1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * [email protected].
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * ([email protected]). This product includes software written by Tim
107 * Hudson ([email protected]).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE.
148 */
149
150 #include <openssl/ssl.h>
151
152 #include <assert.h>
153 #include <limits.h>
154 #include <string.h>
155
156 #include <algorithm>
157 #include <utility>
158
159 #include <openssl/aead.h>
160 #include <openssl/bn.h>
161 #include <openssl/bytestring.h>
162 #include <openssl/ec_key.h>
163 #include <openssl/ecdsa.h>
164 #include <openssl/err.h>
165 #include <openssl/evp.h>
166 #include <openssl/hpke.h>
167 #include <openssl/md5.h>
168 #include <openssl/mem.h>
169 #include <openssl/rand.h>
170 #include <openssl/sha.h>
171
172 #include "../crypto/internal.h"
173 #include "internal.h"
174
175
176 BSSL_NAMESPACE_BEGIN
177
178 enum ssl_client_hs_state_t {
179 state_start_connect = 0,
180 state_enter_early_data,
181 state_early_reverify_server_certificate,
182 state_read_hello_verify_request,
183 state_read_server_hello,
184 state_tls13,
185 state_read_server_certificate,
186 state_read_certificate_status,
187 state_verify_server_certificate,
188 state_reverify_server_certificate,
189 state_read_server_key_exchange,
190 state_read_certificate_request,
191 state_read_server_hello_done,
192 state_send_client_certificate,
193 state_send_client_key_exchange,
194 state_send_client_certificate_verify,
195 state_send_client_finished,
196 state_finish_flight,
197 state_read_session_ticket,
198 state_process_change_cipher_spec,
199 state_read_server_finished,
200 state_finish_client_handshake,
201 state_done,
202 };
203
204 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
205 // disabled algorithms.
ssl_get_client_disabled(const SSL_HANDSHAKE * hs,uint32_t * out_mask_a,uint32_t * out_mask_k)206 static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs,
207 uint32_t *out_mask_a,
208 uint32_t *out_mask_k) {
209 *out_mask_a = 0;
210 *out_mask_k = 0;
211
212 // PSK requires a client callback.
213 if (hs->config->psk_client_callback == NULL) {
214 *out_mask_a |= SSL_aPSK;
215 *out_mask_k |= SSL_kPSK;
216 }
217 }
218
ssl_add_tls13_cipher(CBB * cbb,uint16_t cipher_id,ssl_compliance_policy_t policy)219 static bool ssl_add_tls13_cipher(CBB *cbb, uint16_t cipher_id,
220 ssl_compliance_policy_t policy) {
221 if (ssl_tls13_cipher_meets_policy(cipher_id, policy)) {
222 return CBB_add_u16(cbb, cipher_id);
223 }
224 return true;
225 }
226
ssl_write_client_cipher_list(const SSL_HANDSHAKE * hs,CBB * out,ssl_client_hello_type_t type)227 static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out,
228 ssl_client_hello_type_t type) {
229 const SSL *const ssl = hs->ssl;
230 uint32_t mask_a, mask_k;
231 ssl_get_client_disabled(hs, &mask_a, &mask_k);
232
233 CBB child;
234 if (!CBB_add_u16_length_prefixed(out, &child)) {
235 return false;
236 }
237
238 // Add a fake cipher suite. See RFC 8701.
239 if (ssl->ctx->grease_enabled &&
240 !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) {
241 return false;
242 }
243
244 // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
245 // hardware support.
246 if (hs->max_version >= TLS1_3_VERSION) {
247 const bool has_aes_hw = ssl->config->aes_hw_override
248 ? ssl->config->aes_hw_override_value
249 : EVP_has_aes_hardware();
250
251 if ((!has_aes_hw && //
252 !ssl_add_tls13_cipher(&child,
253 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
254 ssl->config->tls13_cipher_policy)) ||
255 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
256 ssl->config->tls13_cipher_policy) ||
257 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
258 ssl->config->tls13_cipher_policy) ||
259 (has_aes_hw && //
260 !ssl_add_tls13_cipher(&child,
261 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
262 ssl->config->tls13_cipher_policy))) {
263 return false;
264 }
265 }
266
267 if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) {
268 bool any_enabled = false;
269 for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) {
270 // Skip disabled ciphers
271 if ((cipher->algorithm_mkey & mask_k) ||
272 (cipher->algorithm_auth & mask_a)) {
273 continue;
274 }
275 if (SSL_CIPHER_get_min_version(cipher) > hs->max_version ||
276 SSL_CIPHER_get_max_version(cipher) < hs->min_version) {
277 continue;
278 }
279 any_enabled = true;
280 if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) {
281 return false;
282 }
283 }
284
285 // If all ciphers were disabled, return the error to the caller.
286 if (!any_enabled && hs->max_version < TLS1_3_VERSION) {
287 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
288 return false;
289 }
290 }
291
292 if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
293 if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
294 return false;
295 }
296 }
297
298 return CBB_flush(out);
299 }
300
ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE * hs,CBB * cbb,ssl_client_hello_type_t type,bool empty_session_id)301 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
302 CBB *cbb,
303 ssl_client_hello_type_t type,
304 bool empty_session_id) {
305 const SSL *const ssl = hs->ssl;
306 CBB child;
307 if (!CBB_add_u16(cbb, hs->client_version) ||
308 !CBB_add_bytes(cbb,
309 type == ssl_client_hello_inner ? hs->inner_client_random
310 : ssl->s3->client_random,
311 SSL3_RANDOM_SIZE) ||
312 !CBB_add_u8_length_prefixed(cbb, &child)) {
313 return false;
314 }
315
316 // Do not send a session ID on renegotiation.
317 if (!ssl->s3->initial_handshake_complete &&
318 !empty_session_id &&
319 !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) {
320 return false;
321 }
322
323 if (SSL_is_dtls(ssl)) {
324 if (!CBB_add_u8_length_prefixed(cbb, &child) ||
325 !CBB_add_bytes(&child, hs->dtls_cookie.data(),
326 hs->dtls_cookie.size())) {
327 return false;
328 }
329 }
330
331 if (!ssl_write_client_cipher_list(hs, cbb, type) ||
332 !CBB_add_u8(cbb, 1 /* one compression method */) ||
333 !CBB_add_u8(cbb, 0 /* null compression */)) {
334 return false;
335 }
336 return true;
337 }
338
ssl_add_client_hello(SSL_HANDSHAKE * hs)339 bool ssl_add_client_hello(SSL_HANDSHAKE *hs) {
340 SSL *const ssl = hs->ssl;
341 ScopedCBB cbb;
342 CBB body;
343 ssl_client_hello_type_t type = hs->selected_ech_config
344 ? ssl_client_hello_outer
345 : ssl_client_hello_unencrypted;
346 bool needs_psk_binder;
347 Array<uint8_t> msg;
348 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) ||
349 !ssl_write_client_hello_without_extensions(hs, &body, type,
350 /*empty_session_id=*/false) ||
351 !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr,
352 &needs_psk_binder, type, CBB_len(&body)) ||
353 !ssl->method->finish_message(ssl, cbb.get(), &msg)) {
354 return false;
355 }
356
357 // Now that the length prefixes have been computed, fill in the placeholder
358 // PSK binder.
359 if (needs_psk_binder) {
360 // ClientHelloOuter cannot have a PSK binder. Otherwise the
361 // ClientHellOuterAAD computation would break.
362 assert(type != ssl_client_hello_outer);
363 if (!tls13_write_psk_binder(hs, hs->transcript, MakeSpan(msg),
364 /*out_binder_len=*/0)) {
365 return false;
366 }
367 }
368
369 return ssl->method->add_message(ssl, std::move(msg));
370 }
371
parse_server_version(const SSL_HANDSHAKE * hs,uint16_t * out_version,uint8_t * out_alert,const ParsedServerHello & server_hello)372 static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version,
373 uint8_t *out_alert,
374 const ParsedServerHello &server_hello) {
375 // If the outer version is not TLS 1.2, use it.
376 // TODO(davidben): This function doesn't quite match the RFC8446 formulation.
377 if (server_hello.legacy_version != TLS1_2_VERSION) {
378 *out_version = server_hello.legacy_version;
379 return true;
380 }
381
382 SSLExtension supported_versions(TLSEXT_TYPE_supported_versions);
383 CBS extensions = server_hello.extensions;
384 if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions},
385 /*ignore_unknown=*/true)) {
386 return false;
387 }
388
389 if (!supported_versions.present) {
390 *out_version = server_hello.legacy_version;
391 return true;
392 }
393
394 if (!CBS_get_u16(&supported_versions.data, out_version) ||
395 CBS_len(&supported_versions.data) != 0) {
396 *out_alert = SSL_AD_DECODE_ERROR;
397 return false;
398 }
399
400 return true;
401 }
402
403 // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should
404 // offer early data, and some other reason code otherwise.
should_offer_early_data(const SSL_HANDSHAKE * hs)405 static ssl_early_data_reason_t should_offer_early_data(
406 const SSL_HANDSHAKE *hs) {
407 const SSL *const ssl = hs->ssl;
408 assert(!ssl->server);
409 if (!ssl->enable_early_data) {
410 return ssl_early_data_disabled;
411 }
412
413 if (hs->max_version < TLS1_3_VERSION) {
414 // We discard inapplicable sessions, so this is redundant with the session
415 // checks below, but reporting that TLS 1.3 was disabled is more useful.
416 return ssl_early_data_protocol_version;
417 }
418
419 if (ssl->session == nullptr) {
420 return ssl_early_data_no_session_offered;
421 }
422
423 if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION ||
424 ssl->session->ticket_max_early_data == 0) {
425 return ssl_early_data_unsupported_for_session;
426 }
427
428 if (!ssl->session->early_alpn.empty()) {
429 if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) {
430 // Avoid reporting a confusing value in |SSL_get0_alpn_selected|.
431 return ssl_early_data_alpn_mismatch;
432 }
433
434 // If the previous connection negotiated ALPS, only offer 0-RTT when the
435 // local are settings are consistent with what we'd offer for this
436 // connection.
437 if (ssl->session->has_application_settings) {
438 Span<const uint8_t> settings;
439 if (!ssl_get_local_application_settings(hs, &settings,
440 ssl->session->early_alpn) ||
441 settings != ssl->session->local_application_settings) {
442 return ssl_early_data_alps_mismatch;
443 }
444 }
445 }
446
447 // Early data has not yet been accepted, but we use it as a success code.
448 return ssl_early_data_accepted;
449 }
450
ssl_done_writing_client_hello(SSL_HANDSHAKE * hs)451 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) {
452 hs->ech_client_outer.Reset();
453 hs->cookie.Reset();
454 hs->key_share_bytes.Reset();
455 }
456
do_start_connect(SSL_HANDSHAKE * hs)457 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
458 SSL *const ssl = hs->ssl;
459
460 ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
461 // |session_reused| must be reset in case this is a renegotiation.
462 ssl->s3->session_reused = false;
463
464 // Freeze the version range.
465 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
466 return ssl_hs_error;
467 }
468
469 uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH];
470 size_t ech_enc_len;
471 if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) {
472 return ssl_hs_error;
473 }
474
475 // Always advertise the ClientHello version from the original maximum version,
476 // even on renegotiation. The static RSA key exchange uses this field, and
477 // some servers fail when it changes across handshakes.
478 if (SSL_is_dtls(hs->ssl)) {
479 hs->client_version =
480 hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION;
481 } else {
482 hs->client_version =
483 hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version;
484 }
485
486 // If the configured session has expired or is not usable, drop it. We also do
487 // not offer sessions on renegotiation.
488 if (ssl->session != nullptr) {
489 if (ssl->session->is_server ||
490 !ssl_supports_version(hs, ssl->session->ssl_version) ||
491 // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not
492 // offer TLS 1.2, and the cleartext session ID may leak the server
493 // identity.
494 (hs->selected_ech_config &&
495 ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) ||
496 !SSL_SESSION_is_resumable(ssl->session.get()) ||
497 !ssl_session_is_time_valid(ssl, ssl->session.get()) ||
498 (ssl->quic_method != nullptr) != ssl->session->is_quic ||
499 ssl->s3->initial_handshake_complete) {
500 ssl_set_session(ssl, nullptr);
501 }
502 }
503
504 if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
505 return ssl_hs_error;
506 }
507 if (hs->selected_ech_config &&
508 !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) {
509 return ssl_hs_error;
510 }
511
512 // Never send a session ID in QUIC. QUIC uses TLS 1.3 at a minimum and
513 // disables TLS 1.3 middlebox compatibility mode.
514 if (ssl->quic_method == nullptr) {
515 const bool has_id_session = ssl->session != nullptr &&
516 ssl->session->session_id_length > 0 &&
517 ssl->session->ticket.empty();
518 const bool has_ticket_session =
519 ssl->session != nullptr && !ssl->session->ticket.empty();
520 if (has_id_session) {
521 hs->session_id_len = ssl->session->session_id_length;
522 OPENSSL_memcpy(hs->session_id, ssl->session->session_id,
523 hs->session_id_len);
524 } else if (has_ticket_session || hs->max_version >= TLS1_3_VERSION) {
525 // Send a random session ID. TLS 1.3 always sends one, and TLS 1.2 session
526 // tickets require a placeholder value to signal resumption.
527 hs->session_id_len = sizeof(hs->session_id);
528 if (!RAND_bytes(hs->session_id, hs->session_id_len)) {
529 return ssl_hs_error;
530 }
531 }
532 }
533
534 ssl_early_data_reason_t reason = should_offer_early_data(hs);
535 if (reason != ssl_early_data_accepted) {
536 ssl->s3->early_data_reason = reason;
537 } else {
538 hs->early_data_offered = true;
539 }
540
541 if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) ||
542 !ssl_setup_extension_permutation(hs) ||
543 !ssl_encrypt_client_hello(hs, MakeConstSpan(ech_enc, ech_enc_len)) ||
544 !ssl_add_client_hello(hs)) {
545 return ssl_hs_error;
546 }
547
548 hs->state = state_enter_early_data;
549 return ssl_hs_flush;
550 }
551
do_enter_early_data(SSL_HANDSHAKE * hs)552 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) {
553 SSL *const ssl = hs->ssl;
554
555 if (SSL_is_dtls(ssl)) {
556 hs->state = state_read_hello_verify_request;
557 return ssl_hs_ok;
558 }
559
560 if (!hs->early_data_offered) {
561 hs->state = state_read_server_hello;
562 return ssl_hs_ok;
563 }
564
565 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version);
566 if (!ssl->method->add_change_cipher_spec(ssl)) {
567 return ssl_hs_error;
568 }
569
570 if (!tls13_init_early_key_schedule(hs, ssl->session.get()) ||
571 !tls13_derive_early_secret(hs)) {
572 return ssl_hs_error;
573 }
574
575 // Stash the early data session, so connection properties may be queried out
576 // of it.
577 hs->early_session = UpRef(ssl->session);
578 hs->state = state_early_reverify_server_certificate;
579 return ssl_hs_ok;
580 }
581
do_early_reverify_server_certificate(SSL_HANDSHAKE * hs)582 static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) {
583 if (hs->ssl->ctx->reverify_on_resume) {
584 // Don't send an alert on error. The alert be in early data, which the
585 // server may not accept anyway. It would also be a mismatch between QUIC
586 // and TCP because the QUIC early keys are deferred below.
587 //
588 // TODO(davidben): The client behavior should be to verify the certificate
589 // before deciding whether to offer the session and, if invalid, decline to
590 // send the session.
591 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) {
592 case ssl_verify_ok:
593 break;
594 case ssl_verify_invalid:
595 return ssl_hs_error;
596 case ssl_verify_retry:
597 hs->state = state_early_reverify_server_certificate;
598 return ssl_hs_certificate_verify;
599 }
600 }
601
602 // Defer releasing the 0-RTT key to after certificate reverification, so the
603 // QUIC implementation does not accidentally write data too early.
604 if (!tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal,
605 hs->early_session.get(),
606 hs->early_traffic_secret())) {
607 return ssl_hs_error;
608 }
609
610 hs->in_early_data = true;
611 hs->can_early_write = true;
612 hs->state = state_read_server_hello;
613 return ssl_hs_early_return;
614 }
615
do_read_hello_verify_request(SSL_HANDSHAKE * hs)616 static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) {
617 SSL *const ssl = hs->ssl;
618
619 assert(SSL_is_dtls(ssl));
620
621 // When implementing DTLS 1.3, we need to handle the interactions between
622 // HelloVerifyRequest, DTLS 1.3's HelloVerifyRequest removal, and ECH.
623 assert(hs->max_version < TLS1_3_VERSION);
624
625 SSLMessage msg;
626 if (!ssl->method->get_message(ssl, &msg)) {
627 return ssl_hs_read_message;
628 }
629
630 if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
631 hs->state = state_read_server_hello;
632 return ssl_hs_ok;
633 }
634
635 CBS hello_verify_request = msg.body, cookie;
636 uint16_t server_version;
637 if (!CBS_get_u16(&hello_verify_request, &server_version) ||
638 !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
639 CBS_len(&hello_verify_request) != 0) {
640 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
641 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
642 return ssl_hs_error;
643 }
644
645 if (!hs->dtls_cookie.CopyFrom(cookie)) {
646 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
647 return ssl_hs_error;
648 }
649
650 ssl->method->next_message(ssl);
651
652 // DTLS resets the handshake buffer after HelloVerifyRequest.
653 if (!hs->transcript.Init()) {
654 return ssl_hs_error;
655 }
656
657 if (!ssl_add_client_hello(hs)) {
658 return ssl_hs_error;
659 }
660
661 hs->state = state_read_server_hello;
662 return ssl_hs_flush;
663 }
664
ssl_parse_server_hello(ParsedServerHello * out,uint8_t * out_alert,const SSLMessage & msg)665 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
666 const SSLMessage &msg) {
667 if (msg.type != SSL3_MT_SERVER_HELLO) {
668 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
669 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
670 return false;
671 }
672 out->raw = msg.raw;
673 CBS body = msg.body;
674 if (!CBS_get_u16(&body, &out->legacy_version) ||
675 !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) ||
676 !CBS_get_u8_length_prefixed(&body, &out->session_id) ||
677 CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE ||
678 !CBS_get_u16(&body, &out->cipher_suite) ||
679 !CBS_get_u8(&body, &out->compression_method)) {
680 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
681 *out_alert = SSL_AD_DECODE_ERROR;
682 return false;
683 }
684 // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3,
685 // ServerHellos always have extensions, so this can be applied generically.
686 CBS_init(&out->extensions, nullptr, 0);
687 if ((CBS_len(&body) != 0 &&
688 !CBS_get_u16_length_prefixed(&body, &out->extensions)) ||
689 CBS_len(&body) != 0) {
690 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
691 *out_alert = SSL_AD_DECODE_ERROR;
692 return false;
693 }
694 return true;
695 }
696
do_read_server_hello(SSL_HANDSHAKE * hs)697 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
698 SSL *const ssl = hs->ssl;
699 SSLMessage msg;
700 if (!ssl->method->get_message(ssl, &msg)) {
701 return ssl_hs_read_server_hello;
702 }
703
704 ParsedServerHello server_hello;
705 uint16_t server_version;
706 uint8_t alert = SSL_AD_DECODE_ERROR;
707 if (!ssl_parse_server_hello(&server_hello, &alert, msg) ||
708 !parse_server_version(hs, &server_version, &alert, server_hello)) {
709 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
710 return ssl_hs_error;
711 }
712
713 if (!ssl_supports_version(hs, server_version)) {
714 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
715 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
716 return ssl_hs_error;
717 }
718
719 assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
720 if (!ssl->s3->have_version) {
721 ssl->version = server_version;
722 // At this point, the connection's version is known and ssl->version is
723 // fixed. Begin enforcing the record-layer version.
724 ssl->s3->have_version = true;
725 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
726 } else if (server_version != ssl->version) {
727 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
728 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
729 return ssl_hs_error;
730 }
731
732 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
733 hs->state = state_tls13;
734 return ssl_hs_ok;
735 }
736
737 // Clear some TLS 1.3 state that no longer needs to be retained.
738 hs->key_shares[0].reset();
739 hs->key_shares[1].reset();
740 ssl_done_writing_client_hello(hs);
741
742 // A TLS 1.2 server would not know to skip the early data we offered. Report
743 // an error code sooner. The caller may use this error code to implement the
744 // fallback described in RFC 8446 appendix D.3.
745 if (hs->early_data_offered) {
746 // Disconnect early writes. This ensures subsequent |SSL_write| calls query
747 // the handshake which, in turn, will replay the error code rather than fail
748 // at the |write_shutdown| check. See https://crbug.com/1078515.
749 // TODO(davidben): Should all handshake errors do this? What about record
750 // decryption failures?
751 hs->can_early_write = false;
752 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
753 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
754 return ssl_hs_error;
755 }
756
757 // TLS 1.2 handshakes cannot accept ECH.
758 if (hs->selected_ech_config) {
759 ssl->s3->ech_status = ssl_ech_rejected;
760 }
761
762 // Copy over the server random.
763 OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
764 SSL3_RANDOM_SIZE);
765
766 // Enforce the TLS 1.3 anti-downgrade feature.
767 if (!ssl->s3->initial_handshake_complete &&
768 ssl_supports_version(hs, TLS1_3_VERSION)) {
769 static_assert(
770 sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
771 "downgrade signals have different size");
772 static_assert(
773 sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
774 "downgrade signals have different size");
775 auto suffix =
776 MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random))
777 .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom));
778 if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom ||
779 suffix == kJDK11DowngradeRandom) {
780 OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE);
781 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
782 return ssl_hs_error;
783 }
784 }
785
786 // The cipher must be allowed in the selected version and enabled.
787 const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
788 uint32_t mask_a, mask_k;
789 ssl_get_client_disabled(hs, &mask_a, &mask_k);
790 if (cipher == nullptr ||
791 (cipher->algorithm_mkey & mask_k) ||
792 (cipher->algorithm_auth & mask_a) ||
793 SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) ||
794 SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) ||
795 !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) {
796 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
797 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
798 return ssl_hs_error;
799 }
800
801 hs->new_cipher = cipher;
802
803 if (hs->session_id_len != 0 &&
804 CBS_mem_equal(&server_hello.session_id, hs->session_id,
805 hs->session_id_len)) {
806 // Echoing the ClientHello session ID in TLS 1.2, whether from the session
807 // or a synthetic one, indicates resumption. If there was no session (or if
808 // the session was only offered in ECH ClientHelloInner), this was the
809 // TLS 1.3 compatibility mode session ID. As we know this is not a session
810 // the server knows about, any server resuming it is in error. Reject the
811 // first connection deterministicly, rather than installing an invalid
812 // session into the session cache. https://crbug.com/796910
813 if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) {
814 OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID);
815 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
816 return ssl_hs_error;
817 }
818 if (ssl->session->ssl_version != ssl->version) {
819 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
820 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
821 return ssl_hs_error;
822 }
823 if (ssl->session->cipher != hs->new_cipher) {
824 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
825 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
826 return ssl_hs_error;
827 }
828 if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
829 // This is actually a client application bug.
830 OPENSSL_PUT_ERROR(SSL,
831 SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
832 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
833 return ssl_hs_error;
834 }
835 // We never offer sessions on renegotiation.
836 assert(!ssl->s3->initial_handshake_complete);
837 ssl->s3->session_reused = true;
838 } else {
839 // The session wasn't resumed. Create a fresh SSL_SESSION to fill out.
840 ssl_set_session(ssl, NULL);
841 if (!ssl_get_new_session(hs)) {
842 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
843 return ssl_hs_error;
844 }
845
846 // Save the session ID from the server. This may be empty if the session
847 // isn't resumable, or if we'll receive a session ticket later.
848 assert(CBS_len(&server_hello.session_id) <= SSL3_SESSION_ID_SIZE);
849 static_assert(SSL3_SESSION_ID_SIZE <= UINT8_MAX,
850 "max session ID is too large");
851 hs->new_session->session_id_length =
852 static_cast<uint8_t>(CBS_len(&server_hello.session_id));
853 OPENSSL_memcpy(hs->new_session->session_id,
854 CBS_data(&server_hello.session_id),
855 CBS_len(&server_hello.session_id));
856
857 hs->new_session->cipher = hs->new_cipher;
858 }
859
860 // Now that the cipher is known, initialize the handshake hash and hash the
861 // ServerHello.
862 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
863 !ssl_hash_message(hs, msg)) {
864 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
865 return ssl_hs_error;
866 }
867
868 // If doing a full handshake, the server may request a client certificate
869 // which requires hashing the handshake transcript. Otherwise, the handshake
870 // buffer may be released.
871 if (ssl->session != NULL ||
872 !ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
873 hs->transcript.FreeBuffer();
874 }
875
876 // Only the NULL compression algorithm is supported.
877 if (server_hello.compression_method != 0) {
878 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
879 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
880 return ssl_hs_error;
881 }
882
883 if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) {
884 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
885 return ssl_hs_error;
886 }
887
888 if (ssl->session != NULL &&
889 hs->extended_master_secret != ssl->session->extended_master_secret) {
890 if (ssl->session->extended_master_secret) {
891 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
892 } else {
893 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
894 }
895 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
896 return ssl_hs_error;
897 }
898
899 ssl->method->next_message(ssl);
900
901 if (ssl->session != NULL) {
902 if (ssl->ctx->reverify_on_resume &&
903 ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
904 hs->state = state_reverify_server_certificate;
905 } else {
906 hs->state = state_read_session_ticket;
907 }
908 return ssl_hs_ok;
909 }
910
911 hs->state = state_read_server_certificate;
912 return ssl_hs_ok;
913 }
914
do_tls13(SSL_HANDSHAKE * hs)915 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
916 enum ssl_hs_wait_t wait = tls13_client_handshake(hs);
917 if (wait == ssl_hs_ok) {
918 hs->state = state_finish_client_handshake;
919 return ssl_hs_ok;
920 }
921
922 return wait;
923 }
924
do_read_server_certificate(SSL_HANDSHAKE * hs)925 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
926 SSL *const ssl = hs->ssl;
927
928 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
929 hs->state = state_read_certificate_status;
930 return ssl_hs_ok;
931 }
932
933 SSLMessage msg;
934 if (!ssl->method->get_message(ssl, &msg)) {
935 return ssl_hs_read_message;
936 }
937
938 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) ||
939 !ssl_hash_message(hs, msg)) {
940 return ssl_hs_error;
941 }
942
943 CBS body = msg.body;
944 uint8_t alert = SSL_AD_DECODE_ERROR;
945 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
946 NULL, &body, ssl->ctx->pool)) {
947 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
948 return ssl_hs_error;
949 }
950
951 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 ||
952 CBS_len(&body) != 0 ||
953 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
954 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
955 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
956 return ssl_hs_error;
957 }
958
959 if (!ssl_check_leaf_certificate(
960 hs, hs->peer_pubkey.get(),
961 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) {
962 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
963 return ssl_hs_error;
964 }
965
966 ssl->method->next_message(ssl);
967
968 hs->state = state_read_certificate_status;
969 return ssl_hs_ok;
970 }
971
do_read_certificate_status(SSL_HANDSHAKE * hs)972 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) {
973 SSL *const ssl = hs->ssl;
974
975 if (!hs->certificate_status_expected) {
976 hs->state = state_verify_server_certificate;
977 return ssl_hs_ok;
978 }
979
980 SSLMessage msg;
981 if (!ssl->method->get_message(ssl, &msg)) {
982 return ssl_hs_read_message;
983 }
984
985 if (msg.type != SSL3_MT_CERTIFICATE_STATUS) {
986 // A server may send status_request in ServerHello and then change its mind
987 // about sending CertificateStatus.
988 hs->state = state_verify_server_certificate;
989 return ssl_hs_ok;
990 }
991
992 if (!ssl_hash_message(hs, msg)) {
993 return ssl_hs_error;
994 }
995
996 CBS certificate_status = msg.body, ocsp_response;
997 uint8_t status_type;
998 if (!CBS_get_u8(&certificate_status, &status_type) ||
999 status_type != TLSEXT_STATUSTYPE_ocsp ||
1000 !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
1001 CBS_len(&ocsp_response) == 0 ||
1002 CBS_len(&certificate_status) != 0) {
1003 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1004 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1005 return ssl_hs_error;
1006 }
1007
1008 hs->new_session->ocsp_response.reset(
1009 CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool));
1010 if (hs->new_session->ocsp_response == nullptr) {
1011 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1012 return ssl_hs_error;
1013 }
1014
1015 ssl->method->next_message(ssl);
1016
1017 hs->state = state_verify_server_certificate;
1018 return ssl_hs_ok;
1019 }
1020
do_verify_server_certificate(SSL_HANDSHAKE * hs)1021 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) {
1022 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1023 hs->state = state_read_server_key_exchange;
1024 return ssl_hs_ok;
1025 }
1026
1027 switch (ssl_verify_peer_cert(hs)) {
1028 case ssl_verify_ok:
1029 break;
1030 case ssl_verify_invalid:
1031 return ssl_hs_error;
1032 case ssl_verify_retry:
1033 hs->state = state_verify_server_certificate;
1034 return ssl_hs_certificate_verify;
1035 }
1036
1037 hs->state = state_read_server_key_exchange;
1038 return ssl_hs_ok;
1039 }
1040
do_reverify_server_certificate(SSL_HANDSHAKE * hs)1041 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) {
1042 assert(hs->ssl->ctx->reverify_on_resume);
1043
1044 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
1045 case ssl_verify_ok:
1046 break;
1047 case ssl_verify_invalid:
1048 return ssl_hs_error;
1049 case ssl_verify_retry:
1050 hs->state = state_reverify_server_certificate;
1051 return ssl_hs_certificate_verify;
1052 }
1053
1054 hs->state = state_read_session_ticket;
1055 return ssl_hs_ok;
1056 }
1057
do_read_server_key_exchange(SSL_HANDSHAKE * hs)1058 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) {
1059 SSL *const ssl = hs->ssl;
1060 SSLMessage msg;
1061 if (!ssl->method->get_message(ssl, &msg)) {
1062 return ssl_hs_read_message;
1063 }
1064
1065 if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) {
1066 // Some ciphers (pure PSK) have an optional ServerKeyExchange message.
1067 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
1068 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1069 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1070 return ssl_hs_error;
1071 }
1072
1073 hs->state = state_read_certificate_request;
1074 return ssl_hs_ok;
1075 }
1076
1077 if (!ssl_hash_message(hs, msg)) {
1078 return ssl_hs_error;
1079 }
1080
1081 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1082 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1083 CBS server_key_exchange = msg.body;
1084 if (alg_a & SSL_aPSK) {
1085 CBS psk_identity_hint;
1086
1087 // Each of the PSK key exchanges begins with a psk_identity_hint.
1088 if (!CBS_get_u16_length_prefixed(&server_key_exchange,
1089 &psk_identity_hint)) {
1090 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1091 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1092 return ssl_hs_error;
1093 }
1094
1095 // Store the PSK identity hint for the ClientKeyExchange. Assume that the
1096 // maximum length of a PSK identity hint can be as long as the maximum
1097 // length of a PSK identity. Also do not allow NULL characters; identities
1098 // are saved as C strings.
1099 //
1100 // TODO(davidben): Should invalid hints be ignored? It's a hint rather than
1101 // a specific identity.
1102 if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
1103 CBS_contains_zero_byte(&psk_identity_hint)) {
1104 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1105 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1106 return ssl_hs_error;
1107 }
1108
1109 // Save non-empty identity hints as a C string. Empty identity hints we
1110 // treat as missing. Plain PSK makes it possible to send either no hint
1111 // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
1112 // empty hint. Having different capabilities is odd, so we interpret empty
1113 // and missing as identical.
1114 char *raw = nullptr;
1115 if (CBS_len(&psk_identity_hint) != 0 &&
1116 !CBS_strdup(&psk_identity_hint, &raw)) {
1117 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1118 return ssl_hs_error;
1119 }
1120 hs->peer_psk_identity_hint.reset(raw);
1121 }
1122
1123 if (alg_k & SSL_kECDHE) {
1124 // Parse the server parameters.
1125 uint8_t group_type;
1126 uint16_t group_id;
1127 CBS point;
1128 if (!CBS_get_u8(&server_key_exchange, &group_type) ||
1129 group_type != NAMED_CURVE_TYPE ||
1130 !CBS_get_u16(&server_key_exchange, &group_id) ||
1131 !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
1132 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1133 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1134 return ssl_hs_error;
1135 }
1136
1137 // Ensure the group is consistent with preferences.
1138 if (!tls1_check_group_id(hs, group_id)) {
1139 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
1140 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1141 return ssl_hs_error;
1142 }
1143
1144 // Save the group and peer public key for later.
1145 hs->new_session->group_id = group_id;
1146 if (!hs->peer_key.CopyFrom(point)) {
1147 return ssl_hs_error;
1148 }
1149 } else if (!(alg_k & SSL_kPSK)) {
1150 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1151 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1152 return ssl_hs_error;
1153 }
1154
1155 // At this point, |server_key_exchange| contains the signature, if any, while
1156 // |msg.body| contains the entire message. From that, derive a CBS containing
1157 // just the parameter.
1158 CBS parameter;
1159 CBS_init(¶meter, CBS_data(&msg.body),
1160 CBS_len(&msg.body) - CBS_len(&server_key_exchange));
1161
1162 // ServerKeyExchange should be signed by the server's public key.
1163 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1164 uint16_t signature_algorithm = 0;
1165 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1166 if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
1167 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1168 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1169 return ssl_hs_error;
1170 }
1171 uint8_t alert = SSL_AD_DECODE_ERROR;
1172 if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm,
1173 hs->peer_pubkey.get())) {
1174 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1175 return ssl_hs_error;
1176 }
1177 hs->new_session->peer_signature_algorithm = signature_algorithm;
1178 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1179 hs->peer_pubkey.get())) {
1180 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1181 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1182 return ssl_hs_error;
1183 }
1184
1185 // The last field in |server_key_exchange| is the signature.
1186 CBS signature;
1187 if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
1188 CBS_len(&server_key_exchange) != 0) {
1189 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1190 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1191 return ssl_hs_error;
1192 }
1193
1194 ScopedCBB transcript;
1195 Array<uint8_t> transcript_data;
1196 if (!CBB_init(transcript.get(),
1197 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) ||
1198 !CBB_add_bytes(transcript.get(), ssl->s3->client_random,
1199 SSL3_RANDOM_SIZE) ||
1200 !CBB_add_bytes(transcript.get(), ssl->s3->server_random,
1201 SSL3_RANDOM_SIZE) ||
1202 !CBB_add_bytes(transcript.get(), CBS_data(¶meter),
1203 CBS_len(¶meter)) ||
1204 !CBBFinishArray(transcript.get(), &transcript_data)) {
1205 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1206 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1207 return ssl_hs_error;
1208 }
1209
1210 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1211 hs->peer_pubkey.get(), transcript_data)) {
1212 // bad signature
1213 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1214 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1215 return ssl_hs_error;
1216 }
1217 } else {
1218 // PSK ciphers are the only supported certificate-less ciphers.
1219 assert(alg_a == SSL_aPSK);
1220
1221 if (CBS_len(&server_key_exchange) > 0) {
1222 OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
1223 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1224 return ssl_hs_error;
1225 }
1226 }
1227
1228 ssl->method->next_message(ssl);
1229 hs->state = state_read_certificate_request;
1230 return ssl_hs_ok;
1231 }
1232
do_read_certificate_request(SSL_HANDSHAKE * hs)1233 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
1234 SSL *const ssl = hs->ssl;
1235
1236 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1237 hs->state = state_read_server_hello_done;
1238 return ssl_hs_ok;
1239 }
1240
1241 SSLMessage msg;
1242 if (!ssl->method->get_message(ssl, &msg)) {
1243 return ssl_hs_read_message;
1244 }
1245
1246 if (msg.type == SSL3_MT_SERVER_HELLO_DONE) {
1247 // If we get here we don't need the handshake buffer as we won't be doing
1248 // client auth.
1249 hs->transcript.FreeBuffer();
1250 hs->state = state_read_server_hello_done;
1251 return ssl_hs_ok;
1252 }
1253
1254 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) ||
1255 !ssl_hash_message(hs, msg)) {
1256 return ssl_hs_error;
1257 }
1258
1259 // Get the certificate types.
1260 CBS body = msg.body, certificate_types;
1261 if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) {
1262 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1263 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1264 return ssl_hs_error;
1265 }
1266
1267 if (!hs->certificate_types.CopyFrom(certificate_types)) {
1268 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1269 return ssl_hs_error;
1270 }
1271
1272 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1273 CBS supported_signature_algorithms;
1274 if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) ||
1275 !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
1276 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1277 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1278 return ssl_hs_error;
1279 }
1280 }
1281
1282 uint8_t alert = SSL_AD_DECODE_ERROR;
1283 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names =
1284 ssl_parse_client_CA_list(ssl, &alert, &body);
1285 if (!ca_names) {
1286 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1287 return ssl_hs_error;
1288 }
1289
1290 if (CBS_len(&body) != 0) {
1291 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1292 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1293 return ssl_hs_error;
1294 }
1295
1296 hs->cert_request = true;
1297 hs->ca_names = std::move(ca_names);
1298 ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
1299
1300 ssl->method->next_message(ssl);
1301 hs->state = state_read_server_hello_done;
1302 return ssl_hs_ok;
1303 }
1304
do_read_server_hello_done(SSL_HANDSHAKE * hs)1305 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) {
1306 SSL *const ssl = hs->ssl;
1307 SSLMessage msg;
1308 if (!ssl->method->get_message(ssl, &msg)) {
1309 return ssl_hs_read_message;
1310 }
1311
1312 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) ||
1313 !ssl_hash_message(hs, msg)) {
1314 return ssl_hs_error;
1315 }
1316
1317 // ServerHelloDone is empty.
1318 if (CBS_len(&msg.body) != 0) {
1319 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1320 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1321 return ssl_hs_error;
1322 }
1323
1324 // ServerHelloDone should be the end of the flight.
1325 if (ssl->method->has_unprocessed_handshake_data(ssl)) {
1326 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1327 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
1328 return ssl_hs_error;
1329 }
1330
1331 ssl->method->next_message(ssl);
1332 hs->state = state_send_client_certificate;
1333 return ssl_hs_ok;
1334 }
1335
check_credential(SSL_HANDSHAKE * hs,const SSL_CREDENTIAL * cred,uint16_t * out_sigalg)1336 static bool check_credential(SSL_HANDSHAKE *hs, const SSL_CREDENTIAL *cred,
1337 uint16_t *out_sigalg) {
1338 if (cred->type != SSLCredentialType::kX509) {
1339 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1340 return false;
1341 }
1342
1343 if (hs->config->check_client_certificate_type) {
1344 // Check the certificate types advertised by the peer.
1345 uint8_t cert_type;
1346 switch (EVP_PKEY_id(cred->pubkey.get())) {
1347 case EVP_PKEY_RSA:
1348 cert_type = SSL3_CT_RSA_SIGN;
1349 break;
1350 case EVP_PKEY_EC:
1351 case EVP_PKEY_ED25519:
1352 cert_type = TLS_CT_ECDSA_SIGN;
1353 break;
1354 default:
1355 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1356 return false;
1357 }
1358 if (std::find(hs->certificate_types.begin(), hs->certificate_types.end(),
1359 cert_type) == hs->certificate_types.end()) {
1360 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1361 return false;
1362 }
1363 }
1364
1365 // All currently supported credentials require a signature. Note this does not
1366 // check the ECDSA curve. Prior to TLS 1.3, there is no way to determine which
1367 // ECDSA curves are supported by the peer, so we must assume all curves are
1368 // supported.
1369 return tls1_choose_signature_algorithm(hs, cred, out_sigalg);
1370 }
1371
do_send_client_certificate(SSL_HANDSHAKE * hs)1372 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
1373 SSL *const ssl = hs->ssl;
1374
1375 // The peer didn't request a certificate.
1376 if (!hs->cert_request) {
1377 hs->state = state_send_client_key_exchange;
1378 return ssl_hs_ok;
1379 }
1380
1381 if (ssl->s3->ech_status == ssl_ech_rejected) {
1382 // Do not send client certificates on ECH reject. We have not authenticated
1383 // the server for the name that can learn the certificate.
1384 SSL_certs_clear(ssl);
1385 } else if (hs->config->cert->cert_cb != nullptr) {
1386 // Call cert_cb to update the certificate.
1387 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
1388 if (rv == 0) {
1389 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1390 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
1391 return ssl_hs_error;
1392 }
1393 if (rv < 0) {
1394 hs->state = state_send_client_certificate;
1395 return ssl_hs_x509_lookup;
1396 }
1397 }
1398
1399 Array<SSL_CREDENTIAL *> creds;
1400 if (!ssl_get_credential_list(hs, &creds)) {
1401 return ssl_hs_error;
1402 }
1403
1404 if (creds.empty()) {
1405 // If there were no credentials, proceed without a client certificate. In
1406 // this case, the handshake buffer may be released early.
1407 hs->transcript.FreeBuffer();
1408 } else {
1409 // Select the credential to use.
1410 for (SSL_CREDENTIAL *cred : creds) {
1411 ERR_clear_error();
1412 uint16_t sigalg;
1413 if (check_credential(hs, cred, &sigalg)) {
1414 hs->credential = UpRef(cred);
1415 hs->signature_algorithm = sigalg;
1416 break;
1417 }
1418 }
1419 if (hs->credential == nullptr) {
1420 // The error from the last attempt is in the error queue.
1421 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1422 return ssl_hs_error;
1423 }
1424 }
1425
1426 if (!ssl_send_tls12_certificate(hs)) {
1427 return ssl_hs_error;
1428 }
1429
1430 hs->state = state_send_client_key_exchange;
1431 return ssl_hs_ok;
1432 }
1433
1434 static_assert(sizeof(size_t) >= sizeof(unsigned),
1435 "size_t is smaller than unsigned");
1436
do_send_client_key_exchange(SSL_HANDSHAKE * hs)1437 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) {
1438 SSL *const ssl = hs->ssl;
1439 ScopedCBB cbb;
1440 CBB body;
1441 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1442 SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1443 return ssl_hs_error;
1444 }
1445
1446 Array<uint8_t> pms;
1447 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1448 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1449 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1450 const CRYPTO_BUFFER *leaf =
1451 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1452 CBS leaf_cbs;
1453 CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1454
1455 // Check the key usage matches the cipher suite. We do this unconditionally
1456 // for non-RSA certificates. In particular, it's needed to distinguish ECDH
1457 // certificates, which we do not support, from ECDSA certificates.
1458 // Historically, we have not checked RSA key usages, so it is controlled by
1459 // a flag for now. See https://crbug.com/795089.
1460 ssl_key_usage_t intended_use = (alg_k & SSL_kRSA)
1461 ? key_usage_encipherment
1462 : key_usage_digital_signature;
1463 if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) {
1464 if (hs->config->enforce_rsa_key_usage ||
1465 EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) {
1466 return ssl_hs_error;
1467 }
1468 ERR_clear_error();
1469 ssl->s3->was_key_usage_invalid = true;
1470 }
1471 }
1472
1473 // If using a PSK key exchange, prepare the pre-shared key.
1474 unsigned psk_len = 0;
1475 uint8_t psk[PSK_MAX_PSK_LEN];
1476 if (alg_a & SSL_aPSK) {
1477 if (hs->config->psk_client_callback == NULL) {
1478 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
1479 return ssl_hs_error;
1480 }
1481
1482 char identity[PSK_MAX_IDENTITY_LEN + 1];
1483 OPENSSL_memset(identity, 0, sizeof(identity));
1484 psk_len = hs->config->psk_client_callback(
1485 ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk,
1486 sizeof(psk));
1487 if (psk_len == 0) {
1488 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1489 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1490 return ssl_hs_error;
1491 }
1492 assert(psk_len <= PSK_MAX_PSK_LEN);
1493
1494 hs->new_session->psk_identity.reset(OPENSSL_strdup(identity));
1495 if (hs->new_session->psk_identity == nullptr) {
1496 return ssl_hs_error;
1497 }
1498
1499 // Write out psk_identity.
1500 CBB child;
1501 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1502 !CBB_add_bytes(&child, (const uint8_t *)identity,
1503 OPENSSL_strnlen(identity, sizeof(identity))) ||
1504 !CBB_flush(&body)) {
1505 return ssl_hs_error;
1506 }
1507 }
1508
1509 // Depending on the key exchange method, compute |pms|.
1510 if (alg_k & SSL_kRSA) {
1511 if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) {
1512 return ssl_hs_error;
1513 }
1514
1515 RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get());
1516 if (rsa == NULL) {
1517 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1518 return ssl_hs_error;
1519 }
1520
1521 pms[0] = hs->client_version >> 8;
1522 pms[1] = hs->client_version & 0xff;
1523 if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
1524 return ssl_hs_error;
1525 }
1526
1527 CBB enc_pms;
1528 uint8_t *ptr;
1529 size_t enc_pms_len;
1530 if (!CBB_add_u16_length_prefixed(&body, &enc_pms) ||
1531 !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) ||
1532 !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(),
1533 pms.size(), RSA_PKCS1_PADDING) ||
1534 !CBB_did_write(&enc_pms, enc_pms_len) ||
1535 !CBB_flush(&body)) {
1536 return ssl_hs_error;
1537 }
1538 } else if (alg_k & SSL_kECDHE) {
1539 CBB child;
1540 if (!CBB_add_u8_length_prefixed(&body, &child)) {
1541 return ssl_hs_error;
1542 }
1543
1544 // Generate a premaster secret and encapsulate it.
1545 bssl::UniquePtr<SSLKeyShare> kem =
1546 SSLKeyShare::Create(hs->new_session->group_id);
1547 uint8_t alert = SSL_AD_DECODE_ERROR;
1548 if (!kem || !kem->Encap(&child, &pms, &alert, hs->peer_key)) {
1549 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1550 return ssl_hs_error;
1551 }
1552 if (!CBB_flush(&body)) {
1553 return ssl_hs_error;
1554 }
1555
1556 // The peer key can now be discarded.
1557 hs->peer_key.Reset();
1558 } else if (alg_k & SSL_kPSK) {
1559 // For plain PSK, other_secret is a block of 0s with the same length as
1560 // the pre-shared key.
1561 if (!pms.Init(psk_len)) {
1562 return ssl_hs_error;
1563 }
1564 OPENSSL_memset(pms.data(), 0, pms.size());
1565 } else {
1566 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1567 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1568 return ssl_hs_error;
1569 }
1570
1571 // For a PSK cipher suite, other_secret is combined with the pre-shared
1572 // key.
1573 if (alg_a & SSL_aPSK) {
1574 ScopedCBB pms_cbb;
1575 CBB child;
1576 if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) ||
1577 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1578 !CBB_add_bytes(&child, pms.data(), pms.size()) ||
1579 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1580 !CBB_add_bytes(&child, psk, psk_len) ||
1581 !CBBFinishArray(pms_cbb.get(), &pms)) {
1582 return ssl_hs_error;
1583 }
1584 }
1585
1586 // The message must be added to the finished hash before calculating the
1587 // master secret.
1588 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1589 return ssl_hs_error;
1590 }
1591
1592 hs->new_session->secret_length =
1593 tls1_generate_master_secret(hs, hs->new_session->secret, pms);
1594 if (hs->new_session->secret_length == 0) {
1595 return ssl_hs_error;
1596 }
1597 hs->new_session->extended_master_secret = hs->extended_master_secret;
1598
1599 hs->state = state_send_client_certificate_verify;
1600 return ssl_hs_ok;
1601 }
1602
do_send_client_certificate_verify(SSL_HANDSHAKE * hs)1603 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
1604 SSL *const ssl = hs->ssl;
1605
1606 if (!hs->cert_request || hs->credential == nullptr) {
1607 hs->state = state_send_client_finished;
1608 return ssl_hs_ok;
1609 }
1610
1611 ScopedCBB cbb;
1612 CBB body, child;
1613 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1614 SSL3_MT_CERTIFICATE_VERIFY)) {
1615 return ssl_hs_error;
1616 }
1617
1618 assert(hs->signature_algorithm != 0);
1619 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1620 // Write out the digest type in TLS 1.2.
1621 if (!CBB_add_u16(&body, hs->signature_algorithm)) {
1622 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1623 return ssl_hs_error;
1624 }
1625 }
1626
1627 // Set aside space for the signature.
1628 const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get());
1629 uint8_t *ptr;
1630 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1631 !CBB_reserve(&child, &ptr, max_sig_len)) {
1632 return ssl_hs_error;
1633 }
1634
1635 size_t sig_len = max_sig_len;
1636 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1637 hs->signature_algorithm,
1638 hs->transcript.buffer())) {
1639 case ssl_private_key_success:
1640 break;
1641 case ssl_private_key_failure:
1642 return ssl_hs_error;
1643 case ssl_private_key_retry:
1644 hs->state = state_send_client_certificate_verify;
1645 return ssl_hs_private_key_operation;
1646 }
1647
1648 if (!CBB_did_write(&child, sig_len) ||
1649 !ssl_add_message_cbb(ssl, cbb.get())) {
1650 return ssl_hs_error;
1651 }
1652
1653 // The handshake buffer is no longer necessary.
1654 hs->transcript.FreeBuffer();
1655
1656 hs->state = state_send_client_finished;
1657 return ssl_hs_ok;
1658 }
1659
do_send_client_finished(SSL_HANDSHAKE * hs)1660 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) {
1661 SSL *const ssl = hs->ssl;
1662 hs->can_release_private_key = true;
1663 if (!ssl->method->add_change_cipher_spec(ssl) ||
1664 !tls1_change_cipher_state(hs, evp_aead_seal)) {
1665 return ssl_hs_error;
1666 }
1667
1668 if (hs->next_proto_neg_seen) {
1669 static const uint8_t kZero[32] = {0};
1670 size_t padding_len =
1671 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32);
1672
1673 ScopedCBB cbb;
1674 CBB body, child;
1675 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) ||
1676 !CBB_add_u8_length_prefixed(&body, &child) ||
1677 !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(),
1678 ssl->s3->next_proto_negotiated.size()) ||
1679 !CBB_add_u8_length_prefixed(&body, &child) ||
1680 !CBB_add_bytes(&child, kZero, padding_len) ||
1681 !ssl_add_message_cbb(ssl, cbb.get())) {
1682 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1683 return ssl_hs_error;
1684 }
1685 }
1686
1687 if (hs->channel_id_negotiated) {
1688 ScopedCBB cbb;
1689 CBB body;
1690 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
1691 !tls1_write_channel_id(hs, &body) ||
1692 !ssl_add_message_cbb(ssl, cbb.get())) {
1693 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1694 return ssl_hs_error;
1695 }
1696 }
1697
1698 if (!ssl_send_finished(hs)) {
1699 return ssl_hs_error;
1700 }
1701
1702 hs->state = state_finish_flight;
1703 return ssl_hs_flush;
1704 }
1705
can_false_start(const SSL_HANDSHAKE * hs)1706 static bool can_false_start(const SSL_HANDSHAKE *hs) {
1707 const SSL *const ssl = hs->ssl;
1708
1709 // False Start bypasses the Finished check's downgrade protection. This can
1710 // enable attacks where we send data under weaker settings than supported
1711 // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD
1712 // cipher, our strongest settings before TLS 1.3.
1713 //
1714 // Now that TLS 1.3 exists, we would like to avoid similar attacks between
1715 // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to
1716 // sacrifice False Start on them. Instead, we rely on the ServerHello.random
1717 // downgrade signal, which we unconditionally enforce.
1718 if (SSL_is_dtls(ssl) ||
1719 SSL_version(ssl) != TLS1_2_VERSION ||
1720 hs->new_cipher->algorithm_mkey != SSL_kECDHE ||
1721 hs->new_cipher->algorithm_mac != SSL_AEAD) {
1722 return false;
1723 }
1724
1725 // If ECH was rejected, disable False Start. We run the handshake to
1726 // completion, including the Finished downgrade check, to authenticate the
1727 // recovery flow.
1728 if (ssl->s3->ech_status == ssl_ech_rejected) {
1729 return false;
1730 }
1731
1732 // Additionally require ALPN or NPN by default.
1733 //
1734 // TODO(davidben): Can this constraint be relaxed globally now that cipher
1735 // suite requirements have been tightened?
1736 if (!ssl->ctx->false_start_allowed_without_alpn &&
1737 ssl->s3->alpn_selected.empty() &&
1738 ssl->s3->next_proto_negotiated.empty()) {
1739 return false;
1740 }
1741
1742 return true;
1743 }
1744
do_finish_flight(SSL_HANDSHAKE * hs)1745 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) {
1746 SSL *const ssl = hs->ssl;
1747 if (ssl->session != NULL) {
1748 hs->state = state_finish_client_handshake;
1749 return ssl_hs_ok;
1750 }
1751
1752 // This is a full handshake. If it involves ChannelID, then record the
1753 // handshake hashes at this point in the session so that any resumption of
1754 // this session with ChannelID can sign those hashes.
1755 if (!tls1_record_handshake_hashes_for_channel_id(hs)) {
1756 return ssl_hs_error;
1757 }
1758
1759 hs->state = state_read_session_ticket;
1760
1761 if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
1762 can_false_start(hs) &&
1763 // No False Start on renegotiation (would complicate the state machine).
1764 !ssl->s3->initial_handshake_complete) {
1765 hs->in_false_start = true;
1766 hs->can_early_write = true;
1767 return ssl_hs_early_return;
1768 }
1769
1770 return ssl_hs_ok;
1771 }
1772
do_read_session_ticket(SSL_HANDSHAKE * hs)1773 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) {
1774 SSL *const ssl = hs->ssl;
1775
1776 if (!hs->ticket_expected) {
1777 hs->state = state_process_change_cipher_spec;
1778 return ssl_hs_read_change_cipher_spec;
1779 }
1780
1781 SSLMessage msg;
1782 if (!ssl->method->get_message(ssl, &msg)) {
1783 return ssl_hs_read_message;
1784 }
1785
1786 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) ||
1787 !ssl_hash_message(hs, msg)) {
1788 return ssl_hs_error;
1789 }
1790
1791 CBS new_session_ticket = msg.body, ticket;
1792 uint32_t ticket_lifetime_hint;
1793 if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) ||
1794 !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
1795 CBS_len(&new_session_ticket) != 0) {
1796 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1797 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1798 return ssl_hs_error;
1799 }
1800
1801 if (CBS_len(&ticket) == 0) {
1802 // RFC 5077 allows a server to change its mind and send no ticket after
1803 // negotiating the extension. The value of |ticket_expected| is checked in
1804 // |ssl_update_cache| so is cleared here to avoid an unnecessary update.
1805 hs->ticket_expected = false;
1806 ssl->method->next_message(ssl);
1807 hs->state = state_process_change_cipher_spec;
1808 return ssl_hs_read_change_cipher_spec;
1809 }
1810
1811 if (ssl->session != nullptr) {
1812 // The server is sending a new ticket for an existing session. Sessions are
1813 // immutable once established, so duplicate all but the ticket of the
1814 // existing session.
1815 assert(!hs->new_session);
1816 hs->new_session =
1817 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1818 if (!hs->new_session) {
1819 return ssl_hs_error;
1820 }
1821 }
1822
1823 // |ticket_lifetime_hint| is measured from when the ticket was issued.
1824 ssl_session_rebase_time(ssl, hs->new_session.get());
1825
1826 if (!hs->new_session->ticket.CopyFrom(ticket)) {
1827 return ssl_hs_error;
1828 }
1829 hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint;
1830
1831 // Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
1832 // TODO(davidben): Are external callers relying on this? Try removing this.
1833 SHA256(CBS_data(&ticket), CBS_len(&ticket), hs->new_session->session_id);
1834 hs->new_session->session_id_length = SHA256_DIGEST_LENGTH;
1835
1836 ssl->method->next_message(ssl);
1837 hs->state = state_process_change_cipher_spec;
1838 return ssl_hs_read_change_cipher_spec;
1839 }
1840
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1841 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1842 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1843 return ssl_hs_error;
1844 }
1845
1846 hs->state = state_read_server_finished;
1847 return ssl_hs_ok;
1848 }
1849
do_read_server_finished(SSL_HANDSHAKE * hs)1850 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
1851 SSL *const ssl = hs->ssl;
1852 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1853 if (wait != ssl_hs_ok) {
1854 return wait;
1855 }
1856
1857 if (ssl->session != NULL) {
1858 hs->state = state_send_client_finished;
1859 return ssl_hs_ok;
1860 }
1861
1862 hs->state = state_finish_client_handshake;
1863 return ssl_hs_ok;
1864 }
1865
do_finish_client_handshake(SSL_HANDSHAKE * hs)1866 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) {
1867 SSL *const ssl = hs->ssl;
1868 if (ssl->s3->ech_status == ssl_ech_rejected) {
1869 // Release the retry configs.
1870 hs->ech_authenticated_reject = true;
1871 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED);
1872 OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED);
1873 return ssl_hs_error;
1874 }
1875
1876 ssl->method->on_handshake_complete(ssl);
1877
1878 // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the
1879 // resumed session) and |hs->new_session| (the session with the new ticket).
1880 bool has_new_session = hs->new_session != nullptr;
1881 if (has_new_session) {
1882 // When False Start is enabled, the handshake reports completion early. The
1883 // caller may then have passed the (then unresuable) |hs->new_session| to
1884 // another thread via |SSL_get0_session| for resumption. To avoid potential
1885 // race conditions in such callers, we duplicate the session before
1886 // clearing |not_resumable|.
1887 ssl->s3->established_session =
1888 SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL);
1889 if (!ssl->s3->established_session) {
1890 return ssl_hs_error;
1891 }
1892 // Renegotiations do not participate in session resumption.
1893 if (!ssl->s3->initial_handshake_complete) {
1894 ssl->s3->established_session->not_resumable = false;
1895 }
1896
1897 hs->new_session.reset();
1898 } else {
1899 assert(ssl->session != nullptr);
1900 ssl->s3->established_session = UpRef(ssl->session);
1901 }
1902
1903 hs->handshake_finalized = true;
1904 ssl->s3->initial_handshake_complete = true;
1905 if (has_new_session) {
1906 ssl_update_cache(ssl);
1907 }
1908
1909 hs->state = state_done;
1910 return ssl_hs_ok;
1911 }
1912
ssl_client_handshake(SSL_HANDSHAKE * hs)1913 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) {
1914 while (hs->state != state_done) {
1915 enum ssl_hs_wait_t ret = ssl_hs_error;
1916 enum ssl_client_hs_state_t state =
1917 static_cast<enum ssl_client_hs_state_t>(hs->state);
1918 switch (state) {
1919 case state_start_connect:
1920 ret = do_start_connect(hs);
1921 break;
1922 case state_enter_early_data:
1923 ret = do_enter_early_data(hs);
1924 break;
1925 case state_early_reverify_server_certificate:
1926 ret = do_early_reverify_server_certificate(hs);
1927 break;
1928 case state_read_hello_verify_request:
1929 ret = do_read_hello_verify_request(hs);
1930 break;
1931 case state_read_server_hello:
1932 ret = do_read_server_hello(hs);
1933 break;
1934 case state_tls13:
1935 ret = do_tls13(hs);
1936 break;
1937 case state_read_server_certificate:
1938 ret = do_read_server_certificate(hs);
1939 break;
1940 case state_read_certificate_status:
1941 ret = do_read_certificate_status(hs);
1942 break;
1943 case state_verify_server_certificate:
1944 ret = do_verify_server_certificate(hs);
1945 break;
1946 case state_reverify_server_certificate:
1947 ret = do_reverify_server_certificate(hs);
1948 break;
1949 case state_read_server_key_exchange:
1950 ret = do_read_server_key_exchange(hs);
1951 break;
1952 case state_read_certificate_request:
1953 ret = do_read_certificate_request(hs);
1954 break;
1955 case state_read_server_hello_done:
1956 ret = do_read_server_hello_done(hs);
1957 break;
1958 case state_send_client_certificate:
1959 ret = do_send_client_certificate(hs);
1960 break;
1961 case state_send_client_key_exchange:
1962 ret = do_send_client_key_exchange(hs);
1963 break;
1964 case state_send_client_certificate_verify:
1965 ret = do_send_client_certificate_verify(hs);
1966 break;
1967 case state_send_client_finished:
1968 ret = do_send_client_finished(hs);
1969 break;
1970 case state_finish_flight:
1971 ret = do_finish_flight(hs);
1972 break;
1973 case state_read_session_ticket:
1974 ret = do_read_session_ticket(hs);
1975 break;
1976 case state_process_change_cipher_spec:
1977 ret = do_process_change_cipher_spec(hs);
1978 break;
1979 case state_read_server_finished:
1980 ret = do_read_server_finished(hs);
1981 break;
1982 case state_finish_client_handshake:
1983 ret = do_finish_client_handshake(hs);
1984 break;
1985 case state_done:
1986 ret = ssl_hs_ok;
1987 break;
1988 }
1989
1990 if (hs->state != state) {
1991 ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
1992 }
1993
1994 if (ret != ssl_hs_ok) {
1995 return ret;
1996 }
1997 }
1998
1999 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
2000 return ssl_hs_ok;
2001 }
2002
ssl_client_handshake_state(SSL_HANDSHAKE * hs)2003 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) {
2004 enum ssl_client_hs_state_t state =
2005 static_cast<enum ssl_client_hs_state_t>(hs->state);
2006 switch (state) {
2007 case state_start_connect:
2008 return "TLS client start_connect";
2009 case state_enter_early_data:
2010 return "TLS client enter_early_data";
2011 case state_early_reverify_server_certificate:
2012 return "TLS client early_reverify_server_certificate";
2013 case state_read_hello_verify_request:
2014 return "TLS client read_hello_verify_request";
2015 case state_read_server_hello:
2016 return "TLS client read_server_hello";
2017 case state_tls13:
2018 return tls13_client_handshake_state(hs);
2019 case state_read_server_certificate:
2020 return "TLS client read_server_certificate";
2021 case state_read_certificate_status:
2022 return "TLS client read_certificate_status";
2023 case state_verify_server_certificate:
2024 return "TLS client verify_server_certificate";
2025 case state_reverify_server_certificate:
2026 return "TLS client reverify_server_certificate";
2027 case state_read_server_key_exchange:
2028 return "TLS client read_server_key_exchange";
2029 case state_read_certificate_request:
2030 return "TLS client read_certificate_request";
2031 case state_read_server_hello_done:
2032 return "TLS client read_server_hello_done";
2033 case state_send_client_certificate:
2034 return "TLS client send_client_certificate";
2035 case state_send_client_key_exchange:
2036 return "TLS client send_client_key_exchange";
2037 case state_send_client_certificate_verify:
2038 return "TLS client send_client_certificate_verify";
2039 case state_send_client_finished:
2040 return "TLS client send_client_finished";
2041 case state_finish_flight:
2042 return "TLS client finish_flight";
2043 case state_read_session_ticket:
2044 return "TLS client read_session_ticket";
2045 case state_process_change_cipher_spec:
2046 return "TLS client process_change_cipher_spec";
2047 case state_read_server_finished:
2048 return "TLS client read_server_finished";
2049 case state_finish_client_handshake:
2050 return "TLS client finish_client_handshake";
2051 case state_done:
2052 return "TLS client done";
2053 }
2054
2055 return "TLS client unknown";
2056 }
2057
2058 BSSL_NAMESPACE_END
2059