) {
162   ssize_t ret;
163   do {
164     ret = write(fd, in, len);
165   } while (ret < 0 && errno == EINTR);
166   return ret;
167 }
168 
waitpid_eintr(pid_t pid,int * wstatus,int options)169 static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) {
170   pid_t ret;
171   do {
172     ret = waitpid(pid, wstatus, options);
173   } while (ret < 0 && errno == EINTR);
174   return ret;
175 }
176 
177 // Proxy relays data between |socket|, which is connected to the client, and the
178 // handshaker, which is connected to the numerically specified file descriptors,
179 // until the handshaker returns control.
Proxy(BIO * socket,bool async,int control,int rfd,int wfd)180 static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) {
181   for (;;) {
182     fd_set rfds;
183     FD_ZERO(&rfds);
184     FD_SET(wfd, &rfds);
185     FD_SET(control, &rfds);
186     int fd_max = wfd > control ? wfd : control;
187     if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) {
188       perror("select");
189       return false;
190     }
191 
192     char buf[64];
193     ssize_t bytes;
194     if (FD_ISSET(wfd, &rfds) &&
195         (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) {
196       char *b = buf;
197       while (bytes) {
198         int written = BIO_write(socket, b, bytes);
199         if (!written) {
200           fprintf(stderr, "BIO_write wrote nothing\n");
201           return false;
202         }
203         if (written < 0) {
204           if (async) {
205             AsyncBioAllowWrite(socket, 1);
206             continue;
207           }
208           fprintf(stderr, "BIO_write failed\n");
209           return false;
210         }
211         b += written;
212         bytes -= written;
213       }
214       // Flush all pending data from the handshaker to the client before
215       // considering control messages.
216       continue;
217     }
218 
219     if (!FD_ISSET(control, &rfds)) {
220       continue;
221     }
222 
223     char msg;
224     if (read_eintr(control, &msg, 1) != 1) {
225       perror("read");
226       return false;
227     }
228     switch (msg) {
229       case kControlMsgDone:
230         return true;
231       case kControlMsgError:
232         return false;
233       case kControlMsgWantRead:
234         break;
235       default:
236         fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
237         return false;
238     }
239 
240     auto proxy_data = [&](uint8_t *out, size_t len) -> bool {
241       if (async) {
242         AsyncBioAllowRead(socket, len);
243       }
244 
245       while (len > 0) {
246         int bytes_read = BIO_read(socket, out, len);
247         if (bytes_read < 1) {
248           fprintf(stderr, "BIO_read failed\n");
249           return false;
250         }
251 
252         ssize_t bytes_written = write_eintr(rfd, out, bytes_read);
253         if (bytes_written == -1) {
254           perror("write");
255           return false;
256         }
257         if (bytes_written != bytes_read) {
258           fprintf(stderr, "short write (%zd of %d bytes)\n", bytes_written,
259                   bytes_read);
260           return false;
261         }
262 
263         len -= bytes_read;
264         out += bytes_read;
265       }
266       return true;
267     };
268 
269     // Process one SSL record at a time.  That way, we don't send the handshaker
270     // anything it doesn't want to process, e.g. early data.
271     uint8_t header[SSL3_RT_HEADER_LENGTH];
272     if (!proxy_data(header, sizeof(header))) {
273       return false;
274     }
275     if (header[1] != 3) {
276        fprintf(stderr, "bad header\n");
277        return false;
278     }
279     size_t remaining = (header[3] << 8) + header[4];
280     while (remaining > 0) {
281       uint8_t readbuf[64];
282       size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining;
283       if (!proxy_data(readbuf, len)) {
284         return false;
285       }
286       remaining -= len;
287     }
288 
289     // The handshaker blocks on the control channel, so we have to signal
290     // it that the data have been written.
291     msg = kControlMsgWriteCompleted;
292     if (write_eintr(control, &msg, 1) != 1) {
293       perror("write");
294       return false;
295     }
296   }
297 }
298 
299 class ScopedFD {
300  public:
ScopedFD()301   ScopedFD() : fd_(-1) {}
ScopedFD(int fd)302   explicit ScopedFD(int fd) : fd_(fd) {}
~ScopedFD()303   ~ScopedFD() { Reset(); }
304 
ScopedFD(ScopedFD && other)305   ScopedFD(ScopedFD &&other) { *this = std::move(other); }
operator =(ScopedFD && other)306   ScopedFD &operator=(ScopedFD &&other) {
307     Reset(other.fd_);
308     other.fd_ = -1;
309     return *this;
310   }
311 
fd() const312   int fd() const { return fd_; }
313 
Reset(int fd=-1)314   void Reset(int fd = -1) {
315     if (fd_ >= 0) {
316       close(fd_);
317     }
318     fd_ = fd;
319   }
320 
321  private:
322   int fd_;
323 };
324 
325 class ScopedProcess {
326  public:
ScopedProcess()327   ScopedProcess() : pid_(-1) {}
~ScopedProcess()328   ~ScopedProcess() { Reset(); }
329 
ScopedProcess(ScopedProcess && other)330   ScopedProcess(ScopedProcess &&other) { *this = std::move(other); }
operator =(ScopedProcess && other)331   ScopedProcess &operator=(ScopedProcess &&other) {
332     Reset(other.pid_);
333     other.pid_ = -1;
334     return *this;
335   }
336 
pid() const337   pid_t pid() const { return pid_; }
338 
Reset(pid_t pid=-1)339   void Reset(pid_t pid = -1) {
340     if (pid_ >= 0) {
341       kill(pid_, SIGTERM);
342       int unused;
343       Wait(&unused);
344     }
345     pid_ = pid;
346   }
347 
Wait(int * out_status)348   bool Wait(int *out_status) {
349     if (pid_ < 0) {
350       return false;
351     }
352     if (waitpid_eintr(pid_, out_status, 0) != pid_) {
353       return false;
354     }
355     pid_ = -1;
356     return true;
357   }
358 
359  private:
360   pid_t pid_;
361 };
362 
363 class FileActionsDestroyer {
364  public:
FileActionsDestroyer(posix_spawn_file_actions_t * actions)365   explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions)
366       : actions_(actions) {}
~FileActionsDestroyer()367   ~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); }
368   FileActionsDestroyer(const FileActionsDestroyer &) = delete;
369   FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete;
370 
371  private:
372   posix_spawn_file_actions_t *actions_;
373 };
374 
375 // StartHandshaker starts the handshaker process and, on success, returns a
376 // handle to the process in |*out|. It sets |*out_control| to a control pipe to
377 // the process. |map_fds| maps from desired fd number in the child process to
378 // the source fd in the calling process. |close_fds| is the list of additional
379 // fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and
380 // stderr, the status of fds not listed in either set is undefined.
StartHandshaker(ScopedProcess * out,ScopedFD * out_control,const TestConfig * config,bool is_resume,std::map<int,int> map_fds,std::vector<int> close_fds)381 static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control,
382                             const TestConfig *config, bool is_resume,
383                             std::map<int, int> map_fds,
384                             std::vector<int> close_fds) {
385   if (config->handshaker_path.empty()) {
386     fprintf(stderr, "no -handshaker-path specified\n");
387     return false;
388   }
389   struct stat dummy;
390   if (stat(config->handshaker_path.c_str(), &dummy) == -1) {
391     perror(config->handshaker_path.c_str());
392     return false;
393   }
394 
395   std::vector<const char *> args;
396   args.push_back(config->handshaker_path.c_str());
397   static const char kResumeFlag[] = "-handshaker-resume";
398   if (is_resume) {
399     args.push_back(kResumeFlag);
400   }
401   // config->handshaker_args omits argv[0].
402   for (const char *arg : config->handshaker_args) {
403     args.push_back(arg);
404   }
405   args.push_back(nullptr);
406 
407   // A datagram socket guarantees that writes are all-or-nothing.
408   int control[2];
409   if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) {
410     perror("socketpair");
411     return false;
412   }
413   ScopedFD scoped_control0(control[0]), scoped_control1(control[1]);
414   close_fds.push_back(control[0]);
415   map_fds[kFdControl] = control[1];
416 
417   posix_spawn_file_actions_t actions;
418   if (posix_spawn_file_actions_init(&actions) != 0) {
419     return false;
420   }
421   FileActionsDestroyer actions_destroyer(&actions);
422   for (int fd : close_fds) {
423     if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
424       return false;
425     }
426   }
427   if (!map_fds.empty()) {
428     int max_fd = STDERR_FILENO;
429     for (const auto &pair : map_fds) {
430       max_fd = std::max(max_fd, pair.first);
431       max_fd = std::max(max_fd, pair.second);
432     }
433     // |map_fds| may contain cycles, so make a copy of all the source fds.
434     // |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is
435     // the last fd we care about inheriting. |temp_fds| maps from fd number in
436     // the parent process to a temporary fd number in the child process.
437     std::map<int, int> temp_fds;
438     int next_fd = max_fd + 1;
439     for (const auto &pair : map_fds) {
440       if (temp_fds.count(pair.second)) {
441         continue;
442       }
443       temp_fds[pair.second] = next_fd;
444       if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) !=
445           0 ||
446           posix_spawn_file_actions_addclose(&actions, pair.second) != 0) {
447         return false;
448       }
449       next_fd++;
450     }
451     for (const auto &pair : map_fds) {
452       if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second],
453                                            pair.first) != 0) {
454         return false;
455       }
456     }
457     // Clean up temporary fds.
458     for (int fd = max_fd + 1; fd < next_fd; fd++) {
459       if (posix_spawn_file_actions_addclose(&actions, fd) != 0) {
460         return false;
461       }
462     }
463   }
464 
465   fflush(stdout);
466   fflush(stderr);
467 
468   // MSan doesn't know that |posix_spawn| initializes its output, so initialize
469   // it to -1.
470   pid_t pid = -1;
471   if (posix_spawn(&pid, args[0], &actions, nullptr,
472                   const_cast<char *const *>(args.data()), environ) != 0) {
473     return false;
474   }
475 
476   out->Reset(pid);
477   *out_control = std::move(scoped_control0);
478   return true;
479 }
480 
481 // RunHandshaker forks and execs the handshaker binary, handing off |input|,
482 // and, after proxying some amount of handshake traffic, handing back |out|.
RunHandshaker(BIO * bio,const TestConfig * config,bool is_resume,Span<const uint8_t> input,std::vector<uint8_t> * out)483 static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume,
484                           Span<const uint8_t> input,
485                           std::vector<uint8_t> *out) {
486   int rfd[2], wfd[2];
487   // We use pipes, rather than some other mechanism, for their buffers.  During
488   // the handshake, this process acts as a dumb proxy until receiving the
489   // handback signal, which arrives asynchronously.  The race condition means
490   // that this process could incorrectly proxy post-handshake data from the
491   // client to the handshaker.
492   //
493   // To avoid this, this process never proxies data to the handshaker that the
494   // handshaker has not explicitly requested as a result of hitting
495   // |SSL_ERROR_WANT_READ|.  Pipes allow the data to sit in a buffer while the
496   // two processes synchronize over the |control| channel.
497   if (pipe(rfd) != 0) {
498     perror("pipe");
499     return false;
500   }
501   ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]);
502 
503   if (pipe(wfd) != 0) {
504     perror("pipe");
505     return false;
506   }
507   ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]);
508 
509   ScopedProcess handshaker;
510   ScopedFD control;
511   if (!StartHandshaker(
512           &handshaker, &control, config, is_resume,
513           {{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}},
514           {rfd[1], wfd[0]})) {
515     return false;
516   }
517 
518   rfd0_closer.Reset();
519   wfd1_closer.Reset();
520 
521   if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
522     perror("write");
523     return false;
524   }
525   bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]);
526   int wstatus;
527   if (!handshaker.Wait(&wstatus)) {
528     perror("waitpid");
529     return false;
530   }
531   if (ok && wstatus) {
532     fprintf(stderr, "handshaker exited irregularly\n");
533     return false;
534   }
535   if (!ok) {
536     return false;  // This is a "good", i.e. expected, error.
537   }
538 
539   constexpr size_t kBufSize = 1024 * 1024;
540   std::vector<uint8_t> buf(kBufSize);
541   ssize_t len = read_eintr(control.fd(), buf.data(), buf.size());
542   if (len == -1) {
543     perror("read");
544     return false;
545   }
546   buf.resize(len);
547   *out = std::move(buf);
548   return true;
549 }
550 
RequestHandshakeHint(const TestConfig * config,bool is_resume,Span<const uint8_t> input,bool * out_has_hints,std::vector<uint8_t> * out_hints)551 static bool RequestHandshakeHint(const TestConfig *config, bool is_resume,
552                                  Span<const uint8_t> input, bool *out_has_hints,
553                                  std::vector<uint8_t> *out_hints) {
554   ScopedProcess handshaker;
555   ScopedFD control;
556   if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) {
557     return false;
558   }
559 
560   if (write_eintr(control.fd(), input.data(), input.size()) == -1) {
561     perror("write");
562     return false;
563   }
564 
565   char msg;
566   if (read_eintr(control.fd(), &msg, 1) != 1) {
567     perror("read");
568     return false;
569   }
570 
571   switch (msg) {
572     case kControlMsgDone: {
573       constexpr size_t kBufSize = 1024 * 1024;
574       out_hints->resize(kBufSize);
575       ssize_t len =
576           read_eintr(control.fd(), out_hints->data(), out_hints->size());
577       if (len == -1) {
578         perror("read");
579         return false;
580       }
581       out_hints->resize(len);
582       *out_has_hints = true;
583       break;
584     }
585     case kControlMsgError:
586       *out_has_hints = false;
587       break;
588     default:
589       fprintf(stderr, "Unknown control message from handshaker: %c\n", msg);
590       return false;
591   }
592 
593   int wstatus;
594   if (!handshaker.Wait(&wstatus)) {
595     perror("waitpid");
596     return false;
597   }
598   if (wstatus) {
599     fprintf(stderr, "handshaker exited irregularly\n");
600     return false;
601   }
602 
603   return true;
604 }
605 
606 // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to
607 // be passed to the handshaker.  The serialized state includes both the SSL
608 // handoff, as well test-related state.
PrepareHandoff(SSL * ssl,SettingsWriter * writer,std::vector<uint8_t> * out_handoff)609 static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer,
610                            std::vector<uint8_t> *out_handoff) {
611   SSL_set_handoff_mode(ssl, 1);
612 
613   const TestConfig *config = GetTestConfig(ssl);
614   int ret = -1;
615   do {
616     ret = CheckIdempotentError(
617         "SSL_do_handshake", ssl,
618         [&]() -> int { return SSL_do_handshake(ssl); });
619   } while (!HandoffReady(ssl, ret) &&
620            config->async &&
621            RetryAsync(ssl, ret));
622   if (!HandoffReady(ssl, ret)) {
623     fprintf(stderr, "Handshake failed while waiting for handoff.\n");
624     return false;
625   }
626 
627   ScopedCBB cbb;
628   SSL_CLIENT_HELLO hello;
629   if (!CBB_init(cbb.get(), 512) ||
630       !SSL_serialize_handoff(ssl, cbb.get(), &hello) ||
631       !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) ||
632       !SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) ||
633       !GetTestState(ssl)->Serialize(cbb.get())) {
634     fprintf(stderr, "Handoff serialisation failed.\n");
635     return false;
636   }
637   out_handoff->assign(CBB_data(cbb.get()),
638                       CBB_data(cbb.get()) + CBB_len(cbb.get()));
639   return true;
640 }
641 
642 // DoSplitHandshake delegates the SSL handshake to a separate process, called
643 // the handshaker.  This process proxies I/O between the handshaker and the
644 // client, using the |BIO| from |ssl|.  After a successful handshake, |ssl| is
645 // replaced with a new |SSL| object, in a way that is intended to be invisible
646 // to the caller.
DoSplitHandshake(UniquePtr<SSL> * ssl,SettingsWriter * writer,bool is_resume)647 bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer,
648                       bool is_resume) {
649   assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get()));
650   std::vector<uint8_t> handshaker_input;
651   const TestConfig *config = GetTestConfig(ssl->get());
652   // out is the response from the handshaker, which includes a serialized
653   // handback message, but also serialized updates to the |TestState|.
654   std::vector<uint8_t> out;
655   if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) ||
656       !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume,
657                      handshaker_input, &out)) {
658     fprintf(stderr, "Handoff failed.\n");
659     return false;
660   }
661 
662   SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get());
663   UniquePtr<SSL> ssl_handback = config->NewSSL(ctx, nullptr, nullptr);
664   if (!ssl_handback) {
665     return false;
666   }
667   CBS output, handback;
668   CBS_init(&output, out.data(), out.size());
669   if (!CBS_get_u24_length_prefixed(&output, &handback) ||
670       !DeserializeContextState(&output, ctx) ||
671       !SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) ||
672       !GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) ||
673       !SSL_apply_handback(ssl_handback.get(), handback)) {
674     fprintf(stderr, "Handback failed.\n");
675     return false;
676   }
677   MoveBIOs(ssl_handback.get(), ssl->get());
678   GetTestState(ssl_handback.get())->async_bio =
679       GetTestState(ssl->get())->async_bio;
680   GetTestState(ssl->get())->async_bio = nullptr;
681 
682   *ssl = std::move(ssl_handback);
683   return true;
684 }
685 
GetHandshakeHint(SSL * ssl,SettingsWriter * writer,bool is_resume,const SSL_CLIENT_HELLO * client_hello)686 bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume,
687                       const SSL_CLIENT_HELLO *client_hello) {
688   ScopedCBB input;
689   CBB child;
690   if (!CBB_init(input.get(), client_hello->client_hello_len + 256) ||
691       !CBB_add_u24_length_prefixed(input.get(), &child) ||
692       !CBB_add_bytes(&child, client_hello->client_hello,
693                      client_hello->client_hello_len) ||
694       !CBB_add_u24_length_prefixed(input.get(), &child) ||
695       !SSL_serialize_capabilities(ssl, &child) ||  //
696       !CBB_flush(input.get())) {
697     return false;
698   }
699 
700   bool has_hints;
701   std::vector<uint8_t> hints;
702   if (!RequestHandshakeHint(
703           GetTestConfig(ssl), is_resume,
704           MakeConstSpan(CBB_data(input.get()), CBB_len(input.get())),
705           &has_hints, &hints)) {
706     return false;
707   }
708   if (has_hints &&
709       (!writer->WriteHints(hints) ||
710        !SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) {
711     return false;
712   }
713 
714   return true;
715 }
716 
717 #endif  // defined(HANDSHAKER_SUPPORTED)
718