xref: /aosp_15_r20/external/boringssl/src/ssl/internal.h (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    [email protected].
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * ([email protected]).  This product includes software written by Tim
107  * Hudson ([email protected]).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114  */
115 /* ====================================================================
116  * Copyright 2005 Nokia. All rights reserved.
117  *
118  * The portions of the attached software ("Contribution") is developed by
119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120  * license.
121  *
122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124  * support (see RFC 4279) to OpenSSL.
125  *
126  * No patent licenses or other rights except those expressly stated in
127  * the OpenSSL open source license shall be deemed granted or received
128  * expressly, by implication, estoppel, or otherwise.
129  *
130  * No assurances are provided by Nokia that the Contribution does not
131  * infringe the patent or other intellectual property rights of any third
132  * party or that the license provides you with all the necessary rights
133  * to make use of the Contribution.
134  *
135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139  * OTHERWISE.
140  */
141 
142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143 #define OPENSSL_HEADER_SSL_INTERNAL_H
144 
145 #include <openssl/base.h>
146 
147 #include <stdlib.h>
148 
149 #include <algorithm>
150 #include <bitset>
151 #include <initializer_list>
152 #include <limits>
153 #include <new>
154 #include <type_traits>
155 #include <utility>
156 
157 #include <openssl/aead.h>
158 #include <openssl/curve25519.h>
159 #include <openssl/err.h>
160 #include <openssl/hpke.h>
161 #include <openssl/lhash.h>
162 #include <openssl/mem.h>
163 #include <openssl/span.h>
164 #include <openssl/ssl.h>
165 #include <openssl/stack.h>
166 
167 #include "../crypto/err/internal.h"
168 #include "../crypto/internal.h"
169 #include "../crypto/lhash/internal.h"
170 
171 
172 #if defined(OPENSSL_WINDOWS)
173 // Windows defines struct timeval in winsock2.h.
174 OPENSSL_MSVC_PRAGMA(warning(push, 3))
175 #include <winsock2.h>
176 OPENSSL_MSVC_PRAGMA(warning(pop))
177 #else
178 #include <sys/time.h>
179 #endif
180 
181 
182 BSSL_NAMESPACE_BEGIN
183 
184 struct SSL_CONFIG;
185 struct SSL_HANDSHAKE;
186 struct SSL_PROTOCOL_METHOD;
187 struct SSL_X509_METHOD;
188 
189 // C++ utilities.
190 
191 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
192 // returns nullptr on allocation error. It only implements single-object
193 // allocation and not new T[n].
194 //
195 // Note: unlike |new|, this does not support non-public constructors.
196 template <typename T, typename... Args>
New(Args &&...args)197 T *New(Args &&... args) {
198   void *t = OPENSSL_malloc(sizeof(T));
199   if (t == nullptr) {
200     return nullptr;
201   }
202   return new (t) T(std::forward<Args>(args)...);
203 }
204 
205 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
206 //
207 // Note: unlike |delete| this does not support non-public destructors.
208 template <typename T>
Delete(T * t)209 void Delete(T *t) {
210   if (t != nullptr) {
211     t->~T();
212     OPENSSL_free(t);
213   }
214 }
215 
216 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
217 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
218 namespace internal {
219 template <typename T>
220 struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> {
221   static void Free(T *t) { Delete(t); }
222 };
223 }  // namespace internal
224 
225 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
226 // error.
227 template <typename T, typename... Args>
228 UniquePtr<T> MakeUnique(Args &&... args) {
229   return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230 }
231 
232 // Array<T> is an owning array of elements of |T|.
233 template <typename T>
234 class Array {
235  public:
236   // Array's default constructor creates an empty array.
237   Array() {}
238   Array(const Array &) = delete;
239   Array(Array &&other) { *this = std::move(other); }
240 
241   ~Array() { Reset(); }
242 
243   Array &operator=(const Array &) = delete;
244   Array &operator=(Array &&other) {
245     Reset();
246     other.Release(&data_, &size_);
247     return *this;
248   }
249 
250   const T *data() const { return data_; }
251   T *data() { return data_; }
252   size_t size() const { return size_; }
253   bool empty() const { return size_ == 0; }
254 
255   const T &operator[](size_t i) const { return data_[i]; }
256   T &operator[](size_t i) { return data_[i]; }
257 
258   T *begin() { return data_; }
259   const T *begin() const { return data_; }
260   T *end() { return data_ + size_; }
261   const T *end() const { return data_ + size_; }
262 
263   void Reset() { Reset(nullptr, 0); }
264 
265   // Reset releases the current contents of the array and takes ownership of the
266   // raw pointer supplied by the caller.
267   void Reset(T *new_data, size_t new_size) {
268     for (size_t i = 0; i < size_; i++) {
269       data_[i].~T();
270     }
271     OPENSSL_free(data_);
272     data_ = new_data;
273     size_ = new_size;
274   }
275 
276   // Release releases ownership of the array to a raw pointer supplied by the
277   // caller.
278   void Release(T **out, size_t *out_size) {
279     *out = data_;
280     *out_size = size_;
281     data_ = nullptr;
282     size_ = 0;
283   }
284 
285   // Init replaces the array with a newly-allocated array of |new_size|
286   // default-constructed copies of |T|. It returns true on success and false on
287   // error.
288   //
289   // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
290   bool Init(size_t new_size) {
291     Reset();
292     if (new_size == 0) {
293       return true;
294     }
295 
296     if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298       return false;
299     }
300     data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301     if (data_ == nullptr) {
302       return false;
303     }
304     size_ = new_size;
305     for (size_t i = 0; i < size_; i++) {
306       new (&data_[i]) T;
307     }
308     return true;
309   }
310 
311   // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
312   // true on success and false on error.
313   bool CopyFrom(Span<const T> in) {
314     if (!Init(in.size())) {
315       return false;
316     }
317     std::copy(in.begin(), in.end(), data_);
318     return true;
319   }
320 
321   // Shrink shrinks the stored size of the array to |new_size|. It crashes if
322   // the new size is larger. Note this does not shrink the allocation itself.
323   void Shrink(size_t new_size) {
324     if (new_size > size_) {
325       abort();
326     }
327     for (size_t i = new_size; i < size_; i++) {
328       data_[i].~T();
329     }
330     size_ = new_size;
331   }
332 
333  private:
334   T *data_ = nullptr;
335   size_t size_ = 0;
336 };
337 
338 // GrowableArray<T> is an array that owns elements of |T|, backed by an
339 // Array<T>. When necessary, pushing will automatically trigger a resize.
340 //
341 // Note, for simplicity, this class currently differs from |std::vector| in that
342 // |T| must be efficiently default-constructible. Allocated elements beyond the
343 // end of the array are constructed and destructed.
344 template <typename T>
345 class GrowableArray {
346  public:
347   GrowableArray() = default;
348   GrowableArray(const GrowableArray &) = delete;
349   GrowableArray(GrowableArray &&other) { *this = std::move(other); }
350   ~GrowableArray() {}
351 
352   GrowableArray &operator=(const GrowableArray &) = delete;
353   GrowableArray &operator=(GrowableArray &&other) {
354     size_ = other.size_;
355     other.size_ = 0;
356     array_ = std::move(other.array_);
357     return *this;
358   }
359 
360   const T *data() const { return array_.data(); }
361   T *data() { return array_.data(); }
362   size_t size() const { return size_; }
363   bool empty() const { return size_ == 0; }
364 
365   const T &operator[](size_t i) const { return array_[i]; }
366   T &operator[](size_t i) { return array_[i]; }
367 
368   T *begin() { return array_.data(); }
369   const T *begin() const { return array_.data(); }
370   T *end() { return array_.data() + size_; }
371   const T *end() const { return array_.data() + size_; }
372 
373   void clear() {
374     size_ = 0;
375     array_.Reset();
376   }
377 
378   // Push adds |elem| at the end of the internal array, growing if necessary. It
379   // returns false when allocation fails.
380   bool Push(T elem) {
381     if (!MaybeGrow()) {
382       return false;
383     }
384     array_[size_] = std::move(elem);
385     size_++;
386     return true;
387   }
388 
389   // CopyFrom replaces the contents of the array with a copy of |in|. It returns
390   // true on success and false on allocation error.
391   bool CopyFrom(Span<const T> in) {
392     if (!array_.CopyFrom(in)) {
393       return false;
394     }
395     size_ = in.size();
396     return true;
397   }
398 
399  private:
400   // If there is no room for one more element, creates a new backing array with
401   // double the size of the old one and copies elements over.
402   bool MaybeGrow() {
403     if (array_.size() == 0) {
404       return array_.Init(kDefaultSize);
405     }
406     // No need to grow if we have room for one more T.
407     if (size_ < array_.size()) {
408       return true;
409     }
410     // Double the array's size if it's safe to do so.
411     if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
412       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
413       return false;
414     }
415     Array<T> new_array;
416     if (!new_array.Init(array_.size() * 2)) {
417       return false;
418     }
419     for (size_t i = 0; i < array_.size(); i++) {
420       new_array[i] = std::move(array_[i]);
421     }
422     array_ = std::move(new_array);
423 
424     return true;
425   }
426 
427   // |size_| is the number of elements stored in this GrowableArray.
428   size_t size_ = 0;
429   // |array_| is the backing array. Note that |array_.size()| is this
430   // GrowableArray's current capacity and that |size_ <= array_.size()|.
431   Array<T> array_;
432   // |kDefaultSize| is the default initial size of the backing array.
433   static constexpr size_t kDefaultSize = 16;
434 };
435 
436 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
437 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
438 
439 // GetAllNames helps to implement |*_get_all_*_names| style functions. It
440 // writes at most |max_out| string pointers to |out| and returns the number that
441 // it would have liked to have written. The strings written consist of
442 // |fixed_names_len| strings from |fixed_names| followed by |objects_len|
443 // strings taken by projecting |objects| through |name|.
444 template <typename T, typename Name>
445 inline size_t GetAllNames(const char **out, size_t max_out,
446                           Span<const char *const> fixed_names, Name(T::*name),
447                           Span<const T> objects) {
448   auto span = bssl::MakeSpan(out, max_out);
449   for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) {
450     span[0] = fixed_names[i];
451     span = span.subspan(1);
452   }
453   span = span.subspan(0, objects.size());
454   for (size_t i = 0; i < span.size(); i++) {
455     span[i] = objects[i].*name;
456   }
457   return fixed_names.size() + objects.size();
458 }
459 
460 // RefCounted is a common base for ref-counted types. This is an instance of the
461 // C++ curiously-recurring template pattern, so a type Foo must subclass
462 // RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling
463 // the destructor.
464 template <typename Derived>
465 class RefCounted {
466  public:
467   RefCounted(const RefCounted &) = delete;
468   RefCounted &operator=(const RefCounted &) = delete;
469 
470   // These methods are intentionally named differently from `bssl::UpRef` to
471   // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free`
472   // should call these.
473   void UpRefInternal() { CRYPTO_refcount_inc(&references_); }
474   void DecRefInternal() {
475     if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
476       Derived *d = static_cast<Derived *>(this);
477       d->~Derived();
478       OPENSSL_free(d);
479     }
480   }
481 
482  protected:
483   // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`,
484   // can call the constructor. This catches bugs where someone inherited from
485   // the wrong base.
486   class CheckSubClass {
487    private:
488     friend Derived;
489     CheckSubClass() = default;
490   };
491   RefCounted(CheckSubClass) {
492     static_assert(std::is_base_of<RefCounted, Derived>::value,
493                   "Derived must subclass RefCounted<Derived>");
494   }
495 
496   ~RefCounted() = default;
497 
498  private:
499   CRYPTO_refcount_t references_ = 1;
500 };
501 
502 
503 // Protocol versions.
504 //
505 // Due to DTLS's historical wire version differences, we maintain two notions of
506 // version.
507 //
508 // The "version" or "wire version" is the actual 16-bit value that appears on
509 // the wire. It uniquely identifies a version and is also used at API
510 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
511 // versions are opaque values and may not be compared numerically.
512 //
513 // The "protocol version" identifies the high-level handshake variant being
514 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
515 // are sequential and may be compared numerically.
516 
517 // ssl_protocol_version_from_wire sets |*out| to the protocol version
518 // corresponding to wire version |version| and returns true. If |version| is not
519 // a valid TLS or DTLS version, it returns false.
520 //
521 // Note this simultaneously handles both DTLS and TLS. Use one of the
522 // higher-level functions below for most operations.
523 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
524 
525 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
526 // minimum and maximum enabled protocol versions, respectively.
527 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
528                            uint16_t *out_max_version);
529 
530 // ssl_supports_version returns whether |hs| supports |version|.
531 bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version);
532 
533 // ssl_method_supports_version returns whether |method| supports |version|.
534 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
535                                  uint16_t version);
536 
537 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
538 // decreasing preference order. The version list is filtered to those whose
539 // protocol version is at least |extra_min_version|.
540 bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb,
541                                 uint16_t extra_min_version);
542 
543 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
544 // and the peer preference list in |peer_versions|. On success, it returns true
545 // and sets |*out_version| to the selected version. Otherwise, it returns false
546 // and sets |*out_alert| to an alert to send.
547 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
548                            uint16_t *out_version, const CBS *peer_versions);
549 
550 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
551 // call this function before the version is determined.
552 uint16_t ssl_protocol_version(const SSL *ssl);
553 
554 // Cipher suites.
555 
556 BSSL_NAMESPACE_END
557 
558 struct ssl_cipher_st {
559   // name is the OpenSSL name for the cipher.
560   const char *name;
561   // standard_name is the IETF name for the cipher.
562   const char *standard_name;
563   // id is the cipher suite value bitwise OR-d with 0x03000000.
564   uint32_t id;
565 
566   // algorithm_* determine the cipher suite. See constants below for the values.
567   uint32_t algorithm_mkey;
568   uint32_t algorithm_auth;
569   uint32_t algorithm_enc;
570   uint32_t algorithm_mac;
571   uint32_t algorithm_prf;
572 };
573 
574 BSSL_NAMESPACE_BEGIN
575 
576 // Bits for |algorithm_mkey| (key exchange algorithm).
577 #define SSL_kRSA 0x00000001u
578 #define SSL_kECDHE 0x00000002u
579 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
580 #define SSL_kPSK 0x00000004u
581 #define SSL_kGENERIC 0x00000008u
582 
583 // Bits for |algorithm_auth| (server authentication).
584 #define SSL_aRSA_SIGN 0x00000001u
585 #define SSL_aRSA_DECRYPT 0x00000002u
586 #define SSL_aECDSA 0x00000004u
587 // SSL_aPSK is set for both PSK and ECDHE_PSK.
588 #define SSL_aPSK 0x00000008u
589 #define SSL_aGENERIC 0x00000010u
590 
591 #define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA)
592 
593 // Bits for |algorithm_enc| (symmetric encryption).
594 #define SSL_3DES 0x00000001u
595 #define SSL_AES128 0x00000002u
596 #define SSL_AES256 0x00000004u
597 #define SSL_AES128GCM 0x00000008u
598 #define SSL_AES256GCM 0x00000010u
599 #define SSL_CHACHA20POLY1305 0x00000020u
600 
601 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
602 
603 // Bits for |algorithm_mac| (symmetric authentication).
604 #define SSL_SHA1 0x00000001u
605 #define SSL_SHA256 0x00000002u
606 // SSL_AEAD is set for all AEADs.
607 #define SSL_AEAD 0x00000004u
608 
609 // Bits for |algorithm_prf| (handshake digest).
610 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
611 #define SSL_HANDSHAKE_MAC_SHA256 0x2
612 #define SSL_HANDSHAKE_MAC_SHA384 0x4
613 
614 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
615 #define SSL_MAX_MD_SIZE 48
616 
617 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
618 // preference groups. For TLS clients, the groups are moot because the server
619 // picks the cipher and groups cannot be expressed on the wire. However, for
620 // servers, the equal-preference groups allow the client's preferences to be
621 // partially respected. (This only has an effect with
622 // SSL_OP_CIPHER_SERVER_PREFERENCE).
623 //
624 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
625 // All elements of a group have the same priority: no ordering is expressed
626 // within a group.
627 //
628 // The values in |ciphers| are in one-to-one correspondence with
629 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
630 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
631 // indicate that the corresponding SSL_CIPHER is not the last element of a
632 // group, or 0 to indicate that it is.
633 //
634 // For example, if |in_group_flags| contains all zeros then that indicates a
635 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
636 // of the group (i.e. they are all in a one-element group).
637 //
638 // For a more complex example, consider:
639 //   ciphers:        A  B  C  D  E  F
640 //   in_group_flags: 1  1  0  0  1  0
641 //
642 // That would express the following, order:
643 //
644 //    A         E
645 //    B -> D -> F
646 //    C
647 struct SSLCipherPreferenceList {
648   static constexpr bool kAllowUniquePtr = true;
649 
650   SSLCipherPreferenceList() = default;
651   ~SSLCipherPreferenceList();
652 
653   bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
654             Span<const bool> in_group_flags);
655   bool Init(const SSLCipherPreferenceList &);
656 
657   void Remove(const SSL_CIPHER *cipher);
658 
659   UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
660   bool *in_group_flags = nullptr;
661 };
662 
663 // AllCiphers returns an array of all supported ciphers, sorted by id.
664 Span<const SSL_CIPHER> AllCiphers();
665 
666 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
667 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
668 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
669 // respectively. The MAC key length is zero except for legacy block and stream
670 // ciphers. It returns true on success and false on error.
671 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
672                              size_t *out_mac_secret_len,
673                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
674                              uint16_t version, bool is_dtls);
675 
676 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
677 // |cipher|.
678 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
679                                        const SSL_CIPHER *cipher);
680 
681 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
682 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
683 // true on success and false on failure. If |strict| is true, nonsense will be
684 // rejected. If false, nonsense will be silently ignored. An empty result is
685 // considered an error regardless of |strict|. |has_aes_hw| indicates if the
686 // list should be ordered based on having support for AES in hardware or not.
687 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
688                             const bool has_aes_hw, const char *rule_str,
689                             bool strict);
690 
691 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
692 // values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates
693 // whether |key| may be used for signing.
694 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok);
695 
696 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
697 // server and, optionally, the client with a certificate.
698 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
699 
700 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
701 // ServerKeyExchange message.
702 //
703 // This function may return false while still allowing |cipher| an optional
704 // ServerKeyExchange. This is the case for plain PSK ciphers.
705 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
706 
707 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
708 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
709 // it returns zero.
710 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
711 
712 // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
713 // available from |cipher_suites| compatible with |version| and |policy|. It
714 // returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if
715 // the choice should be made as if support for AES in hardware is available.
716 const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw,
717                                           uint16_t version,
718                                           enum ssl_compliance_policy_t policy);
719 
720 // ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given
721 // |policy|.
722 bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id,
723                                    enum ssl_compliance_policy_t policy);
724 
725 // ssl_cipher_is_deprecated returns true if |cipher| is deprecated.
726 OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher);
727 
728 
729 // Transcript layer.
730 
731 // SSLTranscript maintains the handshake transcript as a combination of a
732 // buffer and running hash.
733 class SSLTranscript {
734  public:
735   SSLTranscript();
736   ~SSLTranscript();
737 
738   SSLTranscript(SSLTranscript &&other) = default;
739   SSLTranscript &operator=(SSLTranscript &&other) = default;
740 
741   // Init initializes the handshake transcript. If called on an existing
742   // transcript, it resets the transcript and hash. It returns true on success
743   // and false on failure.
744   bool Init();
745 
746   // InitHash initializes the handshake hash based on the PRF and contents of
747   // the handshake transcript. Subsequent calls to |Update| will update the
748   // rolling hash. It returns one on success and zero on failure. It is an error
749   // to call this function after the handshake buffer is released. This may be
750   // called multiple times to change the hash function.
751   bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
752 
753   // UpdateForHelloRetryRequest resets the rolling hash with the
754   // HelloRetryRequest construction. It returns true on success and false on
755   // failure. It is an error to call this function before the handshake buffer
756   // is released.
757   bool UpdateForHelloRetryRequest();
758 
759   // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
760   // the transcript. It returns true on success and false on failure. If the
761   // handshake buffer is still present, |digest| may be any supported digest.
762   // Otherwise, |digest| must match the transcript hash.
763   bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const;
764 
765   Span<const uint8_t> buffer() const {
766     return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
767                          buffer_->length);
768   }
769 
770   // FreeBuffer releases the handshake buffer. Subsequent calls to
771   // |Update| will not update the handshake buffer.
772   void FreeBuffer();
773 
774   // DigestLen returns the length of the PRF hash.
775   size_t DigestLen() const;
776 
777   // Digest returns the PRF hash. For TLS 1.1 and below, this is
778   // |EVP_md5_sha1|.
779   const EVP_MD *Digest() const;
780 
781   // Update adds |in| to the handshake buffer and handshake hash, whichever is
782   // enabled. It returns true on success and false on failure.
783   bool Update(Span<const uint8_t> in);
784 
785   // GetHash writes the handshake hash to |out| which must have room for at
786   // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
787   // the number of bytes written. Otherwise, it returns false.
788   bool GetHash(uint8_t *out, size_t *out_len) const;
789 
790   // GetFinishedMAC computes the MAC for the Finished message into the bytes
791   // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
792   // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
793   // on failure.
794   bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
795                       bool from_server) const;
796 
797  private:
798   // buffer_, if non-null, contains the handshake transcript.
799   UniquePtr<BUF_MEM> buffer_;
800   // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
801   ScopedEVP_MD_CTX hash_;
802 };
803 
804 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
805 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
806 // to form the seed parameter. It returns true on success and false on failure.
807 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
808               Span<const uint8_t> secret, Span<const char> label,
809               Span<const uint8_t> seed1, Span<const uint8_t> seed2);
810 
811 
812 // Encryption layer.
813 
814 // SSLAEADContext contains information about an AEAD that is being used to
815 // encrypt an SSL connection.
816 class SSLAEADContext {
817  public:
818   SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
819   ~SSLAEADContext();
820   static constexpr bool kAllowUniquePtr = true;
821 
822   SSLAEADContext(const SSLAEADContext &&) = delete;
823   SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
824 
825   // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
826   static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
827 
828   // Create creates an |SSLAEADContext| using the supplied key material. It
829   // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
830   // resulting object, depending on |direction|. |version| is the normalized
831   // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
832   static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
833                                           uint16_t version, bool is_dtls,
834                                           const SSL_CIPHER *cipher,
835                                           Span<const uint8_t> enc_key,
836                                           Span<const uint8_t> mac_key,
837                                           Span<const uint8_t> fixed_iv);
838 
839   // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
840   // given cipher and version. The resulting object can be queried for various
841   // properties but cannot encrypt or decrypt data.
842   static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
843       uint16_t version, const SSL_CIPHER *cipher);
844 
845   // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
846   // cipher, to make version-specific determinations in the record layer prior
847   // to a cipher being selected.
848   void SetVersionIfNullCipher(uint16_t version);
849 
850   // ProtocolVersion returns the protocol version associated with this
851   // SSLAEADContext. It can only be called once |version_| has been set to a
852   // valid value.
853   uint16_t ProtocolVersion() const;
854 
855   // RecordVersion returns the record version that should be used with this
856   // SSLAEADContext for record construction and crypto.
857   uint16_t RecordVersion() const;
858 
859   const SSL_CIPHER *cipher() const { return cipher_; }
860 
861   // is_null_cipher returns true if this is the null cipher.
862   bool is_null_cipher() const { return !cipher_; }
863 
864   // ExplicitNonceLen returns the length of the explicit nonce.
865   size_t ExplicitNonceLen() const;
866 
867   // MaxOverhead returns the maximum overhead of calling |Seal|.
868   size_t MaxOverhead() const;
869 
870   // SuffixLen calculates the suffix length written by |SealScatter| and writes
871   // it to |*out_suffix_len|. It returns true on success and false on error.
872   // |in_len| and |extra_in_len| should equal the argument of the same names
873   // passed to |SealScatter|.
874   bool SuffixLen(size_t *out_suffix_len, size_t in_len,
875                  size_t extra_in_len) const;
876 
877   // CiphertextLen calculates the total ciphertext length written by
878   // |SealScatter| and writes it to |*out_len|. It returns true on success and
879   // false on error. |in_len| and |extra_in_len| should equal the argument of
880   // the same names passed to |SealScatter|.
881   bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
882 
883   // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
884   // to the plaintext in |in| and returns true.  Otherwise, it returns
885   // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
886   bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
887             uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in);
888 
889   // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
890   // result to |out|. It returns true on success and false on error.
891   //
892   // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
893   bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
894             uint16_t record_version, uint64_t seqnum,
895             Span<const uint8_t> header, const uint8_t *in, size_t in_len);
896 
897   // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
898   // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
899   // success and zero on error.
900   //
901   // On successful return, exactly |ExplicitNonceLen| bytes are written to
902   // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
903   // |out_suffix|.
904   //
905   // |extra_in| may point to an additional plaintext buffer. If present,
906   // |extra_in_len| additional bytes are encrypted and authenticated, and the
907   // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
908   // be used to size |out_suffix| accordingly.
909   //
910   // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
911   // alias anything.
912   bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
913                    uint8_t type, uint16_t record_version, uint64_t seqnum,
914                    Span<const uint8_t> header, const uint8_t *in, size_t in_len,
915                    const uint8_t *extra_in, size_t extra_in_len);
916 
917   bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
918 
919  private:
920   // GetAdditionalData returns the additional data, writing into |storage| if
921   // necessary.
922   Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
923                                         uint16_t record_version,
924                                         uint64_t seqnum, size_t plaintext_len,
925                                         Span<const uint8_t> header);
926 
927   const SSL_CIPHER *cipher_;
928   ScopedEVP_AEAD_CTX ctx_;
929   // fixed_nonce_ contains any bytes of the nonce that are fixed for all
930   // records.
931   uint8_t fixed_nonce_[12];
932   uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
933   // version_ is the wire version that should be used with this AEAD.
934   uint16_t version_;
935   // is_dtls_ is whether DTLS is being used with this AEAD.
936   bool is_dtls_;
937   // variable_nonce_included_in_record_ is true if the variable nonce
938   // for a record is included as a prefix before the ciphertext.
939   bool variable_nonce_included_in_record_ : 1;
940   // random_variable_nonce_ is true if the variable nonce is
941   // randomly generated, rather than derived from the sequence
942   // number.
943   bool random_variable_nonce_ : 1;
944   // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
945   // variable nonce rather than prepended.
946   bool xor_fixed_nonce_ : 1;
947   // omit_length_in_ad_ is true if the length should be omitted in the
948   // AEAD's ad parameter.
949   bool omit_length_in_ad_ : 1;
950   // ad_is_header_ is true if the AEAD's ad parameter is the record header.
951   bool ad_is_header_ : 1;
952 };
953 
954 
955 // DTLS replay bitmap.
956 
957 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
958 // replayed packets. It should be initialized by zeroing every field.
959 struct DTLS1_BITMAP {
960   // map is a bitset of sequence numbers that have been seen. Bit i corresponds
961   // to |max_seq_num - i|.
962   std::bitset<256> map;
963   // max_seq_num is the largest sequence number seen so far as a 64-bit
964   // integer.
965   uint64_t max_seq_num = 0;
966 };
967 
968 
969 // Record layer.
970 
971 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
972 // of a record for |ssl|.
973 //
974 // TODO(davidben): Expose this as part of public API once the high-level
975 // buffer-free APIs are available.
976 size_t ssl_record_prefix_len(const SSL *ssl);
977 
978 enum ssl_open_record_t {
979   ssl_open_record_success,
980   ssl_open_record_discard,
981   ssl_open_record_partial,
982   ssl_open_record_close_notify,
983   ssl_open_record_error,
984 };
985 
986 // tls_open_record decrypts a record from |in| in-place.
987 //
988 // If the input did not contain a complete record, it returns
989 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
990 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
991 // will consume at least that many bytes.
992 //
993 // Otherwise, it sets |*out_consumed| to the number of bytes of input
994 // consumed. Note that input may be consumed on all return codes if a record was
995 // decrypted.
996 //
997 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
998 // record type and |*out| to the record body in |in|. Note that |*out| may be
999 // empty.
1000 //
1001 // If a record was successfully processed but should be discarded, it returns
1002 // |ssl_open_record_discard|.
1003 //
1004 // If a record was successfully processed but is a close_notify, it returns
1005 // |ssl_open_record_close_notify|.
1006 //
1007 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
1008 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
1009 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
1010                                        Span<uint8_t> *out, size_t *out_consumed,
1011                                        uint8_t *out_alert, Span<uint8_t> in);
1012 
1013 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
1014 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
1015 // zero. The caller should read one packet and try again.
1016 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
1017                                         Span<uint8_t> *out,
1018                                         size_t *out_consumed,
1019                                         uint8_t *out_alert, Span<uint8_t> in);
1020 
1021 // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
1022 // state needs record-splitting and zero otherwise.
1023 bool ssl_needs_record_splitting(const SSL *ssl);
1024 
1025 // tls_seal_record seals a new record of type |type| and body |in| and writes it
1026 // to |out|. At most |max_out| bytes will be written. It returns true on success
1027 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
1028 // 1/n-1 record splitting and may write two records concatenated.
1029 //
1030 // For a large record, the bulk of the ciphertext will begin
1031 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
1032 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
1033 // bytes to |out|.
1034 //
1035 // |in| and |out| may not alias.
1036 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1037                      uint8_t type, const uint8_t *in, size_t in_len);
1038 
1039 // dtls_record_header_write_len returns the length of the record header that
1040 // will be written at |epoch|.
1041 size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch);
1042 
1043 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
1044 // record.
1045 size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch);
1046 
1047 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
1048 // front of the plaintext when sealing a record in-place.
1049 size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch);
1050 
1051 // dtls_seal_record implements |tls_seal_record| for DTLS. |epoch| selects which
1052 // epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| may
1053 // alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1054 // ahead of |out|.
1055 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1056                       uint8_t type, const uint8_t *in, size_t in_len,
1057                       uint16_t epoch);
1058 
1059 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1060 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1061 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1062 // appropriate.
1063 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1064                                          Span<const uint8_t> in);
1065 
1066 
1067 // Private key operations.
1068 
1069 // ssl_private_key_* perform the corresponding operation on
1070 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1071 // call the corresponding function or |complete| depending on whether there is a
1072 // pending operation. Otherwise, they implement the operation with
1073 // |EVP_PKEY|.
1074 
1075 enum ssl_private_key_result_t ssl_private_key_sign(
1076     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1077     uint16_t sigalg, Span<const uint8_t> in);
1078 
1079 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1080                                                       uint8_t *out,
1081                                                       size_t *out_len,
1082                                                       size_t max_out,
1083                                                       Span<const uint8_t> in);
1084 
1085 // ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign
1086 // |sigalg|.
1087 bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
1088                                  uint16_t sigalg, bool is_verify);
1089 
1090 // ssl_public_key_verify verifies that the |signature| is valid for the public
1091 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
1092 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1093                            uint16_t sigalg, EVP_PKEY *pkey,
1094                            Span<const uint8_t> in);
1095 
1096 
1097 // Key shares.
1098 
1099 // SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE
1100 // cipher suites and the TLS 1.3 key_share extension.
1101 //
1102 // TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share
1103 // extension, but it really implements a KEM abstraction. Additionally, we use
1104 // the same type for Encap, which is a one-off, stateless operation, as Generate
1105 // and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey
1106 // (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap
1107 // to be static function.
1108 class SSLKeyShare {
1109  public:
1110   virtual ~SSLKeyShare() {}
1111   static constexpr bool kAllowUniquePtr = true;
1112 
1113   // Create returns a SSLKeyShare instance for use with group |group_id| or
1114   // nullptr on error.
1115   static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1116 
1117   // GroupID returns the group ID.
1118   virtual uint16_t GroupID() const = 0;
1119 
1120   // Generate generates a keypair and writes the public key to |out_public_key|.
1121   // It returns true on success and false on error.
1122   virtual bool Generate(CBB *out_public_key) = 0;
1123 
1124   // Encap generates an ephemeral, symmetric secret and encapsulates it with
1125   // |peer_key|. On success, it returns true, writes the encapsulated secret to
1126   // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure,
1127   // it returns false and sets |*out_alert| to an alert to send to the peer.
1128   virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret,
1129                      uint8_t *out_alert,
1130                      Span<const uint8_t> peer_key) = 0;
1131 
1132   // Decap decapsulates the symmetric secret in |ciphertext|. On success, it
1133   // returns true and sets |*out_secret| to the shared secret. On failure, it
1134   // returns false and sets |*out_alert| to an alert to send to the peer.
1135   virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert,
1136                      Span<const uint8_t> ciphertext) = 0;
1137 
1138   // SerializePrivateKey writes the private key to |out|, returning true if
1139   // successful and false otherwise. It should be called after |Generate|.
1140   virtual bool SerializePrivateKey(CBB *out) { return false; }
1141 
1142   // DeserializePrivateKey initializes the state of the key exchange from |in|,
1143   // returning true if successful and false otherwise.
1144   virtual bool DeserializePrivateKey(CBS *in) { return false; }
1145 };
1146 
1147 struct NamedGroup {
1148   int nid;
1149   uint16_t group_id;
1150   const char name[32], alias[32];
1151 };
1152 
1153 // NamedGroups returns all supported groups.
1154 Span<const NamedGroup> NamedGroups();
1155 
1156 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1157 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1158 // false.
1159 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1160 
1161 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
1162 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
1163 // true. Otherwise, it returns false.
1164 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1165 
1166 // ssl_group_id_to_nid returns the NID corresponding to |group_id| or
1167 // |NID_undef| if unknown.
1168 int ssl_group_id_to_nid(uint16_t group_id);
1169 
1170 
1171 // Handshake messages.
1172 
1173 struct SSLMessage {
1174   bool is_v2_hello;
1175   uint8_t type;
1176   CBS body;
1177   // raw is the entire serialized handshake message, including the TLS or DTLS
1178   // message header.
1179   CBS raw;
1180 };
1181 
1182 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1183 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
1184 // client's second leg in a full handshake when client certificates, NPN, and
1185 // Channel ID, are all enabled.
1186 #define SSL_MAX_HANDSHAKE_FLIGHT 7
1187 
1188 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1189 extern const uint8_t kTLS12DowngradeRandom[8];
1190 extern const uint8_t kTLS13DowngradeRandom[8];
1191 extern const uint8_t kJDK11DowngradeRandom[8];
1192 
1193 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
1194 // in a handshake message for |ssl|.
1195 size_t ssl_max_handshake_message_len(const SSL *ssl);
1196 
1197 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1198 // data into handshake buffer.
1199 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1200 
1201 // tls_has_unprocessed_handshake_data returns whether there is buffered
1202 // handshake data that has not been consumed by |get_message|.
1203 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1204 
1205 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
1206 // true on success and false on allocation failure.
1207 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1208 
1209 // dtls_has_unprocessed_handshake_data behaves like
1210 // |tls_has_unprocessed_handshake_data| for DTLS.
1211 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1212 
1213 // tls_flush_pending_hs_data flushes any handshake plaintext data.
1214 bool tls_flush_pending_hs_data(SSL *ssl);
1215 
1216 struct DTLS_OUTGOING_MESSAGE {
1217   DTLS_OUTGOING_MESSAGE() {}
1218   DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1219   DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1220 
1221   void Clear();
1222 
1223   Array<uint8_t> data;
1224   uint16_t epoch = 0;
1225   bool is_ccs = false;
1226 };
1227 
1228 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
1229 void dtls_clear_outgoing_messages(SSL *ssl);
1230 
1231 
1232 // Callbacks.
1233 
1234 // ssl_do_info_callback calls |ssl|'s info callback, if set.
1235 void ssl_do_info_callback(const SSL *ssl, int type, int value);
1236 
1237 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
1238 void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1239                          Span<const uint8_t> in);
1240 
1241 
1242 // Transport buffers.
1243 
1244 class SSLBuffer {
1245  public:
1246   SSLBuffer() {}
1247   ~SSLBuffer() { Clear(); }
1248 
1249   SSLBuffer(const SSLBuffer &) = delete;
1250   SSLBuffer &operator=(const SSLBuffer &) = delete;
1251 
1252   uint8_t *data() { return buf_ + offset_; }
1253   size_t size() const { return size_; }
1254   bool empty() const { return size_ == 0; }
1255   size_t cap() const { return cap_; }
1256 
1257   Span<uint8_t> span() { return MakeSpan(data(), size()); }
1258 
1259   Span<uint8_t> remaining() {
1260     return MakeSpan(data() + size(), cap() - size());
1261   }
1262 
1263   // Clear releases the buffer.
1264   void Clear();
1265 
1266   // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1267   // that data written after |header_len| is aligned to a
1268   // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1269   // on error.
1270   bool EnsureCap(size_t header_len, size_t new_cap);
1271 
1272   // DidWrite extends the buffer by |len|. The caller must have filled in to
1273   // this point.
1274   void DidWrite(size_t len);
1275 
1276   // Consume consumes |len| bytes from the front of the buffer.  The memory
1277   // consumed will remain valid until the next call to |DiscardConsumed| or
1278   // |Clear|.
1279   void Consume(size_t len);
1280 
1281   // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1282   // is now empty, it releases memory used by it.
1283   void DiscardConsumed();
1284 
1285  private:
1286   // buf_ is the memory allocated for this buffer.
1287   uint8_t *buf_ = nullptr;
1288   // offset_ is the offset into |buf_| which the buffer contents start at.
1289   uint16_t offset_ = 0;
1290   // size_ is the size of the buffer contents from |buf_| + |offset_|.
1291   uint16_t size_ = 0;
1292   // cap_ is how much memory beyond |buf_| + |offset_| is available.
1293   uint16_t cap_ = 0;
1294   // inline_buf_ is a static buffer for short reads.
1295   uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH];
1296   // buf_allocated_ is true if |buf_| points to allocated data and must be freed
1297   // or false if it points into |inline_buf_|.
1298   bool buf_allocated_ = false;
1299 };
1300 
1301 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1302 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
1303 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1304 // success, zero on EOF, and a negative number on error.
1305 //
1306 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1307 // non-empty.
1308 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1309 
1310 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1311 // to a record-processing function. If |ret| is a success or if the caller
1312 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1313 // 0.
1314 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1315                            size_t consumed, uint8_t alert);
1316 
1317 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1318 // one on success and <= 0 on error. For DTLS, whether or not the write
1319 // succeeds, the write buffer will be cleared.
1320 int ssl_write_buffer_flush(SSL *ssl);
1321 
1322 
1323 // Certificate functions.
1324 
1325 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1326 // by a TLS Certificate message. On success, it advances |cbs| and returns
1327 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1328 // to the peer.
1329 //
1330 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1331 // the certificate chain and the leaf certificate's public key
1332 // respectively. Otherwise, both will be set to nullptr.
1333 //
1334 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1335 // SHA-256 hash of the leaf to |out_leaf_sha256|.
1336 bool ssl_parse_cert_chain(uint8_t *out_alert,
1337                           UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1338                           UniquePtr<EVP_PKEY> *out_pubkey,
1339                           uint8_t *out_leaf_sha256, CBS *cbs,
1340                           CRYPTO_BUFFER_POOL *pool);
1341 
1342 enum ssl_key_usage_t {
1343   key_usage_digital_signature = 0,
1344   key_usage_encipherment = 2,
1345 };
1346 
1347 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1348 // and returns true if doesn't specify a key usage or, if it does, if it
1349 // includes |bit|. Otherwise it pushes to the error queue and returns false.
1350 OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in,
1351                                              enum ssl_key_usage_t bit);
1352 
1353 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1354 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1355 // nullptr and pushes to the error queue.
1356 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1357 
1358 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1359 // TLS CertificateRequest message. On success, it returns a newly-allocated
1360 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1361 // sets |*out_alert| to an alert to send to the peer.
1362 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1363                                                             uint8_t *out_alert,
1364                                                             CBS *cbs);
1365 
1366 // ssl_has_client_CAs returns there are configured CAs.
1367 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1368 
1369 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1370 // used by a TLS CertificateRequest message. It returns true on success and
1371 // false on error.
1372 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1373 
1374 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1375 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1376 // an error on the error queue.
1377 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1378                                const CRYPTO_BUFFER *leaf);
1379 
1380 
1381 // TLS 1.3 key derivation.
1382 
1383 // tls13_init_key_schedule initializes the handshake hash and key derivation
1384 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
1385 // selected at this point. It returns true on success and false on error.
1386 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1387 
1388 // tls13_init_early_key_schedule initializes the handshake hash and key
1389 // derivation state from |session| for use with 0-RTT. It returns one on success
1390 // and zero on error.
1391 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
1392                                    const SSL_SESSION *session);
1393 
1394 // tls13_advance_key_schedule incorporates |in| into the key schedule with
1395 // HKDF-Extract. It returns true on success and false on error.
1396 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1397 
1398 // tls13_set_traffic_key sets the read or write traffic keys to
1399 // |traffic_secret|. The version and cipher suite are determined from |session|.
1400 // It returns true on success and false on error.
1401 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1402                            enum evp_aead_direction_t direction,
1403                            const SSL_SESSION *session,
1404                            Span<const uint8_t> traffic_secret);
1405 
1406 // tls13_derive_early_secret derives the early traffic secret. It returns true
1407 // on success and false on error.
1408 bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1409 
1410 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
1411 // returns true on success and false on error.
1412 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1413 
1414 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
1415 // returns true on success and false on error.
1416 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1417 
1418 // tls13_derive_application_secrets derives the initial application data traffic
1419 // and exporter secrets based on the handshake transcripts and |master_secret|.
1420 // It returns true on success and false on error.
1421 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1422 
1423 // tls13_derive_resumption_secret derives the |resumption_secret|.
1424 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1425 
1426 // tls13_export_keying_material provides an exporter interface to use the
1427 // |exporter_secret|.
1428 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1429                                   Span<const uint8_t> secret,
1430                                   Span<const char> label,
1431                                   Span<const uint8_t> context);
1432 
1433 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
1434 // the integrity of the Finished message, and stores the result in |out| and
1435 // length in |out_len|. |is_server| is true if this is for the Server Finished
1436 // and false for the Client Finished.
1437 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1438                         bool is_server);
1439 
1440 // tls13_derive_session_psk calculates the PSK for this session based on the
1441 // resumption master secret and |nonce|. It returns true on success, and false
1442 // on failure.
1443 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1444 
1445 // tls13_write_psk_binder calculates the PSK binder value over |transcript| and
1446 // |msg|, and replaces the last bytes of |msg| with the resulting value. It
1447 // returns true on success, and false on failure. If |out_binder_len| is
1448 // non-NULL, it sets |*out_binder_len| to the length of the value computed.
1449 bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
1450                             const SSLTranscript &transcript, Span<uint8_t> msg,
1451                             size_t *out_binder_len);
1452 
1453 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1454 // to the binders has a valid signature using the value of |session|'s
1455 // resumption secret. It returns true on success, and false on failure.
1456 bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
1457                              const SSL_SESSION *session, const SSLMessage &msg,
1458                              CBS *binders);
1459 
1460 
1461 // Encrypted ClientHello.
1462 
1463 struct ECHConfig {
1464   static constexpr bool kAllowUniquePtr = true;
1465   // raw contains the serialized ECHConfig.
1466   Array<uint8_t> raw;
1467   // The following fields alias into |raw|.
1468   Span<const uint8_t> public_key;
1469   Span<const uint8_t> public_name;
1470   Span<const uint8_t> cipher_suites;
1471   uint16_t kem_id = 0;
1472   uint8_t maximum_name_length = 0;
1473   uint8_t config_id = 0;
1474 };
1475 
1476 class ECHServerConfig {
1477  public:
1478   static constexpr bool kAllowUniquePtr = true;
1479   ECHServerConfig() = default;
1480   ECHServerConfig(const ECHServerConfig &other) = delete;
1481   ECHServerConfig &operator=(ECHServerConfig &&) = delete;
1482 
1483   // Init parses |ech_config| as an ECHConfig and saves a copy of |key|.
1484   // It returns true on success and false on error.
1485   bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key,
1486             bool is_retry_config);
1487 
1488   // SetupContext sets up |ctx| for a new connection, given the specified
1489   // HPKE ciphersuite and encapsulated KEM key. It returns true on success and
1490   // false on error. This function may only be called on an initialized object.
1491   bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id,
1492                     Span<const uint8_t> enc) const;
1493 
1494   const ECHConfig &ech_config() const { return ech_config_; }
1495   bool is_retry_config() const { return is_retry_config_; }
1496 
1497  private:
1498   ECHConfig ech_config_;
1499   ScopedEVP_HPKE_KEY key_;
1500   bool is_retry_config_ = false;
1501 };
1502 
1503 enum ssl_client_hello_type_t {
1504   ssl_client_hello_unencrypted,
1505   ssl_client_hello_inner,
1506   ssl_client_hello_outer,
1507 };
1508 
1509 // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension.
1510 #define ECH_CLIENT_OUTER 0
1511 #define ECH_CLIENT_INNER 1
1512 
1513 // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the
1514 // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its
1515 // outer_extensions extension with the referenced extensions from the
1516 // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered
1517 // ClientHelloInner to |out_client_hello_inner|. It returns true on success and
1518 // false on failure.
1519 //
1520 // This function is exported for fuzzing.
1521 OPENSSL_EXPORT bool ssl_decode_client_hello_inner(
1522     SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner,
1523     Span<const uint8_t> encoded_client_hello_inner,
1524     const SSL_CLIENT_HELLO *client_hello_outer);
1525 
1526 // ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It
1527 // writes the result to |*out|. |payload| must point into |client_hello_outer|.
1528 // It returns true on success and false on error. On error, it sets
1529 // |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext.
1530 bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1531                               bool *out_is_decrypt_error, Array<uint8_t> *out,
1532                               const SSL_CLIENT_HELLO *client_hello_outer,
1533                               Span<const uint8_t> payload);
1534 
1535 #define ECH_CONFIRMATION_SIGNAL_LEN 8
1536 
1537 // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH
1538 // confirmation signal in a ServerHello message, including the handshake header.
1539 size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl);
1540 
1541 // ssl_ech_accept_confirmation computes the server's ECH acceptance signal,
1542 // writing it to |out|. The transcript portion is the concatenation of
1543 // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from
1544 // |offset| in |msg| are replaced with zeros before hashing. This function
1545 // returns true on success, and false on failure.
1546 bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
1547                                  Span<const uint8_t> client_random,
1548                                  const SSLTranscript &transcript, bool is_hrr,
1549                                  Span<const uint8_t> msg, size_t offset);
1550 
1551 // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH
1552 // public name and false otherwise. It is exported for testing.
1553 OPENSSL_EXPORT bool ssl_is_valid_ech_public_name(
1554     Span<const uint8_t> public_name);
1555 
1556 // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid
1557 // ECHConfigList structure and false otherwise.
1558 bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list);
1559 
1560 // ssl_select_ech_config selects an ECHConfig and associated parameters to offer
1561 // on the client and updates |hs|. It returns true on success, whether an
1562 // ECHConfig was found or not, and false on internal error. On success, the
1563 // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the
1564 // number of bytes written. If the function did not select an ECHConfig, the
1565 // encapsulated key is the empty string.
1566 bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc,
1567                            size_t *out_enc_len);
1568 
1569 // ssl_ech_extension_body_length returns the length of the body of a ClientHello
1570 // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of
1571 // length |enc_len|. The result does not include the four-byte extension header.
1572 size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len,
1573                                      size_t in_len);
1574 
1575 // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the
1576 // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc|
1577 // is the encapsulated key to include in the extension. It returns true on
1578 // success and false on error. If not offering ECH, |enc| is ignored and the
1579 // function will compute a GREASE ECH extension if necessary, and otherwise
1580 // return success while doing nothing.
1581 //
1582 // Encrypting the ClientHelloInner incorporates all extensions in the
1583 // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello|
1584 // must already be computed.
1585 bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc);
1586 
1587 
1588 // Credentials.
1589 
1590 enum class SSLCredentialType {
1591   kX509,
1592   kDelegated,
1593 };
1594 
1595 BSSL_NAMESPACE_END
1596 
1597 // SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace.
1598 struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> {
1599   explicit ssl_credential_st(bssl::SSLCredentialType type);
1600   ssl_credential_st(const ssl_credential_st &) = delete;
1601   ssl_credential_st &operator=(const ssl_credential_st &) = delete;
1602 
1603   // Dup returns a copy of the credential, or nullptr on error. The |ex_data|
1604   // values are not copied. This is only used on the default credential, whose
1605   // |ex_data| is inaccessible.
1606   bssl::UniquePtr<SSL_CREDENTIAL> Dup() const;
1607 
1608   // ClearCertAndKey erases any certificate and private key on the credential.
1609   void ClearCertAndKey();
1610 
1611   // UsesX509 returns true if the credential type uses an X.509 certificate.
1612   bool UsesX509() const;
1613 
1614   // UsesPrivateKey returns true if the credential type uses an asymmetric
1615   // private key.
1616   bool UsesPrivateKey() const;
1617 
1618   // IsComplete returns whether all required fields in the credential have been
1619   // filled in.
1620   bool IsComplete() const;
1621 
1622   // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining
1623   // certificates unmodified. It returns true on success and false on error. If
1624   // |discard_key_on_mismatch| is true and the private key is inconsistent with
1625   // the new leaf certificate, it is silently discarded.
1626   bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf,
1627                    bool discard_key_on_mismatch);
1628 
1629   // ClearIntermediateCerts clears intermediate certificates in the certificate
1630   // chain, while preserving the leaf.
1631   void ClearIntermediateCerts();
1632 
1633   // AppendIntermediateCert appends |cert| to the certificate chain. If there is
1634   // no leaf certificate configured, it leaves a placeholder null in |chain|. It
1635   // returns one on success and zero on error.
1636   bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert);
1637 
1638   // type is the credential type and determines which other fields apply.
1639   bssl::SSLCredentialType type;
1640 
1641   // pubkey is the cached public key of the credential. Unlike |privkey|, it is
1642   // always present and is extracted from the certificate, delegated credential,
1643   // etc.
1644   bssl::UniquePtr<EVP_PKEY> pubkey;
1645 
1646   // privkey is the private key of the credential. It may be omitted in favor of
1647   // |key_method|.
1648   bssl::UniquePtr<EVP_PKEY> privkey;
1649 
1650   // key_method, if non-null, is a set of callbacks to call for private key
1651   // operations.
1652   const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
1653 
1654   // sigalgs, if non-empty, is the set of signature algorithms supported by the
1655   // private key in decreasing order of preference. If empty, the default list
1656   // is used.
1657   //
1658   // In delegated credentials, this field is not configurable and is instead
1659   // computed from the dc_cert_verify_algorithm field.
1660   bssl::Array<uint16_t> sigalgs;
1661 
1662   // chain contains the certificate chain, with the leaf at the beginning. The
1663   // first element of |chain| may be nullptr to indicate that the leaf
1664   // certificate has not yet been set.
1665   //   If |chain| != nullptr -> len(chain) >= 1
1666   //   If |chain[0]| == nullptr -> len(chain) >= 2.
1667   //   |chain[1..]| != nullptr
1668   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
1669 
1670   // dc is the DelegatedCredential structure, if this is a delegated credential.
1671   bssl::UniquePtr<CRYPTO_BUFFER> dc;
1672 
1673   // dc_algorithm is the signature scheme of the signature over the delegated
1674   // credential itself, made by the end-entity certificate's public key.
1675   uint16_t dc_algorithm = 0;
1676 
1677   // Signed certificate timestamp list to be sent to the client, if requested
1678   bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
1679 
1680   // OCSP response to be sent to the client, if requested.
1681   bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
1682 
1683   CRYPTO_EX_DATA ex_data;
1684 
1685  private:
1686   friend RefCounted;
1687   ~ssl_credential_st();
1688 };
1689 
1690 BSSL_NAMESPACE_BEGIN
1691 
1692 // ssl_get_credential_list computes |hs|'s credential list. On success, it
1693 // writes it to |*out| and returns true. Otherwise, it returns false. The
1694 // credential list may be empty, in which case this function will successfully
1695 // return an empty array.
1696 //
1697 // The pointers in the result are only valid until |hs| is next mutated.
1698 bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out);
1699 
1700 
1701 // Handshake functions.
1702 
1703 enum ssl_hs_wait_t {
1704   ssl_hs_error,
1705   ssl_hs_ok,
1706   ssl_hs_read_server_hello,
1707   ssl_hs_read_message,
1708   ssl_hs_flush,
1709   ssl_hs_certificate_selection_pending,
1710   ssl_hs_handoff,
1711   ssl_hs_handback,
1712   ssl_hs_x509_lookup,
1713   ssl_hs_private_key_operation,
1714   ssl_hs_pending_session,
1715   ssl_hs_pending_ticket,
1716   ssl_hs_early_return,
1717   ssl_hs_early_data_rejected,
1718   ssl_hs_read_end_of_early_data,
1719   ssl_hs_read_change_cipher_spec,
1720   ssl_hs_certificate_verify,
1721   ssl_hs_hints_ready,
1722 };
1723 
1724 enum ssl_grease_index_t {
1725   ssl_grease_cipher = 0,
1726   ssl_grease_group,
1727   ssl_grease_extension1,
1728   ssl_grease_extension2,
1729   ssl_grease_version,
1730   ssl_grease_ticket_extension,
1731   ssl_grease_ech_config_id,
1732   ssl_grease_last_index = ssl_grease_ech_config_id,
1733 };
1734 
1735 enum tls12_server_hs_state_t {
1736   state12_start_accept = 0,
1737   state12_read_client_hello,
1738   state12_read_client_hello_after_ech,
1739   state12_cert_callback,
1740   state12_tls13,
1741   state12_select_parameters,
1742   state12_send_server_hello,
1743   state12_send_server_certificate,
1744   state12_send_server_key_exchange,
1745   state12_send_server_hello_done,
1746   state12_read_client_certificate,
1747   state12_verify_client_certificate,
1748   state12_read_client_key_exchange,
1749   state12_read_client_certificate_verify,
1750   state12_read_change_cipher_spec,
1751   state12_process_change_cipher_spec,
1752   state12_read_next_proto,
1753   state12_read_channel_id,
1754   state12_read_client_finished,
1755   state12_send_server_finished,
1756   state12_finish_server_handshake,
1757   state12_done,
1758 };
1759 
1760 enum tls13_server_hs_state_t {
1761   state13_select_parameters = 0,
1762   state13_select_session,
1763   state13_send_hello_retry_request,
1764   state13_read_second_client_hello,
1765   state13_send_server_hello,
1766   state13_send_server_certificate_verify,
1767   state13_send_server_finished,
1768   state13_send_half_rtt_ticket,
1769   state13_read_second_client_flight,
1770   state13_process_end_of_early_data,
1771   state13_read_client_encrypted_extensions,
1772   state13_read_client_certificate,
1773   state13_read_client_certificate_verify,
1774   state13_read_channel_id,
1775   state13_read_client_finished,
1776   state13_send_new_session_ticket,
1777   state13_done,
1778 };
1779 
1780 // handback_t lists the points in the state machine where a handback can occur.
1781 // These are the different points at which key material is no longer needed.
1782 enum handback_t {
1783   handback_after_session_resumption = 0,
1784   handback_after_ecdhe = 1,
1785   handback_after_handshake = 2,
1786   handback_tls13 = 3,
1787   handback_max_value = handback_tls13,
1788 };
1789 
1790 // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See
1791 // |SSL_request_handshake_hints| and related functions.
1792 struct SSL_HANDSHAKE_HINTS {
1793   static constexpr bool kAllowUniquePtr = true;
1794 
1795   Array<uint8_t> server_random_tls12;
1796   Array<uint8_t> server_random_tls13;
1797 
1798   uint16_t key_share_group_id = 0;
1799   Array<uint8_t> key_share_ciphertext;
1800   Array<uint8_t> key_share_secret;
1801 
1802   uint16_t signature_algorithm = 0;
1803   Array<uint8_t> signature_input;
1804   Array<uint8_t> signature_spki;
1805   Array<uint8_t> signature;
1806 
1807   Array<uint8_t> decrypted_psk;
1808   bool ignore_psk = false;
1809 
1810   uint16_t cert_compression_alg_id = 0;
1811   Array<uint8_t> cert_compression_input;
1812   Array<uint8_t> cert_compression_output;
1813 
1814   uint16_t ecdhe_group_id = 0;
1815   Array<uint8_t> ecdhe_public_key;
1816   Array<uint8_t> ecdhe_private_key;
1817 
1818   Array<uint8_t> decrypted_ticket;
1819   bool renew_ticket = false;
1820   bool ignore_ticket = false;
1821 };
1822 
1823 struct SSL_HANDSHAKE {
1824   explicit SSL_HANDSHAKE(SSL *ssl);
1825   ~SSL_HANDSHAKE();
1826   static constexpr bool kAllowUniquePtr = true;
1827 
1828   // ssl is a non-owning pointer to the parent |SSL| object.
1829   SSL *ssl;
1830 
1831   // config is a non-owning pointer to the handshake configuration.
1832   SSL_CONFIG *config;
1833 
1834   // wait contains the operation the handshake is currently blocking on or
1835   // |ssl_hs_ok| if none.
1836   enum ssl_hs_wait_t wait = ssl_hs_ok;
1837 
1838   // state is the internal state for the TLS 1.2 and below handshake. Its
1839   // values depend on |do_handshake| but the starting state is always zero.
1840   int state = 0;
1841 
1842   // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1843   // depend on |do_handshake| but the starting state is always zero.
1844   int tls13_state = 0;
1845 
1846   // min_version is the minimum accepted protocol version, taking account both
1847   // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1848   uint16_t min_version = 0;
1849 
1850   // max_version is the maximum accepted protocol version, taking account both
1851   // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1852   uint16_t max_version = 0;
1853 
1854  private:
1855   size_t hash_len_ = 0;
1856   uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1857   uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1858   uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1859   uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1860   uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1861   uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1862   uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1863 
1864  public:
1865   void ResizeSecrets(size_t hash_len);
1866 
1867   // GetClientHello, on the server, returns either the normal ClientHello
1868   // message or the ClientHelloInner if it has been serialized to
1869   // |ech_client_hello_buf|. This function should only be called when the
1870   // current message is a ClientHello. It returns true on success and false on
1871   // error.
1872   //
1873   // Note that fields of the returned |out_msg| and |out_client_hello| point
1874   // into a handshake-owned buffer, so their lifetimes should not exceed this
1875   // SSL_HANDSHAKE.
1876   bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello);
1877 
1878   Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1879   Span<const uint8_t> secret() const {
1880     return MakeConstSpan(secret_, hash_len_);
1881   }
1882   Span<uint8_t> early_traffic_secret() {
1883     return MakeSpan(early_traffic_secret_, hash_len_);
1884   }
1885   Span<uint8_t> client_handshake_secret() {
1886     return MakeSpan(client_handshake_secret_, hash_len_);
1887   }
1888   Span<uint8_t> server_handshake_secret() {
1889     return MakeSpan(server_handshake_secret_, hash_len_);
1890   }
1891   Span<uint8_t> client_traffic_secret_0() {
1892     return MakeSpan(client_traffic_secret_0_, hash_len_);
1893   }
1894   Span<uint8_t> server_traffic_secret_0() {
1895     return MakeSpan(server_traffic_secret_0_, hash_len_);
1896   }
1897   Span<uint8_t> expected_client_finished() {
1898     return MakeSpan(expected_client_finished_, hash_len_);
1899   }
1900 
1901   union {
1902     // sent is a bitset where the bits correspond to elements of kExtensions
1903     // in extensions.cc. Each bit is set if that extension was sent in a
1904     // ClientHello. It's not used by servers.
1905     uint32_t sent = 0;
1906     // received is a bitset, like |sent|, but is used by servers to record
1907     // which extensions were received from a client.
1908     uint32_t received;
1909   } extensions;
1910 
1911   // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for
1912   // the ClientHelloInner.
1913   uint32_t inner_extensions_sent = 0;
1914 
1915   // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1916   UniquePtr<ERR_SAVE_STATE> error;
1917 
1918   // key_shares are the current key exchange instances. The second is only used
1919   // as a client if we believe that we should offer two key shares in a
1920   // ClientHello.
1921   UniquePtr<SSLKeyShare> key_shares[2];
1922 
1923   // transcript is the current handshake transcript.
1924   SSLTranscript transcript;
1925 
1926   // inner_transcript, on the client, is the handshake transcript for the
1927   // ClientHelloInner handshake. It is moved to |transcript| if the server
1928   // accepts ECH.
1929   SSLTranscript inner_transcript;
1930 
1931   // inner_client_random is the ClientHello random value used with
1932   // ClientHelloInner.
1933   uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0};
1934 
1935   // cookie is the value of the cookie in HelloRetryRequest, or empty if none
1936   // was received.
1937   Array<uint8_t> cookie;
1938 
1939   // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If
1940   // empty, either none was received or HelloVerifyRequest contained an empty
1941   // cookie.
1942   Array<uint8_t> dtls_cookie;
1943 
1944   // ech_client_outer contains the outer ECH extension to send in the
1945   // ClientHello, excluding the header and type byte.
1946   Array<uint8_t> ech_client_outer;
1947 
1948   // ech_retry_configs, on the client, contains the retry configs from the
1949   // server as a serialized ECHConfigList.
1950   Array<uint8_t> ech_retry_configs;
1951 
1952   // ech_client_hello_buf, on the server, contains the bytes of the
1953   // reconstructed ClientHelloInner message.
1954   Array<uint8_t> ech_client_hello_buf;
1955 
1956   // key_share_bytes is the key_share extension that the client should send.
1957   Array<uint8_t> key_share_bytes;
1958 
1959   // key_share_ciphertext, for servers, is encapsulated shared secret to be sent
1960   // to the client in the TLS 1.3 key_share extension.
1961   Array<uint8_t> key_share_ciphertext;
1962 
1963   // peer_sigalgs are the signature algorithms that the peer supports. These are
1964   // taken from the contents of the signature algorithms extension for a server
1965   // or from the CertificateRequest for a client.
1966   Array<uint16_t> peer_sigalgs;
1967 
1968   // peer_supported_group_list contains the supported group IDs advertised by
1969   // the peer. This is only set on the server's end. The server does not
1970   // advertise this extension to the client.
1971   Array<uint16_t> peer_supported_group_list;
1972 
1973   // peer_delegated_credential_sigalgs are the signature algorithms the peer
1974   // supports with delegated credentials, or empty if the peer does not support
1975   // delegated credentials.
1976   Array<uint16_t> peer_delegated_credential_sigalgs;
1977 
1978   // peer_key is the peer's ECDH key for a TLS 1.2 client.
1979   Array<uint8_t> peer_key;
1980 
1981   // extension_permutation is the permutation to apply to ClientHello
1982   // extensions. It maps indices into the |kExtensions| table into other
1983   // indices.
1984   Array<uint8_t> extension_permutation;
1985 
1986   // cert_compression_alg_id, for a server, contains the negotiated certificate
1987   // compression algorithm for this client. It is only valid if
1988   // |cert_compression_negotiated| is true.
1989   uint16_t cert_compression_alg_id;
1990 
1991   // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is
1992   // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is
1993   // initialized if |selected_ech_config| is not nullptr.
1994   ScopedEVP_HPKE_CTX ech_hpke_ctx;
1995 
1996   // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
1997   // parameters. It has client and server randoms prepended for signing
1998   // convenience.
1999   Array<uint8_t> server_params;
2000 
2001   // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
2002   // server when using a TLS 1.2 PSK key exchange.
2003   UniquePtr<char> peer_psk_identity_hint;
2004 
2005   // ca_names, on the client, contains the list of CAs received in a
2006   // CertificateRequest message.
2007   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
2008 
2009   // cached_x509_ca_names contains a cache of parsed versions of the elements of
2010   // |ca_names|. This pointer is left non-owning so only
2011   // |ssl_crypto_x509_method| needs to link against crypto/x509.
2012   STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
2013 
2014   // certificate_types, on the client, contains the set of certificate types
2015   // received in a CertificateRequest message.
2016   Array<uint8_t> certificate_types;
2017 
2018   // credential is the credential we are using for the handshake.
2019   UniquePtr<SSL_CREDENTIAL> credential;
2020 
2021   // peer_pubkey is the public key parsed from the peer's leaf certificate.
2022   UniquePtr<EVP_PKEY> peer_pubkey;
2023 
2024   // new_session is the new mutable session being established by the current
2025   // handshake. It should not be cached.
2026   UniquePtr<SSL_SESSION> new_session;
2027 
2028   // early_session is the session corresponding to the current 0-RTT state on
2029   // the client if |in_early_data| is true.
2030   UniquePtr<SSL_SESSION> early_session;
2031 
2032   // ssl_ech_keys, for servers, is the set of ECH keys to use with this
2033   // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as
2034   // |SSL_CTX| rotates keys.
2035   UniquePtr<SSL_ECH_KEYS> ech_keys;
2036 
2037   // selected_ech_config, for clients, is the ECHConfig the client uses to offer
2038   // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx|
2039   // will be initialized.
2040   UniquePtr<ECHConfig> selected_ech_config;
2041 
2042   // new_cipher is the cipher being negotiated in this handshake.
2043   const SSL_CIPHER *new_cipher = nullptr;
2044 
2045   // key_block is the record-layer key block for TLS 1.2 and earlier.
2046   Array<uint8_t> key_block;
2047 
2048   // hints contains the handshake hints for this connection. If
2049   // |hints_requested| is true, this field is non-null and contains the pending
2050   // hints to filled as the predicted handshake progresses. Otherwise, this
2051   // field, if non-null, contains hints configured by the caller and will
2052   // influence the handshake on match.
2053   UniquePtr<SSL_HANDSHAKE_HINTS> hints;
2054 
2055   // ech_is_inner, on the server, indicates whether the ClientHello contained an
2056   // inner ECH extension.
2057   bool ech_is_inner : 1;
2058 
2059   // ech_authenticated_reject, on the client, indicates whether an ECH rejection
2060   // handshake has been authenticated.
2061   bool ech_authenticated_reject : 1;
2062 
2063   // scts_requested is true if the SCT extension is in the ClientHello.
2064   bool scts_requested : 1;
2065 
2066   // handshake_finalized is true once the handshake has completed, at which
2067   // point accessors should use the established state.
2068   bool handshake_finalized : 1;
2069 
2070   // accept_psk_mode stores whether the client's PSK mode is compatible with our
2071   // preferences.
2072   bool accept_psk_mode : 1;
2073 
2074   // cert_request is true if a client certificate was requested.
2075   bool cert_request : 1;
2076 
2077   // certificate_status_expected is true if OCSP stapling was negotiated and the
2078   // server is expected to send a CertificateStatus message. (This is used on
2079   // both the client and server sides.)
2080   bool certificate_status_expected : 1;
2081 
2082   // ocsp_stapling_requested is true if a client requested OCSP stapling.
2083   bool ocsp_stapling_requested : 1;
2084 
2085   // should_ack_sni is used by a server and indicates that the SNI extension
2086   // should be echoed in the ServerHello.
2087   bool should_ack_sni : 1;
2088 
2089   // in_false_start is true if there is a pending client handshake in False
2090   // Start. The client may write data at this point.
2091   bool in_false_start : 1;
2092 
2093   // in_early_data is true if there is a pending handshake that has progressed
2094   // enough to send and receive early data.
2095   bool in_early_data : 1;
2096 
2097   // early_data_offered is true if the client sent the early_data extension.
2098   bool early_data_offered : 1;
2099 
2100   // can_early_read is true if application data may be read at this point in the
2101   // handshake.
2102   bool can_early_read : 1;
2103 
2104   // can_early_write is true if application data may be written at this point in
2105   // the handshake.
2106   bool can_early_write : 1;
2107 
2108   // next_proto_neg_seen is one of NPN was negotiated.
2109   bool next_proto_neg_seen : 1;
2110 
2111   // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
2112   // or received.
2113   bool ticket_expected : 1;
2114 
2115   // extended_master_secret is true if the extended master secret extension is
2116   // negotiated in this handshake.
2117   bool extended_master_secret : 1;
2118 
2119   // pending_private_key_op is true if there is a pending private key operation
2120   // in progress.
2121   bool pending_private_key_op : 1;
2122 
2123   // handback indicates that a server should pause the handshake after
2124   // finishing operations that require private key material, in such a way that
2125   // |SSL_get_error| returns |SSL_ERROR_HANDBACK|.  It is set by
2126   // |SSL_apply_handoff|.
2127   bool handback : 1;
2128 
2129   // hints_requested indicates the caller has requested handshake hints. Only
2130   // the first round-trip of the handshake will complete, after which the
2131   // |hints| structure can be serialized.
2132   bool hints_requested : 1;
2133 
2134   // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
2135   bool cert_compression_negotiated : 1;
2136 
2137   // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
2138   // which implemented TLS 1.3 incorrectly.
2139   bool apply_jdk11_workaround : 1;
2140 
2141   // can_release_private_key is true if the private key will no longer be used
2142   // in this handshake.
2143   bool can_release_private_key : 1;
2144 
2145   // channel_id_negotiated is true if Channel ID should be used in this
2146   // handshake.
2147   bool channel_id_negotiated : 1;
2148 
2149   // client_version is the value sent or received in the ClientHello version.
2150   uint16_t client_version = 0;
2151 
2152   // early_data_read is the amount of early data that has been read by the
2153   // record layer.
2154   uint16_t early_data_read = 0;
2155 
2156   // early_data_written is the amount of early data that has been written by the
2157   // record layer.
2158   uint16_t early_data_written = 0;
2159 
2160   // signature_algorithm is the signature algorithm to be used in signing with
2161   // the selected credential, or zero if not applicable or not yet selected.
2162   uint16_t signature_algorithm = 0;
2163 
2164   // ech_config_id is the ECH config sent by the client.
2165   uint8_t ech_config_id = 0;
2166 
2167   // session_id is the session ID in the ClientHello.
2168   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
2169   uint8_t session_id_len = 0;
2170 
2171   // grease_seed is the entropy for GREASE values.
2172   uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
2173 };
2174 
2175 // kMaxTickets is the maximum number of tickets to send immediately after the
2176 // handshake. We use a one-byte ticket nonce, and there is no point in sending
2177 // so many tickets.
2178 constexpr size_t kMaxTickets = 16;
2179 
2180 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
2181 
2182 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
2183 // one. Otherwise, it sends an alert and returns zero.
2184 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
2185 
2186 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
2187 // on error. It sets |out_early_return| to one if we've completed the handshake
2188 // early.
2189 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
2190 
2191 // The following are implementations of |do_handshake| for the client and
2192 // server.
2193 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
2194 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
2195 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
2196 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
2197 
2198 // The following functions return human-readable representations of the TLS
2199 // handshake states for debugging.
2200 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
2201 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
2202 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
2203 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
2204 
2205 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
2206 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
2207 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
2208 bool tls13_add_key_update(SSL *ssl, int update_requested);
2209 
2210 // tls13_post_handshake processes a post-handshake message. It returns true on
2211 // success and false on failure.
2212 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
2213 
2214 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2215                                bool allow_anonymous);
2216 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2217 
2218 // tls13_process_finished processes |msg| as a Finished message from the
2219 // peer. If |use_saved_value| is true, the verify_data is compared against
2220 // |hs->expected_client_finished| rather than computed fresh.
2221 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2222                             bool use_saved_value);
2223 
2224 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
2225 
2226 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
2227 // handshake. If it returns |ssl_private_key_retry|, it should be called again
2228 // to retry when the signing operation is completed.
2229 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
2230 
2231 bool tls13_add_finished(SSL_HANDSHAKE *hs);
2232 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
2233 bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl,
2234                                                               CBS *body);
2235 
2236 // ssl_setup_extension_permutation computes a ClientHello extension permutation
2237 // for |hs|, if applicable. It returns true on success and false on error.
2238 bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs);
2239 
2240 // ssl_setup_key_shares computes client key shares and saves them in |hs|. It
2241 // returns true on success and false on failure. If |override_group_id| is zero,
2242 // it offers the default groups, including GREASE. If it is non-zero, it offers
2243 // a single key share of the specified group.
2244 bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id);
2245 
2246 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
2247                                          Array<uint8_t> *out_secret,
2248                                          uint8_t *out_alert, CBS *contents);
2249 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
2250                                          Span<const uint8_t> *out_peer_key,
2251                                          uint8_t *out_alert,
2252                                          const SSL_CLIENT_HELLO *client_hello);
2253 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2254 
2255 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
2256                                               uint8_t *out_alert,
2257                                               CBS *contents);
2258 bool ssl_ext_pre_shared_key_parse_clienthello(
2259     SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
2260     uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
2261     const SSL_CLIENT_HELLO *client_hello, CBS *contents);
2262 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2263 
2264 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
2265 // returns whether it's valid.
2266 bool ssl_is_sct_list_valid(const CBS *contents);
2267 
2268 // ssl_write_client_hello_without_extensions writes a ClientHello to |out|,
2269 // up to the extensions field. |type| determines the type of ClientHello to
2270 // write. If |omit_session_id| is true, the session ID is empty.
2271 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
2272                                                CBB *cbb,
2273                                                ssl_client_hello_type_t type,
2274                                                bool empty_session_id);
2275 
2276 // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing
2277 // flight. It returns true on success and false on error.
2278 bool ssl_add_client_hello(SSL_HANDSHAKE *hs);
2279 
2280 struct ParsedServerHello {
2281   CBS raw;
2282   uint16_t legacy_version = 0;
2283   CBS random;
2284   CBS session_id;
2285   uint16_t cipher_suite = 0;
2286   uint8_t compression_method = 0;
2287   CBS extensions;
2288 };
2289 
2290 // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes
2291 // the result to |*out| and returns true. Otherwise, it returns false and sets
2292 // |*out_alert| to an alert to send to the peer.
2293 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
2294                             const SSLMessage &msg);
2295 
2296 enum ssl_cert_verify_context_t {
2297   ssl_cert_verify_server,
2298   ssl_cert_verify_client,
2299   ssl_cert_verify_channel_id,
2300 };
2301 
2302 // tls13_get_cert_verify_signature_input generates the message to be signed for
2303 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
2304 // type of signature. It sets |*out| to a newly allocated buffer containing the
2305 // result. This function returns true on success and false on failure.
2306 bool tls13_get_cert_verify_signature_input(
2307     SSL_HANDSHAKE *hs, Array<uint8_t> *out,
2308     enum ssl_cert_verify_context_t cert_verify_context);
2309 
2310 // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list.
2311 bool ssl_is_valid_alpn_list(Span<const uint8_t> in);
2312 
2313 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
2314 // selection for |hs->ssl|'s client preferences.
2315 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
2316                                   Span<const uint8_t> protocol);
2317 
2318 // ssl_alpn_list_contains_protocol returns whether |list|, a serialized ALPN
2319 // protocol list, contains |protocol|.
2320 bool ssl_alpn_list_contains_protocol(Span<const uint8_t> list,
2321                                      Span<const uint8_t> protocol);
2322 
2323 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
2324 // true on successful negotiation or if nothing was negotiated. It returns false
2325 // and sets |*out_alert| to an alert on error.
2326 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2327                         const SSL_CLIENT_HELLO *client_hello);
2328 
2329 // ssl_get_local_application_settings looks up the configured ALPS value for
2330 // |protocol|. If found, it sets |*out_settings| to the value and returns true.
2331 // Otherwise, it returns false.
2332 bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs,
2333                                         Span<const uint8_t> *out_settings,
2334                                         Span<const uint8_t> protocol);
2335 
2336 // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns
2337 // true on successful negotiation or if nothing was negotiated. It returns false
2338 // and sets |*out_alert| to an alert on error.
2339 bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2340                         const SSL_CLIENT_HELLO *client_hello);
2341 
2342 struct SSLExtension {
2343   SSLExtension(uint16_t type_arg, bool allowed_arg = true)
2344       : type(type_arg), allowed(allowed_arg), present(false) {
2345     CBS_init(&data, nullptr, 0);
2346   }
2347 
2348   uint16_t type;
2349   bool allowed;
2350   bool present;
2351   CBS data;
2352 };
2353 
2354 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
2355 // it. It writes the parsed extensions to pointers in |extensions|. On success,
2356 // it fills in the |present| and |data| fields and returns true. Otherwise, it
2357 // sets |*out_alert| to an alert to send and returns false. Unknown extensions
2358 // are rejected unless |ignore_unknown| is true.
2359 bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
2360                           std::initializer_list<SSLExtension *> extensions,
2361                           bool ignore_unknown);
2362 
2363 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
2364 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
2365 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
2366 // session.
2367 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
2368                                                 bool send_alert);
2369 
2370 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
2371 
2372 // ssl_send_finished adds a Finished message to the current flight of messages.
2373 // It returns true on success and false on error.
2374 bool ssl_send_finished(SSL_HANDSHAKE *hs);
2375 
2376 // ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current
2377 // flight of messages. It returns true on success and false on error.
2378 bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs);
2379 
2380 // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current
2381 // handshake. Note, in TLS 1.2 resumptions, this session is immutable.
2382 const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs);
2383 
2384 // ssl_done_writing_client_hello is called after the last ClientHello is written
2385 // by |hs|. It releases some memory that is no longer needed.
2386 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs);
2387 
2388 
2389 // SSLKEYLOGFILE functions.
2390 
2391 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
2392 // |ssl|. It returns true on success and false on failure.
2393 bool ssl_log_secret(const SSL *ssl, const char *label,
2394                     Span<const uint8_t> secret);
2395 
2396 
2397 // ClientHello functions.
2398 
2399 // ssl_client_hello_init parses |body| as a ClientHello message, excluding the
2400 // message header, and writes the result to |*out|. It returns true on success
2401 // and false on error. This function is exported for testing.
2402 OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
2403                                           Span<const uint8_t> body);
2404 
2405 bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs,
2406                                                SSL_CLIENT_HELLO *out);
2407 
2408 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
2409                                     CBS *out, uint16_t extension_type);
2410 
2411 bool ssl_client_cipher_list_contains_cipher(
2412     const SSL_CLIENT_HELLO *client_hello, uint16_t id);
2413 
2414 
2415 // GREASE.
2416 
2417 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
2418 // connection, the values for each index will be deterministic. This allows the
2419 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
2420 // advertised in both supported_groups and key_shares.
2421 uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
2422                               enum ssl_grease_index_t index);
2423 
2424 
2425 // Signature algorithms.
2426 
2427 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
2428 // algorithms and saves them on |hs|. It returns true on success and false on
2429 // error.
2430 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
2431 
2432 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
2433 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
2434 // success and false if |pkey| may not be used at those versions.
2435 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
2436 
2437 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
2438 // with |cred| based on the peer's preferences and the algorithms supported. It
2439 // returns true on success and false on error.
2440 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs,
2441                                      const SSL_CREDENTIAL *cred, uint16_t *out);
2442 
2443 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
2444 // peer signature to |out|. It returns true on success and false on error.
2445 bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out);
2446 
2447 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
2448 // signature from |pkey|. It returns true on success and false on error, setting
2449 // |*out_alert| to an alert to send.
2450 bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert,
2451                              uint16_t sigalg, EVP_PKEY *pkey);
2452 
2453 
2454 // Underdocumented functions.
2455 //
2456 // Functions below here haven't been touched up and may be underdocumented.
2457 
2458 #define TLSEXT_CHANNEL_ID_SIZE 128
2459 
2460 // From RFC 4492, used in encoding the curve type in ECParameters
2461 #define NAMED_CURVE_TYPE 3
2462 
2463 struct CERT {
2464   static constexpr bool kAllowUniquePtr = true;
2465 
2466   explicit CERT(const SSL_X509_METHOD *x509_method);
2467   ~CERT();
2468 
2469   bool is_valid() const { return default_credential != nullptr; }
2470 
2471   // credentials is the list of credentials to select between. Elements of this
2472   // array immutable.
2473   GrowableArray<UniquePtr<SSL_CREDENTIAL>> credentials;
2474 
2475   // default_credential is the credential configured by the legacy,
2476   // non-credential-based APIs. If IsComplete() returns true, it is appended to
2477   // the list of credentials.
2478   UniquePtr<SSL_CREDENTIAL> default_credential;
2479 
2480   // x509_method contains pointers to functions that might deal with |X509|
2481   // compatibility, or might be a no-op, depending on the application.
2482   const SSL_X509_METHOD *x509_method = nullptr;
2483 
2484   // x509_chain may contain a parsed copy of |chain[1..]| from the default
2485   // credential. This is only used as a cache in order to implement “get0”
2486   // functions that return a non-owning pointer to the certificate chain.
2487   STACK_OF(X509) *x509_chain = nullptr;
2488 
2489   // x509_leaf may contain a parsed copy of the first element of |chain| from
2490   // the default credential. This is only used as a cache in order to implement
2491   // “get0” functions that return a non-owning pointer to the certificate chain.
2492   X509 *x509_leaf = nullptr;
2493 
2494   // x509_stash contains the last |X509| object append to the default
2495   // credential's chain. This is a workaround for some third-party code that
2496   // continue to use an |X509| object even after passing ownership with an
2497   // “add0” function.
2498   X509 *x509_stash = nullptr;
2499 
2500   // Certificate setup callback: if set is called whenever a
2501   // certificate may be required (client or server). the callback
2502   // can then examine any appropriate parameters and setup any
2503   // certificates required. This allows advanced applications
2504   // to select certificates on the fly: for example based on
2505   // supported signature algorithms or curves.
2506   int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2507   void *cert_cb_arg = nullptr;
2508 
2509   // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2510   // store is used instead.
2511   X509_STORE *verify_store = nullptr;
2512 
2513   // sid_ctx partitions the session space within a shared session cache or
2514   // ticket key. Only sessions with a matching value will be accepted.
2515   uint8_t sid_ctx_length = 0;
2516   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2517 };
2518 
2519 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2520 struct SSL_PROTOCOL_METHOD {
2521   bool is_dtls;
2522   bool (*ssl_new)(SSL *ssl);
2523   void (*ssl_free)(SSL *ssl);
2524   // get_message sets |*out| to the current handshake message and returns true
2525   // if one has been received. It returns false if more input is needed.
2526   bool (*get_message)(const SSL *ssl, SSLMessage *out);
2527   // next_message is called to release the current handshake message.
2528   void (*next_message)(SSL *ssl);
2529   // has_unprocessed_handshake_data returns whether there is buffered
2530   // handshake data that has not been consumed by |get_message|.
2531   bool (*has_unprocessed_handshake_data)(const SSL *ssl);
2532   // Use the |ssl_open_handshake| wrapper.
2533   ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2534                                       uint8_t *out_alert, Span<uint8_t> in);
2535   // Use the |ssl_open_change_cipher_spec| wrapper.
2536   ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2537                                                uint8_t *out_alert,
2538                                                Span<uint8_t> in);
2539   // Use the |ssl_open_app_data| wrapper.
2540   ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2541                                      size_t *out_consumed, uint8_t *out_alert,
2542                                      Span<uint8_t> in);
2543   // write_app_data encrypts and writes |in| as application data. On success, it
2544   // returns one and sets |*out_bytes_written| to the number of bytes of |in|
2545   // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to
2546   // whether the operation failed because the caller needs to drive the
2547   // handshake.
2548   int (*write_app_data)(SSL *ssl, bool *out_needs_handshake,
2549                         size_t *out_bytes_written, Span<const uint8_t> in);
2550   int (*dispatch_alert)(SSL *ssl);
2551   // init_message begins a new handshake message of type |type|. |cbb| is the
2552   // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2553   // the caller should write to. It returns true on success and false on error.
2554   bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2555   // finish_message finishes a handshake message. It sets |*out_msg| to the
2556   // serialized message. It returns true on success and false on error.
2557   bool (*finish_message)(const SSL *ssl, CBB *cbb,
2558                          bssl::Array<uint8_t> *out_msg);
2559   // add_message adds a handshake message to the pending flight. It returns
2560   // true on success and false on error.
2561   bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2562   // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2563   // flight. It returns true on success and false on error.
2564   bool (*add_change_cipher_spec)(SSL *ssl);
2565   // flush_flight flushes the pending flight to the transport. It returns one on
2566   // success and <= 0 on error.
2567   int (*flush_flight)(SSL *ssl);
2568   // on_handshake_complete is called when the handshake is complete.
2569   void (*on_handshake_complete)(SSL *ssl);
2570   // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and
2571   // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2572   // is the original secret. This function returns true on success and false on
2573   // error.
2574   bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level,
2575                          UniquePtr<SSLAEADContext> aead_ctx,
2576                          Span<const uint8_t> secret_for_quic);
2577   // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and
2578   // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2579   // is the original secret. This function returns true on success and false on
2580   // error.
2581   bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level,
2582                           UniquePtr<SSLAEADContext> aead_ctx,
2583                           Span<const uint8_t> secret_for_quic);
2584 };
2585 
2586 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
2587 
2588 // ssl_open_handshake processes a record from |in| for reading a handshake
2589 // message.
2590 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2591                                      uint8_t *out_alert, Span<uint8_t> in);
2592 
2593 // ssl_open_change_cipher_spec processes a record from |in| for reading a
2594 // ChangeCipherSpec.
2595 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2596                                               uint8_t *out_alert,
2597                                               Span<uint8_t> in);
2598 
2599 // ssl_open_app_data processes a record from |in| for reading application data.
2600 // On success, it returns |ssl_open_record_success| and sets |*out| to the
2601 // input. If it encounters a post-handshake message, it returns
2602 // |ssl_open_record_discard|. The caller should then retry, after processing any
2603 // messages received with |get_message|.
2604 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2605                                     size_t *out_consumed, uint8_t *out_alert,
2606                                     Span<uint8_t> in);
2607 
2608 struct SSL_X509_METHOD {
2609   // check_client_CA_list returns one if |names| is a good list of X.509
2610   // distinguished names and zero otherwise. This is used to ensure that we can
2611   // reject unparsable values at handshake time when using crypto/x509.
2612   bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2613 
2614   // cert_clear frees and NULLs all X509 certificate-related state.
2615   void (*cert_clear)(CERT *cert);
2616   // cert_free frees all X509-related state.
2617   void (*cert_free)(CERT *cert);
2618   // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2619   // from |cert|.
2620   // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2621   void (*cert_dup)(CERT *new_cert, const CERT *cert);
2622   void (*cert_flush_cached_chain)(CERT *cert);
2623   // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2624   // from |cert|.
2625   void (*cert_flush_cached_leaf)(CERT *cert);
2626 
2627   // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2628   // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2629   // true on success or false on error.
2630   bool (*session_cache_objects)(SSL_SESSION *session);
2631   // session_dup duplicates any needed fields from |session| to |new_session|.
2632   // It returns true on success or false on error.
2633   bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2634   // session_clear frees any X509-related state from |session|.
2635   void (*session_clear)(SSL_SESSION *session);
2636   // session_verify_cert_chain verifies the certificate chain in |session|,
2637   // sets |session->verify_result| and returns true on success or false on
2638   // error.
2639   bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2640                                     uint8_t *out_alert);
2641 
2642   // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2643   void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2644   // ssl_new does any necessary initialisation of |hs|. It returns true on
2645   // success or false on error.
2646   bool (*ssl_new)(SSL_HANDSHAKE *hs);
2647   // ssl_free frees anything created by |ssl_new|.
2648   void (*ssl_config_free)(SSL_CONFIG *cfg);
2649   // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2650   void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2651   // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2652   // necessary. On success, it updates |ssl|'s certificate configuration as
2653   // needed and returns true. Otherwise, it returns false.
2654   bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2655   // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2656   // success or false on error.
2657   bool (*ssl_ctx_new)(SSL_CTX *ctx);
2658   // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2659   void (*ssl_ctx_free)(SSL_CTX *ctx);
2660   // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2661   void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2662 };
2663 
2664 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2665 // crypto/x509.
2666 extern const SSL_X509_METHOD ssl_crypto_x509_method;
2667 
2668 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2669 // crypto/x509.
2670 extern const SSL_X509_METHOD ssl_noop_x509_method;
2671 
2672 struct TicketKey {
2673   static constexpr bool kAllowUniquePtr = true;
2674 
2675   uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2676   uint8_t hmac_key[16] = {0};
2677   uint8_t aes_key[16] = {0};
2678   // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2679   // current key should be superseded by a new key, or the time when a previous
2680   // key should be dropped. If zero, then the key should not be automatically
2681   // rotated.
2682   uint64_t next_rotation_tv_sec = 0;
2683 };
2684 
2685 struct CertCompressionAlg {
2686   static constexpr bool kAllowUniquePtr = true;
2687 
2688   ssl_cert_compression_func_t compress = nullptr;
2689   ssl_cert_decompression_func_t decompress = nullptr;
2690   uint16_t alg_id = 0;
2691 };
2692 
2693 BSSL_NAMESPACE_END
2694 
2695 DEFINE_LHASH_OF(SSL_SESSION)
2696 
2697 BSSL_NAMESPACE_BEGIN
2698 
2699 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
2700 // whether it is alive or has been shutdown via close_notify or fatal alert.
2701 enum ssl_shutdown_t {
2702   ssl_shutdown_none = 0,
2703   ssl_shutdown_close_notify = 1,
2704   ssl_shutdown_error = 2,
2705 };
2706 
2707 enum ssl_ech_status_t {
2708   // ssl_ech_none indicates ECH was not offered, or we have not gotten far
2709   // enough in the handshake to determine the status.
2710   ssl_ech_none,
2711   // ssl_ech_accepted indicates the server accepted ECH.
2712   ssl_ech_accepted,
2713   // ssl_ech_rejected indicates the server was offered ECH but rejected it.
2714   ssl_ech_rejected,
2715 };
2716 
2717 struct SSL3_STATE {
2718   static constexpr bool kAllowUniquePtr = true;
2719 
2720   SSL3_STATE();
2721   ~SSL3_STATE();
2722 
2723   uint64_t read_sequence = 0;
2724   uint64_t write_sequence = 0;
2725 
2726   uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2727   uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2728 
2729   // read_buffer holds data from the transport to be processed.
2730   SSLBuffer read_buffer;
2731   // write_buffer holds data to be written to the transport.
2732   SSLBuffer write_buffer;
2733 
2734   // pending_app_data is the unconsumed application data. It points into
2735   // |read_buffer|.
2736   Span<uint8_t> pending_app_data;
2737 
2738   // unreported_bytes_written is the number of bytes successfully written to the
2739   // transport, but not yet reported to the caller. The next |SSL_write| will
2740   // skip this many bytes from the input. This is used if
2741   // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only
2742   // reports bytes written when the full caller input is written.
2743   size_t unreported_bytes_written = 0;
2744 
2745   // pending_write, if |has_pending_write| is true, is the caller-supplied data
2746   // corresponding to the current pending write. This is used to check the
2747   // caller retried with a compatible buffer.
2748   Span<const uint8_t> pending_write;
2749 
2750   // pending_write_type, if |has_pending_write| is true, is the record type
2751   // for the current pending write.
2752   //
2753   // TODO(davidben): Remove this when alerts are moved out of this write path.
2754   uint8_t pending_write_type = 0;
2755 
2756   // read_shutdown is the shutdown state for the read half of the connection.
2757   enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2758 
2759   // write_shutdown is the shutdown state for the write half of the connection.
2760   enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2761 
2762   // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2763   // the receive half of the connection.
2764   UniquePtr<ERR_SAVE_STATE> read_error;
2765 
2766   int total_renegotiations = 0;
2767 
2768   // This holds a variable that indicates what we were doing when a 0 or -1 is
2769   // returned.  This is needed for non-blocking IO so we know what request
2770   // needs re-doing when in SSL_accept or SSL_connect
2771   int rwstate = SSL_ERROR_NONE;
2772 
2773   enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2774   enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2775 
2776   // early_data_skipped is the amount of early data that has been skipped by the
2777   // record layer.
2778   uint16_t early_data_skipped = 0;
2779 
2780   // empty_record_count is the number of consecutive empty records received.
2781   uint8_t empty_record_count = 0;
2782 
2783   // warning_alert_count is the number of consecutive warning alerts
2784   // received.
2785   uint8_t warning_alert_count = 0;
2786 
2787   // key_update_count is the number of consecutive KeyUpdates received.
2788   uint8_t key_update_count = 0;
2789 
2790   // ech_status indicates whether ECH was accepted by the server.
2791   ssl_ech_status_t ech_status = ssl_ech_none;
2792 
2793   // skip_early_data instructs the record layer to skip unexpected early data
2794   // messages when 0RTT is rejected.
2795   bool skip_early_data : 1;
2796 
2797   // have_version is true if the connection's final version is known. Otherwise
2798   // the version has not been negotiated yet.
2799   bool have_version : 1;
2800 
2801   // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2802   // and future messages should use the record layer.
2803   bool v2_hello_done : 1;
2804 
2805   // is_v2_hello is true if the current handshake message was derived from a
2806   // V2ClientHello rather than received from the peer directly.
2807   bool is_v2_hello : 1;
2808 
2809   // has_message is true if the current handshake message has been returned
2810   // at least once by |get_message| and false otherwise.
2811   bool has_message : 1;
2812 
2813   // initial_handshake_complete is true if the initial handshake has
2814   // completed.
2815   bool initial_handshake_complete : 1;
2816 
2817   // session_reused indicates whether a session was resumed.
2818   bool session_reused : 1;
2819 
2820   bool send_connection_binding : 1;
2821 
2822   // channel_id_valid is true if, on the server, the client has negotiated a
2823   // Channel ID and the |channel_id| field is filled in.
2824   bool channel_id_valid : 1;
2825 
2826   // key_update_pending is true if we have a KeyUpdate acknowledgment
2827   // outstanding.
2828   bool key_update_pending : 1;
2829 
2830   // early_data_accepted is true if early data was accepted by the server.
2831   bool early_data_accepted : 1;
2832 
2833   // alert_dispatch is true there is an alert in |send_alert| to be sent.
2834   bool alert_dispatch : 1;
2835 
2836   // renegotiate_pending is whether the read half of the channel is blocked on a
2837   // HelloRequest.
2838   bool renegotiate_pending : 1;
2839 
2840   // used_hello_retry_request is whether the handshake used a TLS 1.3
2841   // HelloRetryRequest message.
2842   bool used_hello_retry_request : 1;
2843 
2844   // was_key_usage_invalid is whether the handshake succeeded despite using a
2845   // TLS mode which was incompatible with the leaf certificate's keyUsage
2846   // extension.
2847   bool was_key_usage_invalid : 1;
2848 
2849   // hs_buf is the buffer of handshake data to process.
2850   UniquePtr<BUF_MEM> hs_buf;
2851 
2852   // pending_hs_data contains the pending handshake data that has not yet
2853   // been encrypted to |pending_flight|. This allows packing the handshake into
2854   // fewer records.
2855   UniquePtr<BUF_MEM> pending_hs_data;
2856 
2857   // pending_flight is the pending outgoing flight. This is used to flush each
2858   // handshake flight in a single write. |write_buffer| must be written out
2859   // before this data.
2860   UniquePtr<BUF_MEM> pending_flight;
2861 
2862   // pending_flight_offset is the number of bytes of |pending_flight| which have
2863   // been successfully written.
2864   uint32_t pending_flight_offset = 0;
2865 
2866   // ticket_age_skew is the difference, in seconds, between the client-sent
2867   // ticket age and the server-computed value in TLS 1.3 server connections
2868   // which resumed a session.
2869   int32_t ticket_age_skew = 0;
2870 
2871   // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2872   enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2873 
2874   // aead_read_ctx is the current read cipher state.
2875   UniquePtr<SSLAEADContext> aead_read_ctx;
2876 
2877   // aead_write_ctx is the current write cipher state.
2878   UniquePtr<SSLAEADContext> aead_write_ctx;
2879 
2880   // hs is the handshake state for the current handshake or NULL if there isn't
2881   // one.
2882   UniquePtr<SSL_HANDSHAKE> hs;
2883 
2884   uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2885   uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2886   uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2887   uint8_t write_traffic_secret_len = 0;
2888   uint8_t read_traffic_secret_len = 0;
2889   uint8_t exporter_secret_len = 0;
2890 
2891   // Connection binding to prevent renegotiation attacks
2892   uint8_t previous_client_finished[12] = {0};
2893   uint8_t previous_client_finished_len = 0;
2894   uint8_t previous_server_finished_len = 0;
2895   uint8_t previous_server_finished[12] = {0};
2896 
2897   uint8_t send_alert[2] = {0};
2898 
2899   // established_session is the session established by the connection. This
2900   // session is only filled upon the completion of the handshake and is
2901   // immutable.
2902   UniquePtr<SSL_SESSION> established_session;
2903 
2904   // Next protocol negotiation. For the client, this is the protocol that we
2905   // sent in NextProtocol and is set when handling ServerHello extensions.
2906   //
2907   // For a server, this is the client's selected_protocol from NextProtocol and
2908   // is set when handling the NextProtocol message, before the Finished
2909   // message.
2910   Array<uint8_t> next_proto_negotiated;
2911 
2912   // ALPN information
2913   // (we are in the process of transitioning from NPN to ALPN.)
2914 
2915   // In a server these point to the selected ALPN protocol after the
2916   // ClientHello has been processed. In a client these contain the protocol
2917   // that the server selected once the ServerHello has been processed.
2918   Array<uint8_t> alpn_selected;
2919 
2920   // hostname, on the server, is the value of the SNI extension.
2921   UniquePtr<char> hostname;
2922 
2923   // For a server:
2924   //     If |channel_id_valid| is true, then this contains the
2925   //     verified Channel ID from the client: a P256 point, (x,y), where
2926   //     each are big-endian values.
2927   uint8_t channel_id[64] = {0};
2928 
2929   // Contains the QUIC transport params received by the peer.
2930   Array<uint8_t> peer_quic_transport_params;
2931 
2932   // srtp_profile is the selected SRTP protection profile for
2933   // DTLS-SRTP.
2934   const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2935 };
2936 
2937 // lengths of messages
2938 #define DTLS1_RT_MAX_HEADER_LENGTH 13
2939 
2940 #define DTLS1_HM_HEADER_LENGTH 12
2941 
2942 #define DTLS1_CCS_HEADER_LENGTH 1
2943 
2944 #define DTLS1_AL_HEADER_LENGTH 2
2945 
2946 struct hm_header_st {
2947   uint8_t type;
2948   uint32_t msg_len;
2949   uint16_t seq;
2950   uint32_t frag_off;
2951   uint32_t frag_len;
2952 };
2953 
2954 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2955 struct hm_fragment {
2956   static constexpr bool kAllowUniquePtr = true;
2957 
2958   hm_fragment() {}
2959   hm_fragment(const hm_fragment &) = delete;
2960   hm_fragment &operator=(const hm_fragment &) = delete;
2961 
2962   ~hm_fragment();
2963 
2964   // type is the type of the message.
2965   uint8_t type = 0;
2966   // seq is the sequence number of this message.
2967   uint16_t seq = 0;
2968   // msg_len is the length of the message body.
2969   uint32_t msg_len = 0;
2970   // data is a pointer to the message, including message header. It has length
2971   // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2972   uint8_t *data = nullptr;
2973   // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2974   // the message have been received. It is NULL if the message is complete.
2975   uint8_t *reassembly = nullptr;
2976 };
2977 
2978 struct OPENSSL_timeval {
2979   uint64_t tv_sec;
2980   uint32_t tv_usec;
2981 };
2982 
2983 struct DTLS1_STATE {
2984   static constexpr bool kAllowUniquePtr = true;
2985 
2986   DTLS1_STATE();
2987   ~DTLS1_STATE();
2988 
2989   // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2990   // the peer in this epoch.
2991   bool has_change_cipher_spec : 1;
2992 
2993   // outgoing_messages_complete is true if |outgoing_messages| has been
2994   // completed by an attempt to flush it. Future calls to |add_message| and
2995   // |add_change_cipher_spec| will start a new flight.
2996   bool outgoing_messages_complete : 1;
2997 
2998   // flight_has_reply is true if the current outgoing flight is complete and has
2999   // processed at least one message. This is used to detect whether we or the
3000   // peer sent the final flight.
3001   bool flight_has_reply : 1;
3002 
3003   // The current data and handshake epoch.  This is initially undefined, and
3004   // starts at zero once the initial handshake is completed.
3005   uint16_t r_epoch = 0;
3006   uint16_t w_epoch = 0;
3007 
3008   // records being received in the current epoch
3009   DTLS1_BITMAP bitmap;
3010 
3011   uint16_t handshake_write_seq = 0;
3012   uint16_t handshake_read_seq = 0;
3013 
3014   // save last sequence number for retransmissions
3015   uint64_t last_write_sequence = 0;
3016   UniquePtr<SSLAEADContext> last_aead_write_ctx;
3017 
3018   // incoming_messages is a ring buffer of incoming handshake messages that have
3019   // yet to be processed. The front of the ring buffer is message number
3020   // |handshake_read_seq|, at position |handshake_read_seq| %
3021   // |SSL_MAX_HANDSHAKE_FLIGHT|.
3022   UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3023 
3024   // outgoing_messages is the queue of outgoing messages from the last handshake
3025   // flight.
3026   DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3027   uint8_t outgoing_messages_len = 0;
3028 
3029   // outgoing_written is the number of outgoing messages that have been
3030   // written.
3031   uint8_t outgoing_written = 0;
3032   // outgoing_offset is the number of bytes of the next outgoing message have
3033   // been written.
3034   uint32_t outgoing_offset = 0;
3035 
3036   unsigned mtu = 0;  // max DTLS packet size
3037 
3038   // num_timeouts is the number of times the retransmit timer has fired since
3039   // the last time it was reset.
3040   unsigned num_timeouts = 0;
3041 
3042   // Indicates when the last handshake msg or heartbeat sent will
3043   // timeout.
3044   struct OPENSSL_timeval next_timeout = {0, 0};
3045 
3046   // timeout_duration_ms is the timeout duration in milliseconds.
3047   unsigned timeout_duration_ms = 0;
3048 };
3049 
3050 // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS.
3051 struct ALPSConfig {
3052   Array<uint8_t> protocol;
3053   Array<uint8_t> settings;
3054 };
3055 
3056 // SSL_CONFIG contains configuration bits that can be shed after the handshake
3057 // completes.  Objects of this type are not shared; they are unique to a
3058 // particular |SSL|.
3059 //
3060 // See SSL_shed_handshake_config() for more about the conditions under which
3061 // configuration can be shed.
3062 struct SSL_CONFIG {
3063   static constexpr bool kAllowUniquePtr = true;
3064 
3065   explicit SSL_CONFIG(SSL *ssl_arg);
3066   ~SSL_CONFIG();
3067 
3068   // ssl is a non-owning pointer to the parent |SSL| object.
3069   SSL *const ssl = nullptr;
3070 
3071   // conf_max_version is the maximum acceptable version configured by
3072   // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
3073   // and is further constrained by |SSL_OP_NO_*|.
3074   uint16_t conf_max_version = 0;
3075 
3076   // conf_min_version is the minimum acceptable version configured by
3077   // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
3078   // and is further constrained by |SSL_OP_NO_*|.
3079   uint16_t conf_min_version = 0;
3080 
3081   X509_VERIFY_PARAM *param = nullptr;
3082 
3083   // crypto
3084   UniquePtr<SSLCipherPreferenceList> cipher_list;
3085 
3086   // This is used to hold the local certificate used (i.e. the server
3087   // certificate for a server or the client certificate for a client).
3088   UniquePtr<CERT> cert;
3089 
3090   int (*verify_callback)(int ok,
3091                          X509_STORE_CTX *ctx) =
3092       nullptr;  // fail if callback returns 0
3093 
3094   enum ssl_verify_result_t (*custom_verify_callback)(
3095       SSL *ssl, uint8_t *out_alert) = nullptr;
3096   // Server-only: psk_identity_hint is the identity hint to send in
3097   // PSK-based key exchanges.
3098   UniquePtr<char> psk_identity_hint;
3099 
3100   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3101                                   unsigned max_identity_len, uint8_t *psk,
3102                                   unsigned max_psk_len) = nullptr;
3103   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3104                                   unsigned max_psk_len) = nullptr;
3105 
3106   // for server side, keep the list of CA_dn we can use
3107   UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3108 
3109   // cached_x509_client_CA is a cache of parsed versions of the elements of
3110   // |client_CA|.
3111   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3112 
3113   Array<uint16_t> supported_group_list;  // our list
3114 
3115   // channel_id_private is the client's Channel ID private key, or null if
3116   // Channel ID should not be offered on this connection.
3117   UniquePtr<EVP_PKEY> channel_id_private;
3118 
3119   // For a client, this contains the list of supported protocols in wire
3120   // format.
3121   Array<uint8_t> alpn_client_proto_list;
3122 
3123   // alps_configs contains the list of supported protocols to use with ALPS,
3124   // along with their corresponding ALPS values.
3125   GrowableArray<ALPSConfig> alps_configs;
3126 
3127   // Contains the QUIC transport params that this endpoint will send.
3128   Array<uint8_t> quic_transport_params;
3129 
3130   // Contains the context used to decide whether to accept early data in QUIC.
3131   Array<uint8_t> quic_early_data_context;
3132 
3133   // verify_sigalgs, if not empty, is the set of signature algorithms
3134   // accepted from the peer in decreasing order of preference.
3135   Array<uint16_t> verify_sigalgs;
3136 
3137   // srtp_profiles is the list of configured SRTP protection profiles for
3138   // DTLS-SRTP.
3139   UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3140 
3141   // client_ech_config_list, if not empty, is a serialized ECHConfigList
3142   // structure for the client to use when negotiating ECH.
3143   Array<uint8_t> client_ech_config_list;
3144 
3145   // tls13_cipher_policy limits the set of ciphers that can be selected when
3146   // negotiating a TLS 1.3 connection.
3147   enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3148 
3149   // verify_mode is a bitmask of |SSL_VERIFY_*| values.
3150   uint8_t verify_mode = SSL_VERIFY_NONE;
3151 
3152   // ech_grease_enabled controls whether ECH GREASE may be sent in the
3153   // ClientHello.
3154   bool ech_grease_enabled : 1;
3155 
3156   // Enable signed certificate time stamps. Currently client only.
3157   bool signed_cert_timestamps_enabled : 1;
3158 
3159   // ocsp_stapling_enabled is only used by client connections and indicates
3160   // whether OCSP stapling will be requested.
3161   bool ocsp_stapling_enabled : 1;
3162 
3163   // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means
3164   // that we'll accept Channel IDs from clients. It is ignored on the client.
3165   bool channel_id_enabled : 1;
3166 
3167   // If enforce_rsa_key_usage is true, the handshake will fail if the
3168   // keyUsage extension is present and incompatible with the TLS usage.
3169   // This field is not read until after certificate verification.
3170   bool enforce_rsa_key_usage : 1;
3171 
3172   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3173   // hash of the peer's certificate and then discard it to save memory and
3174   // session space. Only effective on the server side.
3175   bool retain_only_sha256_of_client_certs : 1;
3176 
3177   // handoff indicates that a server should stop after receiving the
3178   // ClientHello and pause the handshake in such a way that |SSL_get_error|
3179   // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
3180   // element of the same name and may be cleared if the handoff is declined.
3181   bool handoff : 1;
3182 
3183   // shed_handshake_config indicates that the handshake config (this object!)
3184   // should be freed after the handshake completes.
3185   bool shed_handshake_config : 1;
3186 
3187   // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
3188   // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
3189   bool jdk11_workaround : 1;
3190 
3191   // QUIC drafts up to and including 32 used a different TLS extension
3192   // codepoint to convey QUIC's transport parameters.
3193   bool quic_use_legacy_codepoint : 1;
3194 
3195   // permute_extensions is whether to permute extensions when sending messages.
3196   bool permute_extensions : 1;
3197 
3198   // aes_hw_override if set indicates we should override checking for aes
3199   // hardware support, and use the value in aes_hw_override_value instead.
3200   bool aes_hw_override : 1;
3201 
3202   // aes_hw_override_value is used for testing to indicate the support or lack
3203   // of support for AES hw. The value is only considered if |aes_hw_override| is
3204   // true.
3205   bool aes_hw_override_value : 1;
3206 
3207   // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint
3208   // to negotiate and convey application settings.
3209   bool alps_use_new_codepoint : 1;
3210 
3211   // check_client_certificate_type indicates whether the client, in TLS 1.2 and
3212   // below, will check its certificate against the server's requested
3213   // certificate types.
3214   bool check_client_certificate_type : 1;
3215 
3216   // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will
3217   // check its certificate against the client's supported ECDSA curves.
3218   bool check_ecdsa_curve : 1;
3219 };
3220 
3221 // From RFC 8446, used in determining PSK modes.
3222 #define SSL_PSK_DHE_KE 0x1
3223 
3224 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
3225 // data that will be accepted. This value should be slightly below
3226 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
3227 static const size_t kMaxEarlyDataAccepted = 14336;
3228 
3229 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
3230 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
3231 bool ssl_is_key_type_supported(int key_type);
3232 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
3233 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
3234 // message on the error queue.
3235 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
3236                                        const EVP_PKEY *privkey);
3237 bool ssl_get_new_session(SSL_HANDSHAKE *hs);
3238 bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out,
3239                         const SSL_SESSION *session);
3240 bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
3241 
3242 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
3243 // error.
3244 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
3245 
3246 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
3247 // keyed on session IDs.
3248 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
3249 
3250 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
3251 // the parsed data.
3252 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
3253     CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
3254 
3255 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
3256 // session for Session-ID resumption. It returns true on success and false on
3257 // error.
3258 OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
3259 
3260 // ssl_session_is_context_valid returns whether |session|'s session ID context
3261 // matches the one set on |hs|.
3262 bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
3263                                   const SSL_SESSION *session);
3264 
3265 // ssl_session_is_time_valid returns true if |session| is still valid and false
3266 // if it has expired.
3267 bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
3268 
3269 // ssl_session_is_resumable returns whether |session| is resumable for |hs|.
3270 bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
3271                               const SSL_SESSION *session);
3272 
3273 // ssl_session_protocol_version returns the protocol version associated with
3274 // |session|. Note that despite the name, this is not the same as
3275 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
3276 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
3277 
3278 // ssl_session_get_digest returns the digest used in |session|.
3279 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
3280 
3281 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
3282 
3283 // ssl_get_prev_session looks up the previous session based on |client_hello|.
3284 // On success, it sets |*out_session| to the session or nullptr if none was
3285 // found. If the session could not be looked up synchronously, it returns
3286 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
3287 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
3288 // be called again. Otherwise, it returns |ssl_hs_error|.
3289 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
3290                                         UniquePtr<SSL_SESSION> *out_session,
3291                                         bool *out_tickets_supported,
3292                                         bool *out_renew_ticket,
3293                                         const SSL_CLIENT_HELLO *client_hello);
3294 
3295 // The following flags determine which parts of the session are duplicated.
3296 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
3297 #define SSL_SESSION_INCLUDE_TICKET 0x1
3298 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
3299 #define SSL_SESSION_DUP_ALL \
3300   (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
3301 
3302 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
3303 // fields in |session| or nullptr on error. The new session is non-resumable and
3304 // must be explicitly marked resumable once it has been filled in.
3305 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
3306                                                       int dup_flags);
3307 
3308 // ssl_session_rebase_time updates |session|'s start time to the current time,
3309 // adjusting the timeout so the expiration time is unchanged.
3310 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
3311 
3312 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
3313 // |session|'s timeout to |timeout| (measured from the current time). The
3314 // renewal is clamped to the session's auth_timeout.
3315 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
3316                                uint32_t timeout);
3317 
3318 void ssl_update_cache(SSL *ssl);
3319 
3320 void ssl_send_alert(SSL *ssl, int level, int desc);
3321 int ssl_send_alert_impl(SSL *ssl, int level, int desc);
3322 bool tls_get_message(const SSL *ssl, SSLMessage *out);
3323 ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed,
3324                                      uint8_t *out_alert, Span<uint8_t> in);
3325 void tls_next_message(SSL *ssl);
3326 
3327 int tls_dispatch_alert(SSL *ssl);
3328 ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out,
3329                                     size_t *out_consumed, uint8_t *out_alert,
3330                                     Span<uint8_t> in);
3331 ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3332                                               uint8_t *out_alert,
3333                                               Span<uint8_t> in);
3334 int tls_write_app_data(SSL *ssl, bool *out_needs_handshake,
3335                        size_t *out_bytes_written, Span<const uint8_t> in);
3336 
3337 bool tls_new(SSL *ssl);
3338 void tls_free(SSL *ssl);
3339 
3340 bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3341 bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3342 bool tls_add_message(SSL *ssl, Array<uint8_t> msg);
3343 bool tls_add_change_cipher_spec(SSL *ssl);
3344 int tls_flush_flight(SSL *ssl);
3345 
3346 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3347 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3348 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
3349 bool dtls1_add_change_cipher_spec(SSL *ssl);
3350 int dtls1_flush_flight(SSL *ssl);
3351 
3352 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
3353 // the pending flight. It returns true on success and false on error.
3354 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
3355 
3356 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
3357 // on success and false on allocation failure.
3358 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3359 
3360 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
3361                                       size_t *out_consumed, uint8_t *out_alert,
3362                                       Span<uint8_t> in);
3363 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3364                                                 uint8_t *out_alert,
3365                                                 Span<uint8_t> in);
3366 
3367 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
3368                          size_t *out_bytes_written, Span<const uint8_t> in);
3369 
3370 // dtls1_write_record sends a record. It returns one on success and <= 0 on
3371 // error.
3372 int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in,
3373                        uint16_t epoch);
3374 
3375 int dtls1_retransmit_outgoing_messages(SSL *ssl);
3376 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
3377                           CBS *out_body);
3378 bool dtls1_check_timeout_num(SSL *ssl);
3379 
3380 void dtls1_start_timer(SSL *ssl);
3381 void dtls1_stop_timer(SSL *ssl);
3382 bool dtls1_is_timer_expired(SSL *ssl);
3383 unsigned int dtls1_min_mtu(void);
3384 
3385 bool dtls1_new(SSL *ssl);
3386 void dtls1_free(SSL *ssl);
3387 
3388 bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
3389 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
3390                                        uint8_t *out_alert, Span<uint8_t> in);
3391 void dtls1_next_message(SSL *ssl);
3392 int dtls1_dispatch_alert(SSL *ssl);
3393 
3394 // tls1_configure_aead configures either the read or write direction AEAD (as
3395 // determined by |direction|) using the keys generated by the TLS KDF. The
3396 // |key_block_cache| argument is used to store the generated key block, if
3397 // empty. Otherwise it's assumed that the key block is already contained within
3398 // it. It returns true on success or false on error.
3399 bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
3400                          Array<uint8_t> *key_block_cache,
3401                          const SSL_SESSION *session,
3402                          Span<const uint8_t> iv_override);
3403 
3404 bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
3405                               evp_aead_direction_t direction);
3406 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
3407                                 Span<const uint8_t> premaster);
3408 
3409 // tls1_get_grouplist returns the locally-configured group preference list.
3410 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
3411 
3412 // tls1_check_group_id returns whether |group_id| is consistent with locally-
3413 // configured group preferences.
3414 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
3415 
3416 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
3417 // group between client and server preferences and returns true. If none may be
3418 // found, it returns false.
3419 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
3420 
3421 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|.
3422 // It returns true on success and false on failure. The |header_len| argument is
3423 // the length of the ClientHello written so far and is used to compute the
3424 // padding length. (It does not include the record header or handshake headers.)
3425 //
3426 // If |type| is |ssl_client_hello_inner|, this function also writes the
3427 // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be
3428 // nullptr.
3429 //
3430 // On success, the function sets |*out_needs_psk_binder| to whether the last
3431 // ClientHello extension was the pre_shared_key extension and needs a PSK binder
3432 // filled in. The caller should then update |out| and, if applicable,
3433 // |out_encoded| with the binder after completing the whole message.
3434 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded,
3435                                 bool *out_needs_psk_binder,
3436                                 ssl_client_hello_type_t type,
3437                                 size_t header_len);
3438 
3439 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
3440 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
3441                                   const SSL_CLIENT_HELLO *client_hello);
3442 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions);
3443 
3444 #define tlsext_tick_md EVP_sha256
3445 
3446 // ssl_process_ticket processes a session ticket from the client. It returns
3447 // one of:
3448 //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
3449 //       |*out_renew_ticket| is set to whether the ticket should be renewed.
3450 //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
3451 //       fresh ticket should be sent, but the given ticket cannot be used.
3452 //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
3453 //       Retry later.
3454 //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
3455 enum ssl_ticket_aead_result_t ssl_process_ticket(
3456     SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
3457     bool *out_renew_ticket, Span<const uint8_t> ticket,
3458     Span<const uint8_t> session_id);
3459 
3460 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
3461 // the signature. If the key is valid, it saves the Channel ID and returns true.
3462 // Otherwise, it returns false.
3463 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3464 
3465 // tls1_write_channel_id generates a Channel ID message and puts the output in
3466 // |cbb|. |ssl->channel_id_private| must already be set before calling.  This
3467 // function returns true on success and false on error.
3468 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
3469 
3470 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
3471 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
3472 // true on success and false on failure.
3473 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
3474 
3475 // tls1_record_handshake_hashes_for_channel_id records the current handshake
3476 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
3477 // data.
3478 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
3479 
3480 // ssl_can_write returns whether |ssl| is allowed to write.
3481 bool ssl_can_write(const SSL *ssl);
3482 
3483 // ssl_can_read returns wheter |ssl| is allowed to read.
3484 bool ssl_can_read(const SSL *ssl);
3485 
3486 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
3487 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
3488                               struct OPENSSL_timeval *out_clock);
3489 
3490 // ssl_reset_error_state resets state for |SSL_get_error|.
3491 void ssl_reset_error_state(SSL *ssl);
3492 
3493 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
3494 // current state of the error queue.
3495 void ssl_set_read_error(SSL *ssl);
3496 
3497 BSSL_NAMESPACE_END
3498 
3499 
3500 // Opaque C types.
3501 //
3502 // The following types are exported to C code as public typedefs, so they must
3503 // be defined outside of the namespace.
3504 
3505 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3506 // structure to support the legacy version-locked methods.
3507 struct ssl_method_st {
3508   // version, if non-zero, is the only protocol version acceptable to an
3509   // SSL_CTX initialized from this method.
3510   uint16_t version;
3511   // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3512   // SSL_CTX.
3513   const bssl::SSL_PROTOCOL_METHOD *method;
3514   // x509_method contains pointers to functions that might deal with |X509|
3515   // compatibility, or might be a no-op, depending on the application.
3516   const bssl::SSL_X509_METHOD *x509_method;
3517 };
3518 
3519 struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> {
3520   explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3521   ssl_ctx_st(const ssl_ctx_st &) = delete;
3522   ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3523 
3524   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3525   const bssl::SSL_X509_METHOD *x509_method = nullptr;
3526 
3527   // lock is used to protect various operations on this object.
3528   CRYPTO_MUTEX lock;
3529 
3530   // conf_max_version is the maximum acceptable protocol version configured by
3531   // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3532   // and is further constrainted by |SSL_OP_NO_*|.
3533   uint16_t conf_max_version = 0;
3534 
3535   // conf_min_version is the minimum acceptable protocol version configured by
3536   // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3537   // and is further constrainted by |SSL_OP_NO_*|.
3538   uint16_t conf_min_version = 0;
3539 
3540   // num_tickets is the number of tickets to send immediately after the TLS 1.3
3541   // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two
3542   /// in case the client makes several connections before getting a renewal.
3543   uint8_t num_tickets = 2;
3544 
3545   // quic_method is the method table corresponding to the QUIC hooks.
3546   const SSL_QUIC_METHOD *quic_method = nullptr;
3547 
3548   bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3549 
3550   X509_STORE *cert_store = nullptr;
3551   LHASH_OF(SSL_SESSION) *sessions = nullptr;
3552   // Most session-ids that will be cached, default is
3553   // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3554   unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3555   SSL_SESSION *session_cache_head = nullptr;
3556   SSL_SESSION *session_cache_tail = nullptr;
3557 
3558   // handshakes_since_cache_flush is the number of successful handshakes since
3559   // the last cache flush.
3560   int handshakes_since_cache_flush = 0;
3561 
3562   // This can have one of 2 values, ored together,
3563   // SSL_SESS_CACHE_CLIENT,
3564   // SSL_SESS_CACHE_SERVER,
3565   // Default is SSL_SESSION_CACHE_SERVER, which means only
3566   // SSL_accept which cache SSL_SESSIONS.
3567   int session_cache_mode = SSL_SESS_CACHE_SERVER;
3568 
3569   // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3570   // earlier, in seconds.
3571   uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3572 
3573   // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3574   // 1.3, in seconds.
3575   uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3576 
3577   // If this callback is not null, it will be called each time a session id is
3578   // added to the cache.  If this function returns 1, it means that the
3579   // callback will do a SSL_SESSION_free() when it has finished using it.
3580   // Otherwise, on 0, it means the callback has finished with it. If
3581   // remove_session_cb is not null, it will be called when a session-id is
3582   // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free()
3583   // it.
3584   int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3585   void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3586   SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3587                                  int *copy) = nullptr;
3588 
3589   // if defined, these override the X509_verify_cert() calls
3590   int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3591   void *app_verify_arg = nullptr;
3592 
3593   ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3594                                                 uint8_t *out_alert) = nullptr;
3595 
3596   // Default password callback.
3597   pem_password_cb *default_passwd_callback = nullptr;
3598 
3599   // Default password callback user data.
3600   void *default_passwd_callback_userdata = nullptr;
3601 
3602   // get client cert callback
3603   int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3604                         EVP_PKEY **out_pkey) = nullptr;
3605 
3606   CRYPTO_EX_DATA ex_data;
3607 
3608   // Default values used when no per-SSL value is defined follow
3609 
3610   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3611 
3612   // what we put in client cert requests
3613   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3614 
3615   // cached_x509_client_CA is a cache of parsed versions of the elements of
3616   // |client_CA|.
3617   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3618 
3619 
3620   // Default values to use in SSL structures follow (these are copied by
3621   // SSL_new)
3622 
3623   uint32_t options = 0;
3624   // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3625   // feature, but require callers opt into it.
3626   uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3627   uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3628 
3629   bssl::UniquePtr<bssl::CERT> cert;
3630 
3631   // callback that allows applications to peek at protocol messages
3632   void (*msg_callback)(int is_write, int version, int content_type,
3633                        const void *buf, size_t len, SSL *ssl,
3634                        void *arg) = nullptr;
3635   void *msg_callback_arg = nullptr;
3636 
3637   int verify_mode = SSL_VERIFY_NONE;
3638   int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3639       nullptr;  // called 'verify_callback' in the SSL
3640 
3641   X509_VERIFY_PARAM *param = nullptr;
3642 
3643   // select_certificate_cb is called before most ClientHello processing and
3644   // before the decision whether to resume a session is made. See
3645   // |ssl_select_cert_result_t| for details of the return values.
3646   ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3647       nullptr;
3648 
3649   // dos_protection_cb is called once the resumption decision for a ClientHello
3650   // has been made. It returns one to continue the handshake or zero to
3651   // abort.
3652   int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3653 
3654   // Controls whether to verify certificates when resuming connections. They
3655   // were already verified when the connection was first made, so the default is
3656   // false. For now, this is only respected on clients, not servers.
3657   bool reverify_on_resume = false;
3658 
3659   // Maximum amount of data to send in one fragment. actual record size can be
3660   // more than this due to padding and MAC overheads.
3661   uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3662 
3663   // TLS extensions servername callback
3664   int (*servername_callback)(SSL *, int *, void *) = nullptr;
3665   void *servername_arg = nullptr;
3666 
3667   // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3668   // first handshake and |ticket_key_prev| may be NULL at any time.
3669   // Automatically generated ticket keys are rotated as needed at handshake
3670   // time. Hence, all access must be synchronized through |lock|.
3671   bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3672   bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3673 
3674   // Callback to support customisation of ticket key setting
3675   int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3676                        EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3677 
3678   // Server-only: psk_identity_hint is the default identity hint to send in
3679   // PSK-based key exchanges.
3680   bssl::UniquePtr<char> psk_identity_hint;
3681 
3682   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3683                                   unsigned max_identity_len, uint8_t *psk,
3684                                   unsigned max_psk_len) = nullptr;
3685   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3686                                   unsigned max_psk_len) = nullptr;
3687 
3688 
3689   // Next protocol negotiation information
3690   // (for experimental NPN extension).
3691 
3692   // For a server, this contains a callback function by which the set of
3693   // advertised protocols can be provided.
3694   int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3695                                    unsigned *out_len, void *arg) = nullptr;
3696   void *next_protos_advertised_cb_arg = nullptr;
3697   // For a client, this contains a callback function that selects the
3698   // next protocol from the list provided by the server.
3699   int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3700                               const uint8_t *in, unsigned in_len,
3701                               void *arg) = nullptr;
3702   void *next_proto_select_cb_arg = nullptr;
3703 
3704   // ALPN information
3705   // (we are in the process of transitioning from NPN to ALPN.)
3706 
3707   // For a server, this contains a callback function that allows the
3708   // server to select the protocol for the connection.
3709   //   out: on successful return, this must point to the raw protocol
3710   //        name (without the length prefix).
3711   //   outlen: on successful return, this contains the length of |*out|.
3712   //   in: points to the client's list of supported protocols in
3713   //       wire-format.
3714   //   inlen: the length of |in|.
3715   int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3716                         const uint8_t *in, unsigned in_len,
3717                         void *arg) = nullptr;
3718   void *alpn_select_cb_arg = nullptr;
3719 
3720   // For a client, this contains the list of supported protocols in wire
3721   // format.
3722   bssl::Array<uint8_t> alpn_client_proto_list;
3723 
3724   // SRTP profiles we are willing to do from RFC 5764
3725   bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3726 
3727   // Defined compression algorithms for certificates.
3728   bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3729 
3730   // Supported group values inherited by SSL structure
3731   bssl::Array<uint16_t> supported_group_list;
3732 
3733   // channel_id_private is the client's Channel ID private key, or null if
3734   // Channel ID should not be offered on this connection.
3735   bssl::UniquePtr<EVP_PKEY> channel_id_private;
3736 
3737   // ech_keys contains the server's list of ECHConfig values and associated
3738   // private keys. This list may be swapped out at any time, so all access must
3739   // be synchronized through |lock|.
3740   bssl::UniquePtr<SSL_ECH_KEYS> ech_keys;
3741 
3742   // keylog_callback, if not NULL, is the key logging callback. See
3743   // |SSL_CTX_set_keylog_callback|.
3744   void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3745 
3746   // current_time_cb, if not NULL, is the function to use to get the current
3747   // time. It sets |*out_clock| to the current time. The |ssl| argument is
3748   // always NULL. See |SSL_CTX_set_current_time_cb|.
3749   void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3750 
3751   // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3752   // memory.
3753   CRYPTO_BUFFER_POOL *pool = nullptr;
3754 
3755   // ticket_aead_method contains function pointers for opening and sealing
3756   // session tickets.
3757   const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3758 
3759   // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3760   // compatibility.
3761   int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3762   void *legacy_ocsp_callback_arg = nullptr;
3763 
3764   // tls13_cipher_policy limits the set of ciphers that can be selected when
3765   // negotiating a TLS 1.3 connection.
3766   enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3767 
3768   // verify_sigalgs, if not empty, is the set of signature algorithms
3769   // accepted from the peer in decreasing order of preference.
3770   bssl::Array<uint16_t> verify_sigalgs;
3771 
3772   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3773   // hash of the peer's certificate and then discard it to save memory and
3774   // session space. Only effective on the server side.
3775   bool retain_only_sha256_of_client_certs : 1;
3776 
3777   // quiet_shutdown is true if the connection should not send a close_notify on
3778   // shutdown.
3779   bool quiet_shutdown : 1;
3780 
3781   // ocsp_stapling_enabled is only used by client connections and indicates
3782   // whether OCSP stapling will be requested.
3783   bool ocsp_stapling_enabled : 1;
3784 
3785   // If true, a client will request certificate timestamps.
3786   bool signed_cert_timestamps_enabled : 1;
3787 
3788   // channel_id_enabled is whether Channel ID is enabled. For a server, means
3789   // that we'll accept Channel IDs from clients.  For a client, means that we'll
3790   // advertise support.
3791   bool channel_id_enabled : 1;
3792 
3793   // grease_enabled is whether GREASE (RFC 8701) is enabled.
3794   bool grease_enabled : 1;
3795 
3796   // permute_extensions is whether to permute extensions when sending messages.
3797   bool permute_extensions : 1;
3798 
3799   // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3800   // protocols from the peer.
3801   bool allow_unknown_alpn_protos : 1;
3802 
3803   // false_start_allowed_without_alpn is whether False Start (if
3804   // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3805   bool false_start_allowed_without_alpn : 1;
3806 
3807   // handoff indicates that a server should stop after receiving the
3808   // ClientHello and pause the handshake in such a way that |SSL_get_error|
3809   // returns |SSL_ERROR_HANDOFF|.
3810   bool handoff : 1;
3811 
3812   // If enable_early_data is true, early data can be sent and accepted.
3813   bool enable_early_data : 1;
3814 
3815   // aes_hw_override if set indicates we should override checking for AES
3816   // hardware support, and use the value in aes_hw_override_value instead.
3817   bool aes_hw_override : 1;
3818 
3819   // aes_hw_override_value is used for testing to indicate the support or lack
3820   // of support for AES hardware. The value is only considered if
3821   // |aes_hw_override| is true.
3822   bool aes_hw_override_value : 1;
3823 
3824  private:
3825   friend RefCounted;
3826   ~ssl_ctx_st();
3827 };
3828 
3829 struct ssl_st {
3830   explicit ssl_st(SSL_CTX *ctx_arg);
3831   ssl_st(const ssl_st &) = delete;
3832   ssl_st &operator=(const ssl_st &) = delete;
3833   ~ssl_st();
3834 
3835   // method is the method table corresponding to the current protocol (DTLS or
3836   // TLS).
3837   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3838 
3839   // config is a container for handshake configuration.  Accesses to this field
3840   // should check for nullptr, since configuration may be shed after the
3841   // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use
3842   // that instead, and skip the null check.)
3843   bssl::UniquePtr<bssl::SSL_CONFIG> config;
3844 
3845   // version is the protocol version.
3846   uint16_t version = 0;
3847 
3848   uint16_t max_send_fragment = 0;
3849 
3850   // There are 2 BIO's even though they are normally both the same. This is so
3851   // data can be read and written to different handlers
3852 
3853   bssl::UniquePtr<BIO> rbio;  // used by SSL_read
3854   bssl::UniquePtr<BIO> wbio;  // used by SSL_write
3855 
3856   // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3857   // Otherwise, it returns a value corresponding to what operation is needed to
3858   // progress.
3859   bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3860 
3861   bssl::SSL3_STATE *s3 = nullptr;   // TLS variables
3862   bssl::DTLS1_STATE *d1 = nullptr;  // DTLS variables
3863 
3864   // callback that allows applications to peek at protocol messages
3865   void (*msg_callback)(int write_p, int version, int content_type,
3866                        const void *buf, size_t len, SSL *ssl,
3867                        void *arg) = nullptr;
3868   void *msg_callback_arg = nullptr;
3869 
3870   // session info
3871 
3872   // initial_timeout_duration_ms is the default DTLS timeout duration in
3873   // milliseconds. It's used to initialize the timer any time it's restarted.
3874   //
3875   // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3876   // second.
3877   unsigned initial_timeout_duration_ms = 1000;
3878 
3879   // session is the configured session to be offered by the client. This session
3880   // is immutable.
3881   bssl::UniquePtr<SSL_SESSION> session;
3882 
3883   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3884 
3885   bssl::UniquePtr<SSL_CTX> ctx;
3886 
3887   // session_ctx is the |SSL_CTX| used for the session cache and related
3888   // settings.
3889   bssl::UniquePtr<SSL_CTX> session_ctx;
3890 
3891   // extra application data
3892   CRYPTO_EX_DATA ex_data;
3893 
3894   uint32_t options = 0;  // protocol behaviour
3895   uint32_t mode = 0;     // API behaviour
3896   uint32_t max_cert_list = 0;
3897   bssl::UniquePtr<char> hostname;
3898 
3899   // quic_method is the method table corresponding to the QUIC hooks.
3900   const SSL_QUIC_METHOD *quic_method = nullptr;
3901 
3902   // renegotiate_mode controls how peer renegotiation attempts are handled.
3903   ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3904 
3905   // server is true iff the this SSL* is the server half. Note: before the SSL*
3906   // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3907   // the side is not determined. In this state, server is always false.
3908   bool server : 1;
3909 
3910   // quiet_shutdown is true if the connection should not send a close_notify on
3911   // shutdown.
3912   bool quiet_shutdown : 1;
3913 
3914   // If enable_early_data is true, early data can be sent and accepted.
3915   bool enable_early_data : 1;
3916 };
3917 
3918 struct ssl_session_st : public bssl::RefCounted<ssl_session_st> {
3919   explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3920   ssl_session_st(const ssl_session_st &) = delete;
3921   ssl_session_st &operator=(const ssl_session_st &) = delete;
3922 
3923   // ssl_version is the (D)TLS version that established the session.
3924   uint16_t ssl_version = 0;
3925 
3926   // group_id is the ID of the ECDH group used to establish this session or zero
3927   // if not applicable or unknown.
3928   uint16_t group_id = 0;
3929 
3930   // peer_signature_algorithm is the signature algorithm used to authenticate
3931   // the peer, or zero if not applicable or unknown.
3932   uint16_t peer_signature_algorithm = 0;
3933 
3934   // secret, in TLS 1.2 and below, is the master secret associated with the
3935   // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to
3936   // the caller, but it stores the resumption secret when stored on |SSL|
3937   // objects.
3938   uint8_t secret_length = 0;
3939   uint8_t secret[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3940 
3941   // session_id - valid?
3942   uint8_t session_id_length = 0;
3943   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3944   // this is used to determine whether the session is being reused in
3945   // the appropriate context. It is up to the application to set this,
3946   // via SSL_new
3947   uint8_t sid_ctx_length = 0;
3948   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3949 
3950   bssl::UniquePtr<char> psk_identity;
3951 
3952   // certs contains the certificate chain from the peer, starting with the leaf
3953   // certificate.
3954   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3955 
3956   const bssl::SSL_X509_METHOD *x509_method = nullptr;
3957 
3958   // x509_peer is the peer's certificate.
3959   X509 *x509_peer = nullptr;
3960 
3961   // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3962   // reasons, when a client (so the peer is a server), the chain includes
3963   // |peer|, but when a server it does not.
3964   STACK_OF(X509) *x509_chain = nullptr;
3965 
3966   // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3967   // omits the leaf certificate. This exists because OpenSSL, historically,
3968   // didn't include the leaf certificate in the chain for a server, but did for
3969   // a client. The |x509_chain| always includes it and, if an API call requires
3970   // a chain without, it is stored here.
3971   STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3972 
3973   // verify_result is the result of certificate verification in the case of
3974   // non-fatal certificate errors.
3975   long verify_result = X509_V_ERR_INVALID_CALL;
3976 
3977   // timeout is the lifetime of the session in seconds, measured from |time|.
3978   // This is renewable up to |auth_timeout|.
3979   uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3980 
3981   // auth_timeout is the non-renewable lifetime of the session in seconds,
3982   // measured from |time|.
3983   uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3984 
3985   // time is the time the session was issued, measured in seconds from the UNIX
3986   // epoch.
3987   uint64_t time = 0;
3988 
3989   const SSL_CIPHER *cipher = nullptr;
3990 
3991   CRYPTO_EX_DATA ex_data;  // application specific data
3992 
3993   // These are used to make removal of session-ids more efficient and to
3994   // implement a maximum cache size.
3995   SSL_SESSION *prev = nullptr, *next = nullptr;
3996 
3997   bssl::Array<uint8_t> ticket;
3998 
3999   bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
4000 
4001   // The OCSP response that came with the session.
4002   bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
4003 
4004   // peer_sha256 contains the SHA-256 hash of the peer's certificate if
4005   // |peer_sha256_valid| is true.
4006   uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
4007 
4008   // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
4009   // SHA-2, depending on TLS version) for the original, full handshake that
4010   // created a session. This is used by Channel IDs during resumption.
4011   uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
4012   uint8_t original_handshake_hash_len = 0;
4013 
4014   uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds
4015 
4016   uint32_t ticket_age_add = 0;
4017 
4018   // ticket_max_early_data is the maximum amount of data allowed to be sent as
4019   // early data. If zero, 0-RTT is disallowed.
4020   uint32_t ticket_max_early_data = 0;
4021 
4022   // early_alpn is the ALPN protocol from the initial handshake. This is only
4023   // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
4024   // resumptions. For the current connection's ALPN protocol, see
4025   // |alpn_selected| on |SSL3_STATE|.
4026   bssl::Array<uint8_t> early_alpn;
4027 
4028   // local_application_settings, if |has_application_settings| is true, is the
4029   // local ALPS value for this connection.
4030   bssl::Array<uint8_t> local_application_settings;
4031 
4032   // peer_application_settings, if |has_application_settings| is true, is the
4033   // peer ALPS value for this connection.
4034   bssl::Array<uint8_t> peer_application_settings;
4035 
4036   // extended_master_secret is whether the master secret in this session was
4037   // generated using EMS and thus isn't vulnerable to the Triple Handshake
4038   // attack.
4039   bool extended_master_secret : 1;
4040 
4041   // peer_sha256_valid is whether |peer_sha256| is valid.
4042   bool peer_sha256_valid : 1;  // Non-zero if peer_sha256 is valid
4043 
4044   // not_resumable is used to indicate that session resumption is disallowed.
4045   bool not_resumable : 1;
4046 
4047   // ticket_age_add_valid is whether |ticket_age_add| is valid.
4048   bool ticket_age_add_valid : 1;
4049 
4050   // is_server is whether this session was created by a server.
4051   bool is_server : 1;
4052 
4053   // is_quic indicates whether this session was created using QUIC.
4054   bool is_quic : 1;
4055 
4056   // has_application_settings indicates whether ALPS was negotiated in this
4057   // session.
4058   bool has_application_settings : 1;
4059 
4060   // quic_early_data_context is used to determine whether early data must be
4061   // rejected when performing a QUIC handshake.
4062   bssl::Array<uint8_t> quic_early_data_context;
4063 
4064  private:
4065   friend RefCounted;
4066   ~ssl_session_st();
4067 };
4068 
4069 struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> {
4070   ssl_ech_keys_st() : RefCounted(CheckSubClass()) {}
4071 
4072   bssl::GrowableArray<bssl::UniquePtr<bssl::ECHServerConfig>> configs;
4073 
4074  private:
4075   friend RefCounted;
4076   ~ssl_ech_keys_st() = default;
4077 };
4078 
4079 #endif  // OPENSSL_HEADER_SSL_INTERNAL_H
4080