xref: /aosp_15_r20/external/boringssl/src/ssl/ssl_cipher.cc (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    [email protected].
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * ([email protected]).  This product includes software written by Tim
107  * Hudson ([email protected]).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114  */
115 /* ====================================================================
116  * Copyright 2005 Nokia. All rights reserved.
117  *
118  * The portions of the attached software ("Contribution") is developed by
119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120  * license.
121  *
122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124  * support (see RFC 4279) to OpenSSL.
125  *
126  * No patent licenses or other rights except those expressly stated in
127  * the OpenSSL open source license shall be deemed granted or received
128  * expressly, by implication, estoppel, or otherwise.
129  *
130  * No assurances are provided by Nokia that the Contribution does not
131  * infringe the patent or other intellectual property rights of any third
132  * party or that the license provides you with all the necessary rights
133  * to make use of the Contribution.
134  *
135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139  * OTHERWISE. */
140 
141 #include <openssl/ssl.h>
142 
143 #include <assert.h>
144 #include <string.h>
145 
146 #include <openssl/err.h>
147 #include <openssl/md5.h>
148 #include <openssl/mem.h>
149 #include <openssl/sha.h>
150 #include <openssl/stack.h>
151 
152 #include "internal.h"
153 #include "../crypto/internal.h"
154 
155 
156 BSSL_NAMESPACE_BEGIN
157 
158 static constexpr SSL_CIPHER kCiphers[] = {
159     // The RSA ciphers
160 
161     // Cipher 0A
162     {
163      SSL3_TXT_RSA_DES_192_CBC3_SHA,
164      "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
165      SSL3_CK_RSA_DES_192_CBC3_SHA,
166      SSL_kRSA,
167      SSL_aRSA_DECRYPT,
168      SSL_3DES,
169      SSL_SHA1,
170      SSL_HANDSHAKE_MAC_DEFAULT,
171     },
172 
173 
174     // New AES ciphersuites
175 
176     // Cipher 2F
177     {
178      TLS1_TXT_RSA_WITH_AES_128_SHA,
179      "TLS_RSA_WITH_AES_128_CBC_SHA",
180      TLS1_CK_RSA_WITH_AES_128_SHA,
181      SSL_kRSA,
182      SSL_aRSA_DECRYPT,
183      SSL_AES128,
184      SSL_SHA1,
185      SSL_HANDSHAKE_MAC_DEFAULT,
186     },
187 
188     // Cipher 35
189     {
190      TLS1_TXT_RSA_WITH_AES_256_SHA,
191      "TLS_RSA_WITH_AES_256_CBC_SHA",
192      TLS1_CK_RSA_WITH_AES_256_SHA,
193      SSL_kRSA,
194      SSL_aRSA_DECRYPT,
195      SSL_AES256,
196      SSL_SHA1,
197      SSL_HANDSHAKE_MAC_DEFAULT,
198     },
199 
200     // PSK cipher suites.
201 
202     // Cipher 8C
203     {
204      TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
205      "TLS_PSK_WITH_AES_128_CBC_SHA",
206      TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
207      SSL_kPSK,
208      SSL_aPSK,
209      SSL_AES128,
210      SSL_SHA1,
211      SSL_HANDSHAKE_MAC_DEFAULT,
212     },
213 
214     // Cipher 8D
215     {
216      TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
217      "TLS_PSK_WITH_AES_256_CBC_SHA",
218      TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
219      SSL_kPSK,
220      SSL_aPSK,
221      SSL_AES256,
222      SSL_SHA1,
223      SSL_HANDSHAKE_MAC_DEFAULT,
224     },
225 
226     // GCM ciphersuites from RFC 5288
227 
228     // Cipher 9C
229     {
230      TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
231      "TLS_RSA_WITH_AES_128_GCM_SHA256",
232      TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
233      SSL_kRSA,
234      SSL_aRSA_DECRYPT,
235      SSL_AES128GCM,
236      SSL_AEAD,
237      SSL_HANDSHAKE_MAC_SHA256,
238     },
239 
240     // Cipher 9D
241     {
242      TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
243      "TLS_RSA_WITH_AES_256_GCM_SHA384",
244      TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
245      SSL_kRSA,
246      SSL_aRSA_DECRYPT,
247      SSL_AES256GCM,
248      SSL_AEAD,
249      SSL_HANDSHAKE_MAC_SHA384,
250     },
251 
252     // TLS 1.3 suites.
253 
254     // Cipher 1301
255     {
256       TLS1_3_RFC_AES_128_GCM_SHA256,
257       "TLS_AES_128_GCM_SHA256",
258       TLS1_3_CK_AES_128_GCM_SHA256,
259       SSL_kGENERIC,
260       SSL_aGENERIC,
261       SSL_AES128GCM,
262       SSL_AEAD,
263       SSL_HANDSHAKE_MAC_SHA256,
264     },
265 
266     // Cipher 1302
267     {
268       TLS1_3_RFC_AES_256_GCM_SHA384,
269       "TLS_AES_256_GCM_SHA384",
270       TLS1_3_CK_AES_256_GCM_SHA384,
271       SSL_kGENERIC,
272       SSL_aGENERIC,
273       SSL_AES256GCM,
274       SSL_AEAD,
275       SSL_HANDSHAKE_MAC_SHA384,
276     },
277 
278     // Cipher 1303
279     {
280       TLS1_3_RFC_CHACHA20_POLY1305_SHA256,
281       "TLS_CHACHA20_POLY1305_SHA256",
282       TLS1_3_CK_CHACHA20_POLY1305_SHA256,
283       SSL_kGENERIC,
284       SSL_aGENERIC,
285       SSL_CHACHA20POLY1305,
286       SSL_AEAD,
287       SSL_HANDSHAKE_MAC_SHA256,
288     },
289 
290     // Cipher C009
291     {
292      TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
293      "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
294      TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
295      SSL_kECDHE,
296      SSL_aECDSA,
297      SSL_AES128,
298      SSL_SHA1,
299      SSL_HANDSHAKE_MAC_DEFAULT,
300     },
301 
302     // Cipher C00A
303     {
304      TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
305      "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
306      TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
307      SSL_kECDHE,
308      SSL_aECDSA,
309      SSL_AES256,
310      SSL_SHA1,
311      SSL_HANDSHAKE_MAC_DEFAULT,
312     },
313 
314     // Cipher C013
315     {
316      TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
317      "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
318      TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
319      SSL_kECDHE,
320      SSL_aRSA_SIGN,
321      SSL_AES128,
322      SSL_SHA1,
323      SSL_HANDSHAKE_MAC_DEFAULT,
324     },
325 
326     // Cipher C014
327     {
328      TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
329      "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
330      TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
331      SSL_kECDHE,
332      SSL_aRSA_SIGN,
333      SSL_AES256,
334      SSL_SHA1,
335      SSL_HANDSHAKE_MAC_DEFAULT,
336     },
337 
338     // Cipher C027
339     {
340      TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
341      "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",
342      TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
343      SSL_kECDHE,
344      SSL_aRSA_SIGN,
345      SSL_AES128,
346      SSL_SHA256,
347      SSL_HANDSHAKE_MAC_SHA256,
348     },
349 
350     // GCM based TLS v1.2 ciphersuites from RFC 5289
351 
352     // Cipher C02B
353     {
354      TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
355      "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
356      TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
357      SSL_kECDHE,
358      SSL_aECDSA,
359      SSL_AES128GCM,
360      SSL_AEAD,
361      SSL_HANDSHAKE_MAC_SHA256,
362     },
363 
364     // Cipher C02C
365     {
366      TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
367      "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
368      TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
369      SSL_kECDHE,
370      SSL_aECDSA,
371      SSL_AES256GCM,
372      SSL_AEAD,
373      SSL_HANDSHAKE_MAC_SHA384,
374     },
375 
376     // Cipher C02F
377     {
378      TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
379      "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
380      TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
381      SSL_kECDHE,
382      SSL_aRSA_SIGN,
383      SSL_AES128GCM,
384      SSL_AEAD,
385      SSL_HANDSHAKE_MAC_SHA256,
386     },
387 
388     // Cipher C030
389     {
390      TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
391      "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
392      TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
393      SSL_kECDHE,
394      SSL_aRSA_SIGN,
395      SSL_AES256GCM,
396      SSL_AEAD,
397      SSL_HANDSHAKE_MAC_SHA384,
398     },
399 
400     // ECDHE-PSK cipher suites.
401 
402     // Cipher C035
403     {
404      TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
405      "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
406      TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
407      SSL_kECDHE,
408      SSL_aPSK,
409      SSL_AES128,
410      SSL_SHA1,
411      SSL_HANDSHAKE_MAC_DEFAULT,
412     },
413 
414     // Cipher C036
415     {
416      TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
417      "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
418      TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
419      SSL_kECDHE,
420      SSL_aPSK,
421      SSL_AES256,
422      SSL_SHA1,
423      SSL_HANDSHAKE_MAC_DEFAULT,
424     },
425 
426     // ChaCha20-Poly1305 cipher suites.
427 
428     // Cipher CCA8
429     {
430      TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
431      "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
432      TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
433      SSL_kECDHE,
434      SSL_aRSA_SIGN,
435      SSL_CHACHA20POLY1305,
436      SSL_AEAD,
437      SSL_HANDSHAKE_MAC_SHA256,
438     },
439 
440     // Cipher CCA9
441     {
442      TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
443      "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
444      TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
445      SSL_kECDHE,
446      SSL_aECDSA,
447      SSL_CHACHA20POLY1305,
448      SSL_AEAD,
449      SSL_HANDSHAKE_MAC_SHA256,
450     },
451 
452     // Cipher CCAB
453     {
454      TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
455      "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
456      TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
457      SSL_kECDHE,
458      SSL_aPSK,
459      SSL_CHACHA20POLY1305,
460      SSL_AEAD,
461      SSL_HANDSHAKE_MAC_SHA256,
462     },
463 
464 };
465 
AllCiphers()466 Span<const SSL_CIPHER> AllCiphers() {
467   return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers));
468 }
469 
NumTLS13Ciphers()470 static constexpr size_t NumTLS13Ciphers() {
471   size_t num = 0;
472   for (const auto &cipher : kCiphers) {
473     if (cipher.algorithm_mkey == SSL_kGENERIC) {
474       num++;
475     }
476   }
477   return num;
478 }
479 
480 #define CIPHER_ADD 1
481 #define CIPHER_KILL 2
482 #define CIPHER_DEL 3
483 #define CIPHER_ORD 4
484 #define CIPHER_SPECIAL 5
485 
486 typedef struct cipher_order_st {
487   const SSL_CIPHER *cipher;
488   bool active;
489   bool in_group;
490   struct cipher_order_st *next, *prev;
491 } CIPHER_ORDER;
492 
493 typedef struct cipher_alias_st {
494   // name is the name of the cipher alias.
495   const char *name = nullptr;
496 
497   // The following fields are bitmasks for the corresponding fields on
498   // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
499   // bit corresponding to the cipher's value is set to 1. If any bitmask is
500   // all zeroes, the alias matches nothing. Use |~0u| for the default value.
501   uint32_t algorithm_mkey = ~0u;
502   uint32_t algorithm_auth = ~0u;
503   uint32_t algorithm_enc = ~0u;
504   uint32_t algorithm_mac = ~0u;
505 
506   // min_version, if non-zero, matches all ciphers which were added in that
507   // particular protocol version.
508   uint16_t min_version = 0;
509 
510   // include_deprecated, if true, means this alias includes deprecated ciphers.
511   bool include_deprecated = false;
512 } CIPHER_ALIAS;
513 
514 static const CIPHER_ALIAS kCipherAliases[] = {
515     {"ALL", ~0u, ~0u, ~0u, ~0u, 0},
516 
517     // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing.
518 
519     // key exchange aliases
520     // (some of those using only a single bit here combine
521     // multiple key exchange algs according to the RFCs.
522     {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
523 
524     {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
525     {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
526     {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
527 
528     {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
529 
530     // server authentication aliases
531     {"aRSA", ~0u, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0},
532     {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
533     {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
534     {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
535 
536     // aliases combining key exchange and server authentication
537     {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
538     {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
539     {"RSA", SSL_kRSA, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0},
540     {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
541 
542     // symmetric encryption aliases
543     {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0, /*include_deprecated=*/true},
544     {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0,
545      /*include_deprecated=*/false},
546     {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0,
547      /*include_deprecated=*/false},
548     {"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
549     {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0,
550      /*include_deprecated=*/false},
551     {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0,
552      /*include_deprecated=*/false},
553 
554     // MAC aliases
555     {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0},
556     {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0},
557 
558     // Legacy protocol minimum version aliases. "TLSv1" is intentionally the
559     // same as "SSLv3".
560     {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
561     {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
562     {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION},
563 
564     // Legacy strength classes.
565     {"HIGH", ~0u, ~0u, ~0u, ~0u, 0},
566     {"FIPS", ~0u, ~0u, ~0u, ~0u, 0},
567 
568     // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC
569     // ciphers. These should be removed after 2018-05-14.
570     {"SHA256", 0, 0, 0, 0, 0},
571     {"SHA384", 0, 0, 0, 0, 0},
572 };
573 
574 static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);
575 
ssl_cipher_get_evp_aead(const EVP_AEAD ** out_aead,size_t * out_mac_secret_len,size_t * out_fixed_iv_len,const SSL_CIPHER * cipher,uint16_t version,bool is_dtls)576 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
577                              size_t *out_mac_secret_len,
578                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
579                              uint16_t version, bool is_dtls) {
580   *out_aead = NULL;
581   *out_mac_secret_len = 0;
582   *out_fixed_iv_len = 0;
583 
584   const bool is_tls12 = version == TLS1_2_VERSION && !is_dtls;
585   const bool is_tls13 = version == TLS1_3_VERSION && !is_dtls;
586 
587   if (cipher->algorithm_mac == SSL_AEAD) {
588     if (cipher->algorithm_enc == SSL_AES128GCM) {
589       if (is_tls12) {
590         *out_aead = EVP_aead_aes_128_gcm_tls12();
591       } else if (is_tls13) {
592         *out_aead = EVP_aead_aes_128_gcm_tls13();
593       } else {
594         *out_aead = EVP_aead_aes_128_gcm();
595       }
596       *out_fixed_iv_len = 4;
597     } else if (cipher->algorithm_enc == SSL_AES256GCM) {
598       if (is_tls12) {
599         *out_aead = EVP_aead_aes_256_gcm_tls12();
600       } else if (is_tls13) {
601         *out_aead = EVP_aead_aes_256_gcm_tls13();
602       } else {
603         *out_aead = EVP_aead_aes_256_gcm();
604       }
605       *out_fixed_iv_len = 4;
606     } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
607       *out_aead = EVP_aead_chacha20_poly1305();
608       *out_fixed_iv_len = 12;
609     } else {
610       return false;
611     }
612 
613     // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
614     // above computes the TLS 1.2 construction.
615     if (version >= TLS1_3_VERSION) {
616       *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
617     }
618   } else if (cipher->algorithm_mac == SSL_SHA1) {
619     if (cipher->algorithm_enc == SSL_3DES) {
620       if (version == TLS1_VERSION) {
621         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
622         *out_fixed_iv_len = 8;
623       } else {
624         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
625       }
626     } else if (cipher->algorithm_enc == SSL_AES128) {
627       if (version == TLS1_VERSION) {
628         *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
629         *out_fixed_iv_len = 16;
630       } else {
631         *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
632       }
633     } else if (cipher->algorithm_enc == SSL_AES256) {
634       if (version == TLS1_VERSION) {
635         *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
636         *out_fixed_iv_len = 16;
637       } else {
638         *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
639       }
640     } else {
641       return false;
642     }
643 
644     *out_mac_secret_len = SHA_DIGEST_LENGTH;
645   } else if (cipher->algorithm_mac == SSL_SHA256) {
646     if (cipher->algorithm_enc == SSL_AES128) {
647       *out_aead = EVP_aead_aes_128_cbc_sha256_tls();
648     } else {
649       return false;
650     }
651 
652     *out_mac_secret_len = SHA256_DIGEST_LENGTH;
653   } else {
654     return false;
655   }
656 
657   return true;
658 }
659 
ssl_get_handshake_digest(uint16_t version,const SSL_CIPHER * cipher)660 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
661                                        const SSL_CIPHER *cipher) {
662   switch (cipher->algorithm_prf) {
663     case SSL_HANDSHAKE_MAC_DEFAULT:
664       return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
665     case SSL_HANDSHAKE_MAC_SHA256:
666       return EVP_sha256();
667     case SSL_HANDSHAKE_MAC_SHA384:
668       return EVP_sha384();
669     default:
670       assert(0);
671       return NULL;
672   }
673 }
674 
is_cipher_list_separator(char c,bool is_strict)675 static bool is_cipher_list_separator(char c, bool is_strict) {
676   if (c == ':') {
677     return true;
678   }
679   return !is_strict && (c == ' ' || c == ';' || c == ',');
680 }
681 
682 // rule_equals returns whether the NUL-terminated string |rule| is equal to the
683 // |buf_len| bytes at |buf|.
rule_equals(const char * rule,const char * buf,size_t buf_len)684 static bool rule_equals(const char *rule, const char *buf, size_t buf_len) {
685   // |strncmp| alone only checks that |buf| is a prefix of |rule|.
686   return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
687 }
688 
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)689 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
690                            CIPHER_ORDER **tail) {
691   if (curr == *tail) {
692     return;
693   }
694   if (curr == *head) {
695     *head = curr->next;
696   }
697   if (curr->prev != NULL) {
698     curr->prev->next = curr->next;
699   }
700   if (curr->next != NULL) {
701     curr->next->prev = curr->prev;
702   }
703   (*tail)->next = curr;
704   curr->prev = *tail;
705   curr->next = NULL;
706   *tail = curr;
707 }
708 
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)709 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
710                            CIPHER_ORDER **tail) {
711   if (curr == *head) {
712     return;
713   }
714   if (curr == *tail) {
715     *tail = curr->prev;
716   }
717   if (curr->next != NULL) {
718     curr->next->prev = curr->prev;
719   }
720   if (curr->prev != NULL) {
721     curr->prev->next = curr->next;
722   }
723   (*head)->prev = curr;
724   curr->next = *head;
725   curr->prev = NULL;
726   *head = curr;
727 }
728 
~SSLCipherPreferenceList()729 SSLCipherPreferenceList::~SSLCipherPreferenceList() {
730   OPENSSL_free(in_group_flags);
731 }
732 
Init(UniquePtr<STACK_OF (SSL_CIPHER)> ciphers_arg,Span<const bool> in_group_flags_arg)733 bool SSLCipherPreferenceList::Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers_arg,
734                                    Span<const bool> in_group_flags_arg) {
735   if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) {
736     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
737     return false;
738   }
739 
740   Array<bool> copy;
741   if (!copy.CopyFrom(in_group_flags_arg)) {
742     return false;
743   }
744   ciphers = std::move(ciphers_arg);
745   size_t unused_len;
746   copy.Release(&in_group_flags, &unused_len);
747   return true;
748 }
749 
Init(const SSLCipherPreferenceList & other)750 bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList& other) {
751   size_t size = sk_SSL_CIPHER_num(other.ciphers.get());
752   Span<const bool> other_flags(other.in_group_flags, size);
753   UniquePtr<STACK_OF(SSL_CIPHER)> other_ciphers(sk_SSL_CIPHER_dup(
754       other.ciphers.get()));
755   if (!other_ciphers) {
756     return false;
757   }
758   return Init(std::move(other_ciphers), other_flags);
759 }
760 
Remove(const SSL_CIPHER * cipher)761 void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) {
762   size_t index;
763   if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) {
764     return;
765   }
766   if (!in_group_flags[index] /* last element of group */ && index > 0) {
767     in_group_flags[index-1] = false;
768   }
769   for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) {
770     in_group_flags[i] = in_group_flags[i+1];
771   }
772   sk_SSL_CIPHER_delete(ciphers.get(), index);
773 }
774 
ssl_cipher_is_deprecated(const SSL_CIPHER * cipher)775 bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher) {
776   return cipher->id == TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ||
777          cipher->algorithm_enc == SSL_3DES;
778 }
779 
780 // ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
781 // parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
782 // head and tail of the list to |*head_p| and |*tail_p|, respectively.
783 //
784 // - If |cipher_id| is non-zero, only that cipher is selected.
785 // - Otherwise, if |strength_bits| is non-negative, it selects ciphers
786 //   of that strength.
787 // - Otherwise, |alias| must be non-null. It selects ciphers that matches
788 //   |*alias|.
ssl_cipher_apply_rule(uint32_t cipher_id,const CIPHER_ALIAS * alias,int rule,int strength_bits,bool in_group,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)789 static void ssl_cipher_apply_rule(uint32_t cipher_id, const CIPHER_ALIAS *alias,
790                                   int rule, int strength_bits, bool in_group,
791                                   CIPHER_ORDER **head_p,
792                                   CIPHER_ORDER **tail_p) {
793   CIPHER_ORDER *head, *tail, *curr, *next, *last;
794   const SSL_CIPHER *cp;
795   bool reverse = false;
796 
797   if (cipher_id == 0 && strength_bits == -1 && alias->min_version == 0 &&
798       (alias->algorithm_mkey == 0 || alias->algorithm_auth == 0 ||
799        alias->algorithm_enc == 0 || alias->algorithm_mac == 0)) {
800     // The rule matches nothing, so bail early.
801     return;
802   }
803 
804   if (rule == CIPHER_DEL) {
805     // needed to maintain sorting between currently deleted ciphers
806     reverse = true;
807   }
808 
809   head = *head_p;
810   tail = *tail_p;
811 
812   if (reverse) {
813     next = tail;
814     last = head;
815   } else {
816     next = head;
817     last = tail;
818   }
819 
820   curr = NULL;
821   for (;;) {
822     if (curr == last) {
823       break;
824     }
825 
826     curr = next;
827     if (curr == NULL) {
828       break;
829     }
830 
831     next = reverse ? curr->prev : curr->next;
832     cp = curr->cipher;
833 
834     // Selection criteria is either a specific cipher, the value of
835     // |strength_bits|, or the algorithms used.
836     if (cipher_id != 0) {
837       if (cipher_id != cp->id) {
838         continue;
839       }
840     } else if (strength_bits >= 0) {
841       if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
842         continue;
843       }
844     } else {
845       if (!(alias->algorithm_mkey & cp->algorithm_mkey) ||
846           !(alias->algorithm_auth & cp->algorithm_auth) ||
847           !(alias->algorithm_enc & cp->algorithm_enc) ||
848           !(alias->algorithm_mac & cp->algorithm_mac) ||
849           (alias->min_version != 0 &&
850            SSL_CIPHER_get_min_version(cp) != alias->min_version) ||
851           (!alias->include_deprecated && ssl_cipher_is_deprecated(cp))) {
852         continue;
853       }
854     }
855 
856     // add the cipher if it has not been added yet.
857     if (rule == CIPHER_ADD) {
858       // reverse == false
859       if (!curr->active) {
860         ll_append_tail(&head, curr, &tail);
861         curr->active = true;
862         curr->in_group = in_group;
863       }
864     }
865 
866     // Move the added cipher to this location
867     else if (rule == CIPHER_ORD) {
868       // reverse == false
869       if (curr->active) {
870         ll_append_tail(&head, curr, &tail);
871         curr->in_group = false;
872       }
873     } else if (rule == CIPHER_DEL) {
874       // reverse == true
875       if (curr->active) {
876         // most recently deleted ciphersuites get best positions
877         // for any future CIPHER_ADD (note that the CIPHER_DEL loop
878         // works in reverse to maintain the order)
879         ll_append_head(&head, curr, &tail);
880         curr->active = false;
881         curr->in_group = false;
882       }
883     } else if (rule == CIPHER_KILL) {
884       // reverse == false
885       if (head == curr) {
886         head = curr->next;
887       } else {
888         curr->prev->next = curr->next;
889       }
890 
891       if (tail == curr) {
892         tail = curr->prev;
893       }
894       curr->active = false;
895       if (curr->next != NULL) {
896         curr->next->prev = curr->prev;
897       }
898       if (curr->prev != NULL) {
899         curr->prev->next = curr->next;
900       }
901       curr->next = NULL;
902       curr->prev = NULL;
903     }
904   }
905 
906   *head_p = head;
907   *tail_p = tail;
908 }
909 
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)910 static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
911                                      CIPHER_ORDER **tail_p) {
912   // This routine sorts the ciphers with descending strength. The sorting must
913   // keep the pre-sorted sequence, so we apply the normal sorting routine as
914   // '+' movement to the end of the list.
915   int max_strength_bits = 0;
916   CIPHER_ORDER *curr = *head_p;
917   while (curr != NULL) {
918     if (curr->active &&
919         SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
920       max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
921     }
922     curr = curr->next;
923   }
924 
925   Array<int> number_uses;
926   if (!number_uses.Init(max_strength_bits + 1)) {
927     return false;
928   }
929   OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int));
930 
931   // Now find the strength_bits values actually used.
932   curr = *head_p;
933   while (curr != NULL) {
934     if (curr->active) {
935       number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
936     }
937     curr = curr->next;
938   }
939 
940   // Go through the list of used strength_bits values in descending order.
941   for (int i = max_strength_bits; i >= 0; i--) {
942     if (number_uses[i] > 0) {
943       ssl_cipher_apply_rule(/*cipher_id=*/0, /*alias=*/nullptr, CIPHER_ORD, i,
944                             false, head_p, tail_p);
945     }
946   }
947 
948   return true;
949 }
950 
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,bool strict)951 static bool ssl_cipher_process_rulestr(const char *rule_str,
952                                        CIPHER_ORDER **head_p,
953                                        CIPHER_ORDER **tail_p, bool strict) {
954   const char *l, *buf;
955   bool in_group = false, has_group = false;
956   size_t j, buf_len;
957   char ch;
958 
959   l = rule_str;
960   for (;;) {
961     ch = *l;
962 
963     if (ch == '\0') {
964       break;  // done
965     }
966 
967     int rule;
968     if (in_group) {
969       if (ch == ']') {
970         if (*tail_p) {
971           (*tail_p)->in_group = false;
972         }
973         in_group = false;
974         l++;
975         continue;
976       }
977 
978       if (ch == '|') {
979         rule = CIPHER_ADD;
980         l++;
981         continue;
982       } else if (!OPENSSL_isalnum(ch)) {
983         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
984         return false;
985       } else {
986         rule = CIPHER_ADD;
987       }
988     } else if (ch == '-') {
989       rule = CIPHER_DEL;
990       l++;
991     } else if (ch == '+') {
992       rule = CIPHER_ORD;
993       l++;
994     } else if (ch == '!') {
995       rule = CIPHER_KILL;
996       l++;
997     } else if (ch == '@') {
998       rule = CIPHER_SPECIAL;
999       l++;
1000     } else if (ch == '[') {
1001       assert(!in_group);
1002       in_group = true;
1003       has_group = true;
1004       l++;
1005       continue;
1006     } else {
1007       rule = CIPHER_ADD;
1008     }
1009 
1010     // If preference groups are enabled, the only legal operator is +.
1011     // Otherwise the in_group bits will get mixed up.
1012     if (has_group && rule != CIPHER_ADD) {
1013       OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
1014       return false;
1015     }
1016 
1017     if (is_cipher_list_separator(ch, strict)) {
1018       l++;
1019       continue;
1020     }
1021 
1022     bool multi = false;
1023     uint32_t cipher_id = 0;
1024     CIPHER_ALIAS alias;
1025     bool skip_rule = false;
1026 
1027     // When adding, exclude deprecated ciphers by default.
1028     alias.include_deprecated = rule != CIPHER_ADD;
1029 
1030     for (;;) {
1031       ch = *l;
1032       buf = l;
1033       buf_len = 0;
1034       while (OPENSSL_isalnum(ch) || ch == '-' || ch == '.' || ch == '_') {
1035         ch = *(++l);
1036         buf_len++;
1037       }
1038 
1039       if (buf_len == 0) {
1040         // We hit something we cannot deal with, it is no command or separator
1041         // nor alphanumeric, so we call this an error.
1042         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1043         return false;
1044       }
1045 
1046       if (rule == CIPHER_SPECIAL) {
1047         break;
1048       }
1049 
1050       // Look for a matching exact cipher. These aren't allowed in multipart
1051       // rules.
1052       if (!multi && ch != '+') {
1053         for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) {
1054           const SSL_CIPHER *cipher = &kCiphers[j];
1055           if (rule_equals(cipher->name, buf, buf_len) ||
1056               rule_equals(cipher->standard_name, buf, buf_len)) {
1057             cipher_id = cipher->id;
1058             break;
1059           }
1060         }
1061       }
1062       if (cipher_id == 0) {
1063         // If not an exact cipher, look for a matching cipher alias.
1064         for (j = 0; j < kCipherAliasesLen; j++) {
1065           if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
1066             alias.algorithm_mkey &= kCipherAliases[j].algorithm_mkey;
1067             alias.algorithm_auth &= kCipherAliases[j].algorithm_auth;
1068             alias.algorithm_enc &= kCipherAliases[j].algorithm_enc;
1069             alias.algorithm_mac &= kCipherAliases[j].algorithm_mac;
1070 
1071             // When specifying a combination of aliases, if any aliases
1072             // enables deprecated ciphers, deprecated ciphers are included. This
1073             // is slightly different from the bitmasks in that adding aliases
1074             // can increase the set of matched ciphers. This is so that an alias
1075             // like "RSA" will only specifiy AES-based RSA ciphers, but
1076             // "RSA+3DES" will still specify 3DES.
1077             alias.include_deprecated |= kCipherAliases[j].include_deprecated;
1078 
1079             if (alias.min_version != 0 &&
1080                 alias.min_version != kCipherAliases[j].min_version) {
1081               skip_rule = true;
1082             } else {
1083               alias.min_version = kCipherAliases[j].min_version;
1084             }
1085             break;
1086           }
1087         }
1088         if (j == kCipherAliasesLen) {
1089           skip_rule = true;
1090           if (strict) {
1091             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1092             return false;
1093           }
1094         }
1095       }
1096 
1097       // Check for a multipart rule.
1098       if (ch != '+') {
1099         break;
1100       }
1101       l++;
1102       multi = true;
1103     }
1104 
1105     // Ok, we have the rule, now apply it.
1106     if (rule == CIPHER_SPECIAL) {
1107       if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
1108         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1109         return false;
1110       }
1111       if (!ssl_cipher_strength_sort(head_p, tail_p)) {
1112         return false;
1113       }
1114 
1115       // We do not support any "multi" options together with "@", so throw away
1116       // the rest of the command, if any left, until end or ':' is found.
1117       while (*l != '\0' && !is_cipher_list_separator(*l, strict)) {
1118         l++;
1119       }
1120     } else if (!skip_rule) {
1121       ssl_cipher_apply_rule(cipher_id, &alias, rule, -1, in_group, head_p,
1122                             tail_p);
1123     }
1124   }
1125 
1126   if (in_group) {
1127     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1128     return false;
1129   }
1130 
1131   return true;
1132 }
1133 
ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> * out_cipher_list,const bool has_aes_hw,const char * rule_str,bool strict)1134 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
1135                             const bool has_aes_hw, const char *rule_str,
1136                             bool strict) {
1137   // Return with error if nothing to do.
1138   if (rule_str == NULL || out_cipher_list == NULL) {
1139     return false;
1140   }
1141 
1142   // We prefer ECDHE ciphers over non-PFS ciphers. Then we prefer AEAD over
1143   // non-AEAD. The constants are masked by 0xffff to remove the vestigial 0x03
1144   // byte from SSL 2.0.
1145   static const uint16_t kAESCiphers[] = {
1146       TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1147       TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1148       TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1149       TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1150   };
1151   static const uint16_t kChaChaCiphers[] = {
1152       TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1153       TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1154       TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 & 0xffff,
1155   };
1156   static const uint16_t kLegacyCiphers[] = {
1157       TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA & 0xffff,
1158       TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA & 0xffff,
1159       TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA & 0xffff,
1160       TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA & 0xffff,
1161       TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA & 0xffff,
1162       TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA & 0xffff,
1163       TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 & 0xffff,
1164       TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 & 0xffff,
1165       TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 & 0xffff,
1166       TLS1_CK_RSA_WITH_AES_128_SHA & 0xffff,
1167       TLS1_CK_PSK_WITH_AES_128_CBC_SHA & 0xffff,
1168       TLS1_CK_RSA_WITH_AES_256_SHA & 0xffff,
1169       TLS1_CK_PSK_WITH_AES_256_CBC_SHA & 0xffff,
1170       SSL3_CK_RSA_DES_192_CBC3_SHA & 0xffff,
1171   };
1172 
1173   // Set up a linked list of ciphers.
1174   CIPHER_ORDER co_list[OPENSSL_ARRAY_SIZE(kAESCiphers) +
1175                        OPENSSL_ARRAY_SIZE(kChaChaCiphers) +
1176                        OPENSSL_ARRAY_SIZE(kLegacyCiphers)];
1177   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(co_list); i++) {
1178     co_list[i].next =
1179         i + 1 < OPENSSL_ARRAY_SIZE(co_list) ? &co_list[i + 1] : nullptr;
1180     co_list[i].prev = i == 0 ? nullptr : &co_list[i - 1];
1181     co_list[i].active = false;
1182     co_list[i].in_group = false;
1183   }
1184   CIPHER_ORDER *head = &co_list[0];
1185   CIPHER_ORDER *tail = &co_list[OPENSSL_ARRAY_SIZE(co_list) - 1];
1186 
1187   // Order AES ciphers vs ChaCha ciphers based on whether we have AES hardware.
1188   //
1189   // TODO(crbug.com/boringssl/29): We should also set up equipreference groups
1190   // as a server.
1191   size_t num = 0;
1192   if (has_aes_hw) {
1193     for (uint16_t id : kAESCiphers) {
1194       co_list[num++].cipher = SSL_get_cipher_by_value(id);
1195       assert(co_list[num - 1].cipher != nullptr);
1196     }
1197   }
1198   for (uint16_t id : kChaChaCiphers) {
1199     co_list[num++].cipher = SSL_get_cipher_by_value(id);
1200     assert(co_list[num - 1].cipher != nullptr);
1201   }
1202   if (!has_aes_hw) {
1203     for (uint16_t id : kAESCiphers) {
1204       co_list[num++].cipher = SSL_get_cipher_by_value(id);
1205       assert(co_list[num - 1].cipher != nullptr);
1206     }
1207   }
1208   for (uint16_t id : kLegacyCiphers) {
1209     co_list[num++].cipher = SSL_get_cipher_by_value(id);
1210     assert(co_list[num - 1].cipher != nullptr);
1211   }
1212   assert(num == OPENSSL_ARRAY_SIZE(co_list));
1213   static_assert(OPENSSL_ARRAY_SIZE(co_list) + NumTLS13Ciphers() ==
1214                     OPENSSL_ARRAY_SIZE(kCiphers),
1215                 "Not all ciphers are included in the cipher order");
1216 
1217   // If the rule_string begins with DEFAULT, apply the default rule before
1218   // using the (possibly available) additional rules.
1219   const char *rule_p = rule_str;
1220   if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1221     if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail,
1222                                     strict)) {
1223       return false;
1224     }
1225     rule_p += 7;
1226     if (*rule_p == ':') {
1227       rule_p++;
1228     }
1229   }
1230 
1231   if (*rule_p != '\0' &&
1232       !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) {
1233     return false;
1234   }
1235 
1236   // Allocate new "cipherstack" for the result, return with error
1237   // if we cannot get one.
1238   UniquePtr<STACK_OF(SSL_CIPHER)> cipherstack(sk_SSL_CIPHER_new_null());
1239   Array<bool> in_group_flags;
1240   if (cipherstack == nullptr ||
1241       !in_group_flags.Init(OPENSSL_ARRAY_SIZE(kCiphers))) {
1242     return false;
1243   }
1244 
1245   // The cipher selection for the list is done. The ciphers are added
1246   // to the resulting precedence to the STACK_OF(SSL_CIPHER).
1247   size_t num_in_group_flags = 0;
1248   for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) {
1249     if (curr->active) {
1250       if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) {
1251         return false;
1252       }
1253       in_group_flags[num_in_group_flags++] = curr->in_group;
1254     }
1255   }
1256 
1257   UniquePtr<SSLCipherPreferenceList> pref_list =
1258       MakeUnique<SSLCipherPreferenceList>();
1259   if (!pref_list ||
1260       !pref_list->Init(
1261           std::move(cipherstack),
1262           MakeConstSpan(in_group_flags).subspan(0, num_in_group_flags))) {
1263     return false;
1264   }
1265 
1266   *out_cipher_list = std::move(pref_list);
1267 
1268   // Configuring an empty cipher list is an error but still updates the
1269   // output.
1270   if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) {
1271     OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
1272     return false;
1273   }
1274 
1275   return true;
1276 }
1277 
ssl_cipher_auth_mask_for_key(const EVP_PKEY * key,bool sign_ok)1278 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok) {
1279   switch (EVP_PKEY_id(key)) {
1280     case EVP_PKEY_RSA:
1281       return sign_ok ? (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT) : SSL_aRSA_DECRYPT;
1282     case EVP_PKEY_EC:
1283     case EVP_PKEY_ED25519:
1284       // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers.
1285       return sign_ok ? SSL_aECDSA : 0;
1286     default:
1287       return 0;
1288   }
1289 }
1290 
ssl_cipher_uses_certificate_auth(const SSL_CIPHER * cipher)1291 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
1292   return (cipher->algorithm_auth & SSL_aCERT) != 0;
1293 }
1294 
ssl_cipher_requires_server_key_exchange(const SSL_CIPHER * cipher)1295 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
1296   // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is
1297   // optional or omitted in all others.
1298   return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
1299 }
1300 
ssl_cipher_get_record_split_len(const SSL_CIPHER * cipher)1301 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
1302   size_t block_size;
1303   switch (cipher->algorithm_enc) {
1304     case SSL_3DES:
1305       block_size = 8;
1306       break;
1307     case SSL_AES128:
1308     case SSL_AES256:
1309       block_size = 16;
1310       break;
1311     default:
1312       return 0;
1313   }
1314 
1315   // All supported TLS 1.0 ciphers use SHA-1.
1316   assert(cipher->algorithm_mac == SSL_SHA1);
1317   size_t ret = 1 + SHA_DIGEST_LENGTH;
1318   ret += block_size - (ret % block_size);
1319   return ret;
1320 }
1321 
1322 BSSL_NAMESPACE_END
1323 
1324 using namespace bssl;
1325 
ssl_cipher_id_cmp(const SSL_CIPHER * a,const SSL_CIPHER * b)1326 static constexpr int ssl_cipher_id_cmp(const SSL_CIPHER *a,
1327                                        const SSL_CIPHER *b) {
1328   if (a->id > b->id) {
1329     return 1;
1330   }
1331   if (a->id < b->id) {
1332     return -1;
1333   }
1334   return 0;
1335 }
1336 
ssl_cipher_id_cmp_void(const void * in_a,const void * in_b)1337 static int ssl_cipher_id_cmp_void(const void *in_a, const void *in_b) {
1338   return ssl_cipher_id_cmp(reinterpret_cast<const SSL_CIPHER *>(in_a),
1339                            reinterpret_cast<const SSL_CIPHER *>(in_b));
1340 }
1341 
1342 template <size_t N>
ssl_ciphers_sorted(const SSL_CIPHER (& ciphers)[N])1343 static constexpr bool ssl_ciphers_sorted(const SSL_CIPHER (&ciphers)[N]) {
1344   for (size_t i = 1; i < N; i++) {
1345     if (ssl_cipher_id_cmp(&ciphers[i - 1], &ciphers[i]) >= 0) {
1346       return false;
1347     }
1348   }
1349   return true;
1350 }
1351 
1352 static_assert(ssl_ciphers_sorted(kCiphers),
1353               "Ciphers are not sorted, bsearch won't work");
1354 
SSL_get_cipher_by_value(uint16_t value)1355 const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
1356   SSL_CIPHER c;
1357 
1358   c.id = 0x03000000L | value;
1359   return reinterpret_cast<const SSL_CIPHER *>(bsearch(
1360       &c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER),
1361       ssl_cipher_id_cmp_void));
1362 }
1363 
SSL_CIPHER_get_id(const SSL_CIPHER * cipher)1364 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
1365 
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * cipher)1366 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *cipher) {
1367   // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred
1368   // to SSLv2 vs SSLv3.
1369   assert((cipher->id & 0xff000000) == 0x03000000);
1370   return static_cast<uint16_t>(cipher->id);
1371 }
1372 
SSL_CIPHER_is_aead(const SSL_CIPHER * cipher)1373 int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) {
1374   return (cipher->algorithm_mac & SSL_AEAD) != 0;
1375 }
1376 
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * cipher)1377 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) {
1378   switch (cipher->algorithm_enc) {
1379     case SSL_3DES:
1380       return NID_des_ede3_cbc;
1381     case SSL_AES128:
1382       return NID_aes_128_cbc;
1383     case SSL_AES256:
1384       return NID_aes_256_cbc;
1385     case SSL_AES128GCM:
1386       return NID_aes_128_gcm;
1387     case SSL_AES256GCM:
1388       return NID_aes_256_gcm;
1389     case SSL_CHACHA20POLY1305:
1390       return NID_chacha20_poly1305;
1391   }
1392   assert(0);
1393   return NID_undef;
1394 }
1395 
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * cipher)1396 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) {
1397   switch (cipher->algorithm_mac) {
1398     case SSL_AEAD:
1399       return NID_undef;
1400     case SSL_SHA1:
1401       return NID_sha1;
1402     case SSL_SHA256:
1403       return NID_sha256;
1404   }
1405   assert(0);
1406   return NID_undef;
1407 }
1408 
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * cipher)1409 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) {
1410   switch (cipher->algorithm_mkey) {
1411     case SSL_kRSA:
1412       return NID_kx_rsa;
1413     case SSL_kECDHE:
1414       return NID_kx_ecdhe;
1415     case SSL_kPSK:
1416       return NID_kx_psk;
1417     case SSL_kGENERIC:
1418       return NID_kx_any;
1419   }
1420   assert(0);
1421   return NID_undef;
1422 }
1423 
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * cipher)1424 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) {
1425   switch (cipher->algorithm_auth) {
1426     case SSL_aRSA_DECRYPT:
1427     case SSL_aRSA_SIGN:
1428       return NID_auth_rsa;
1429     case SSL_aECDSA:
1430       return NID_auth_ecdsa;
1431     case SSL_aPSK:
1432       return NID_auth_psk;
1433     case SSL_aGENERIC:
1434       return NID_auth_any;
1435   }
1436   assert(0);
1437   return NID_undef;
1438 }
1439 
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * cipher)1440 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *cipher) {
1441   switch (cipher->algorithm_prf) {
1442     case SSL_HANDSHAKE_MAC_DEFAULT:
1443       return EVP_md5_sha1();
1444     case SSL_HANDSHAKE_MAC_SHA256:
1445       return EVP_sha256();
1446     case SSL_HANDSHAKE_MAC_SHA384:
1447       return EVP_sha384();
1448   }
1449   assert(0);
1450   return NULL;
1451 }
1452 
SSL_CIPHER_get_prf_nid(const SSL_CIPHER * cipher)1453 int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) {
1454   const EVP_MD *md = SSL_CIPHER_get_handshake_digest(cipher);
1455   if (md == NULL) {
1456     return NID_undef;
1457   }
1458   return EVP_MD_nid(md);
1459 }
1460 
SSL_CIPHER_is_block_cipher(const SSL_CIPHER * cipher)1461 int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
1462   return cipher->algorithm_mac != SSL_AEAD;
1463 }
1464 
SSL_CIPHER_get_min_version(const SSL_CIPHER * cipher)1465 uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
1466   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1467       cipher->algorithm_auth == SSL_aGENERIC) {
1468     return TLS1_3_VERSION;
1469   }
1470 
1471   if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
1472     // Cipher suites before TLS 1.2 use the default PRF, while all those added
1473     // afterwards specify a particular hash.
1474     return TLS1_2_VERSION;
1475   }
1476   return SSL3_VERSION;
1477 }
1478 
SSL_CIPHER_get_max_version(const SSL_CIPHER * cipher)1479 uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
1480   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1481       cipher->algorithm_auth == SSL_aGENERIC) {
1482     return TLS1_3_VERSION;
1483   }
1484   return TLS1_2_VERSION;
1485 }
1486 
1487 static const char* kUnknownCipher = "(NONE)";
1488 
1489 // return the actual cipher being used
SSL_CIPHER_get_name(const SSL_CIPHER * cipher)1490 const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
1491   if (cipher != NULL) {
1492     return cipher->name;
1493   }
1494 
1495   return kUnknownCipher;
1496 }
1497 
SSL_CIPHER_standard_name(const SSL_CIPHER * cipher)1498 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
1499   return cipher->standard_name;
1500 }
1501 
SSL_CIPHER_get_kx_name(const SSL_CIPHER * cipher)1502 const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
1503   if (cipher == NULL) {
1504     return "";
1505   }
1506 
1507   switch (cipher->algorithm_mkey) {
1508     case SSL_kRSA:
1509       return "RSA";
1510 
1511     case SSL_kECDHE:
1512       switch (cipher->algorithm_auth) {
1513         case SSL_aECDSA:
1514           return "ECDHE_ECDSA";
1515         case SSL_aRSA_SIGN:
1516           return "ECDHE_RSA";
1517         case SSL_aPSK:
1518           return "ECDHE_PSK";
1519         default:
1520           assert(0);
1521           return "UNKNOWN";
1522       }
1523 
1524     case SSL_kPSK:
1525       assert(cipher->algorithm_auth == SSL_aPSK);
1526       return "PSK";
1527 
1528     case SSL_kGENERIC:
1529       assert(cipher->algorithm_auth == SSL_aGENERIC);
1530       return "GENERIC";
1531 
1532     default:
1533       assert(0);
1534       return "UNKNOWN";
1535   }
1536 }
1537 
SSL_CIPHER_get_bits(const SSL_CIPHER * cipher,int * out_alg_bits)1538 int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
1539   if (cipher == NULL) {
1540     return 0;
1541   }
1542 
1543   int alg_bits, strength_bits;
1544   switch (cipher->algorithm_enc) {
1545     case SSL_AES128:
1546     case SSL_AES128GCM:
1547       alg_bits = 128;
1548       strength_bits = 128;
1549       break;
1550 
1551     case SSL_AES256:
1552     case SSL_AES256GCM:
1553     case SSL_CHACHA20POLY1305:
1554       alg_bits = 256;
1555       strength_bits = 256;
1556       break;
1557 
1558     case SSL_3DES:
1559       alg_bits = 168;
1560       strength_bits = 112;
1561       break;
1562 
1563     default:
1564       assert(0);
1565       alg_bits = 0;
1566       strength_bits = 0;
1567   }
1568 
1569   if (out_alg_bits != NULL) {
1570     *out_alg_bits = alg_bits;
1571   }
1572   return strength_bits;
1573 }
1574 
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1575 const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
1576                                    int len) {
1577   const char *kx, *au, *enc, *mac;
1578   uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1579 
1580   alg_mkey = cipher->algorithm_mkey;
1581   alg_auth = cipher->algorithm_auth;
1582   alg_enc = cipher->algorithm_enc;
1583   alg_mac = cipher->algorithm_mac;
1584 
1585   switch (alg_mkey) {
1586     case SSL_kRSA:
1587       kx = "RSA";
1588       break;
1589 
1590     case SSL_kECDHE:
1591       kx = "ECDH";
1592       break;
1593 
1594     case SSL_kPSK:
1595       kx = "PSK";
1596       break;
1597 
1598     case SSL_kGENERIC:
1599       kx = "GENERIC";
1600       break;
1601 
1602     default:
1603       kx = "unknown";
1604   }
1605 
1606   switch (alg_auth) {
1607     case SSL_aRSA_DECRYPT:
1608     case SSL_aRSA_SIGN:
1609       au = "RSA";
1610       break;
1611 
1612     case SSL_aECDSA:
1613       au = "ECDSA";
1614       break;
1615 
1616     case SSL_aPSK:
1617       au = "PSK";
1618       break;
1619 
1620     case SSL_aGENERIC:
1621       au = "GENERIC";
1622       break;
1623 
1624     default:
1625       au = "unknown";
1626       break;
1627   }
1628 
1629   switch (alg_enc) {
1630     case SSL_3DES:
1631       enc = "3DES(168)";
1632       break;
1633 
1634     case SSL_AES128:
1635       enc = "AES(128)";
1636       break;
1637 
1638     case SSL_AES256:
1639       enc = "AES(256)";
1640       break;
1641 
1642     case SSL_AES128GCM:
1643       enc = "AESGCM(128)";
1644       break;
1645 
1646     case SSL_AES256GCM:
1647       enc = "AESGCM(256)";
1648       break;
1649 
1650     case SSL_CHACHA20POLY1305:
1651       enc = "ChaCha20-Poly1305";
1652       break;
1653 
1654     default:
1655       enc = "unknown";
1656       break;
1657   }
1658 
1659   switch (alg_mac) {
1660     case SSL_SHA1:
1661       mac = "SHA1";
1662       break;
1663 
1664     case SSL_SHA256:
1665       mac = "SHA256";
1666       break;
1667 
1668     case SSL_AEAD:
1669       mac = "AEAD";
1670       break;
1671 
1672     default:
1673       mac = "unknown";
1674       break;
1675   }
1676 
1677   if (buf == NULL) {
1678     len = 128;
1679     buf = (char *)OPENSSL_malloc(len);
1680     if (buf == NULL) {
1681       return NULL;
1682     }
1683   } else if (len < 128) {
1684     return "Buffer too small";
1685   }
1686 
1687   snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", cipher->name,
1688            kx, au, enc, mac);
1689   return buf;
1690 }
1691 
SSL_CIPHER_get_version(const SSL_CIPHER * cipher)1692 const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
1693   return "TLSv1/SSLv3";
1694 }
1695 
STACK_OF(SSL_COMP)1696 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }
1697 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1698 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
1699 
SSL_COMP_get_name(const COMP_METHOD * comp)1700 const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
1701 
SSL_COMP_get0_name(const SSL_COMP * comp)1702 const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; }
1703 
SSL_COMP_get_id(const SSL_COMP * comp)1704 int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; }
1705 
SSL_COMP_free_compression_methods(void)1706 void SSL_COMP_free_compression_methods(void) {}
1707 
SSL_get_all_cipher_names(const char ** out,size_t max_out)1708 size_t SSL_get_all_cipher_names(const char **out, size_t max_out) {
1709   return GetAllNames(out, max_out, MakeConstSpan(&kUnknownCipher, 1),
1710                      &SSL_CIPHER::name, MakeConstSpan(kCiphers));
1711 }
1712 
SSL_get_all_standard_cipher_names(const char ** out,size_t max_out)1713 size_t SSL_get_all_standard_cipher_names(const char **out, size_t max_out) {
1714   return GetAllNames(out, max_out, Span<const char *>(),
1715                      &SSL_CIPHER::standard_name, MakeConstSpan(kCiphers));
1716 }
1717