xref: /aosp_15_r20/external/boringssl/src/crypto/stack/stack.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/stack.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 
65 #include "../internal.h"
66 
67 
68 struct stack_st {
69   // num contains the number of valid pointers in |data|.
70   size_t num;
71   void **data;
72   // sorted is non-zero if the values pointed to by |data| are in ascending
73   // order, based on |comp|.
74   int sorted;
75   // num_alloc contains the number of pointers allocated in the buffer pointed
76   // to by |data|, which may be larger than |num|.
77   size_t num_alloc;
78   // comp is an optional comparison function.
79   OPENSSL_sk_cmp_func comp;
80 };
81 
82 // kMinSize is the number of pointers that will be initially allocated in a new
83 // stack.
84 static const size_t kMinSize = 4;
85 
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)86 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
87   OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
88   if (ret == NULL) {
89     return NULL;
90   }
91 
92   ret->data = OPENSSL_calloc(kMinSize, sizeof(void *));
93   if (ret->data == NULL) {
94     goto err;
95   }
96 
97   ret->comp = comp;
98   ret->num_alloc = kMinSize;
99 
100   return ret;
101 
102 err:
103   OPENSSL_free(ret);
104   return NULL;
105 }
106 
OPENSSL_sk_new_null(void)107 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
108 
OPENSSL_sk_num(const OPENSSL_STACK * sk)109 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
110   if (sk == NULL) {
111     return 0;
112   }
113   return sk->num;
114 }
115 
OPENSSL_sk_zero(OPENSSL_STACK * sk)116 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
117   if (sk == NULL || sk->num == 0) {
118     return;
119   }
120   OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num);
121   sk->num = 0;
122   sk->sorted = 0;
123 }
124 
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)125 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
126   if (!sk || i >= sk->num) {
127     return NULL;
128   }
129   return sk->data[i];
130 }
131 
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)132 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
133   if (!sk || i >= sk->num) {
134     return NULL;
135   }
136   return sk->data[i] = value;
137 }
138 
OPENSSL_sk_free(OPENSSL_STACK * sk)139 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
140   if (sk == NULL) {
141     return;
142   }
143   OPENSSL_free(sk->data);
144   OPENSSL_free(sk);
145 }
146 
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)147 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
148                             OPENSSL_sk_call_free_func call_free_func,
149                             OPENSSL_sk_free_func free_func) {
150   if (sk == NULL) {
151     return;
152   }
153 
154   for (size_t i = 0; i < sk->num; i++) {
155     if (sk->data[i] != NULL) {
156       call_free_func(free_func, sk->data[i]);
157     }
158   }
159   OPENSSL_sk_free(sk);
160 }
161 
162 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
163 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
164 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)165 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
166   func(ptr);
167 }
168 
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)169 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
170   OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
171 }
172 
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)173 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
174   if (sk == NULL) {
175     return 0;
176   }
177 
178   if (sk->num >= INT_MAX) {
179     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
180     return 0;
181   }
182 
183   if (sk->num_alloc <= sk->num + 1) {
184     // Attempt to double the size of the array.
185     size_t new_alloc = sk->num_alloc << 1;
186     size_t alloc_size = new_alloc * sizeof(void *);
187     void **data;
188 
189     // If the doubling overflowed, try to increment.
190     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
191       new_alloc = sk->num_alloc + 1;
192       alloc_size = new_alloc * sizeof(void *);
193     }
194 
195     // If the increment also overflowed, fail.
196     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
197       return 0;
198     }
199 
200     data = OPENSSL_realloc(sk->data, alloc_size);
201     if (data == NULL) {
202       return 0;
203     }
204 
205     sk->data = data;
206     sk->num_alloc = new_alloc;
207   }
208 
209   if (where >= sk->num) {
210     sk->data[sk->num] = p;
211   } else {
212     OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
213                     sizeof(void *) * (sk->num - where));
214     sk->data[where] = p;
215   }
216 
217   sk->num++;
218   sk->sorted = 0;
219 
220   return sk->num;
221 }
222 
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)223 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
224   void *ret;
225 
226   if (!sk || where >= sk->num) {
227     return NULL;
228   }
229 
230   ret = sk->data[where];
231 
232   if (where != sk->num - 1) {
233     OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
234                     sizeof(void *) * (sk->num - where - 1));
235   }
236 
237   sk->num--;
238   return ret;
239 }
240 
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)241 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
242   if (sk == NULL) {
243     return NULL;
244   }
245 
246   for (size_t i = 0; i < sk->num; i++) {
247     if (sk->data[i] == p) {
248       return OPENSSL_sk_delete(sk, i);
249     }
250   }
251 
252   return NULL;
253 }
254 
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)255 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
256                           OPENSSL_sk_call_delete_if_func call_func,
257                           OPENSSL_sk_delete_if_func func, void *data) {
258   if (sk == NULL) {
259     return;
260   }
261 
262   size_t new_num = 0;
263   for (size_t i = 0; i < sk->num; i++) {
264     if (!call_func(func, sk->data[i], data)) {
265       sk->data[new_num] = sk->data[i];
266       new_num++;
267     }
268   }
269   sk->num = new_num;
270 }
271 
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)272 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
273                     OPENSSL_sk_call_cmp_func call_cmp_func) {
274   if (sk == NULL) {
275     return 0;
276   }
277 
278   if (sk->comp == NULL) {
279     // Use pointer equality when no comparison function has been set.
280     for (size_t i = 0; i < sk->num; i++) {
281       if (sk->data[i] == p) {
282         if (out_index) {
283           *out_index = i;
284         }
285         return 1;
286       }
287     }
288     return 0;
289   }
290 
291   if (p == NULL) {
292     return 0;
293   }
294 
295   if (!OPENSSL_sk_is_sorted(sk)) {
296     for (size_t i = 0; i < sk->num; i++) {
297       if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
298         if (out_index) {
299           *out_index = i;
300         }
301         return 1;
302       }
303     }
304     return 0;
305   }
306 
307   // The stack is sorted, so binary search to find the element.
308   //
309   // |lo| and |hi| maintain a half-open interval of where the answer may be. All
310   // indices such that |lo <= idx < hi| are candidates.
311   size_t lo = 0, hi = sk->num;
312   while (lo < hi) {
313     // Bias |mid| towards |lo|. See the |r == 0| case below.
314     size_t mid = lo + (hi - lo - 1) / 2;
315     assert(lo <= mid && mid < hi);
316     int r = call_cmp_func(sk->comp, p, sk->data[mid]);
317     if (r > 0) {
318       lo = mid + 1;  // |mid| is too low.
319     } else if (r < 0) {
320       hi = mid;  // |mid| is too high.
321     } else {
322       // |mid| matches. However, this function returns the earliest match, so we
323       // can only return if the range has size one.
324       if (hi - lo == 1) {
325         if (out_index != NULL) {
326           *out_index = mid;
327         }
328         return 1;
329       }
330       // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
331       // |hi - lo| was one, so this makes forward progress.
332       assert(mid + 1 < hi);
333       hi = mid + 1;
334     }
335   }
336 
337   assert(lo == hi);
338   return 0;  // Not found.
339 }
340 
OPENSSL_sk_shift(OPENSSL_STACK * sk)341 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
342   if (sk == NULL) {
343     return NULL;
344   }
345   if (sk->num == 0) {
346     return NULL;
347   }
348   return OPENSSL_sk_delete(sk, 0);
349 }
350 
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)351 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
352   return OPENSSL_sk_insert(sk, p, sk->num);
353 }
354 
OPENSSL_sk_pop(OPENSSL_STACK * sk)355 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
356   if (sk == NULL) {
357     return NULL;
358   }
359   if (sk->num == 0) {
360     return NULL;
361   }
362   return OPENSSL_sk_delete(sk, sk->num - 1);
363 }
364 
OPENSSL_sk_dup(const OPENSSL_STACK * sk)365 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
366   if (sk == NULL) {
367     return NULL;
368   }
369 
370   OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
371   if (ret == NULL) {
372     return NULL;
373   }
374 
375   ret->data = OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc);
376   if (ret->data == NULL) {
377     goto err;
378   }
379 
380   ret->num = sk->num;
381   ret->sorted = sk->sorted;
382   ret->num_alloc = sk->num_alloc;
383   ret->comp = sk->comp;
384   return ret;
385 
386 err:
387   OPENSSL_sk_free(ret);
388   return NULL;
389 }
390 
parent_idx(size_t idx)391 static size_t parent_idx(size_t idx) {
392   assert(idx > 0);
393   return (idx - 1) / 2;
394 }
395 
left_idx(size_t idx)396 static size_t left_idx(size_t idx) {
397   // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
398   // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
399   // overflow.
400   assert(idx <= PTRDIFF_MAX);
401   static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
402   return 2 * idx + 1;
403 }
404 
405 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
406 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)407 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
408                       size_t i, size_t num) {
409   assert(i < num && num <= sk->num);
410   for (;;) {
411     size_t left = left_idx(i);
412     if (left >= num) {
413       break;  // No left child.
414     }
415 
416     // Swap |i| with the largest of its children.
417     size_t next = i;
418     if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
419       next = left;
420     }
421     size_t right = left + 1;  // Cannot overflow because |left < num|.
422     if (right < num &&
423         call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
424       next = right;
425     }
426 
427     if (i == next) {
428       break;  // |i| is already larger than its children.
429     }
430 
431     void *tmp = sk->data[i];
432     sk->data[i] = sk->data[next];
433     sk->data[next] = tmp;
434     i = next;
435   }
436 }
437 
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)438 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
439                      OPENSSL_sk_call_cmp_func call_cmp_func) {
440   if (sk == NULL || sk->comp == NULL || sk->sorted) {
441     return;
442   }
443 
444   if (sk->num >= 2) {
445     // |qsort| lacks a context parameter in the comparison function for us to
446     // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
447     // the expected type, it is undefined behavior in C can trip sanitizers.
448     // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
449     // https://stackoverflow.com/a/39561369
450     //
451     // Use our own heap sort instead. This is not performance-sensitive, so we
452     // optimize for simplicity and size. First, build a max-heap in place.
453     for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
454       down_heap(sk, call_cmp_func, i, sk->num);
455     }
456 
457     // Iteratively remove the maximum element to populate the result in reverse.
458     for (size_t i = sk->num - 1; i > 0; i--) {
459       void *tmp = sk->data[0];
460       sk->data[0] = sk->data[i];
461       sk->data[i] = tmp;
462       down_heap(sk, call_cmp_func, 0, i);
463     }
464   }
465   sk->sorted = 1;
466 }
467 
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)468 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
469   if (!sk) {
470     return 1;
471   }
472   // Zero- and one-element lists are always sorted.
473   return sk->sorted || (sk->comp != NULL && sk->num < 2);
474 }
475 
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)476 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
477                                             OPENSSL_sk_cmp_func comp) {
478   OPENSSL_sk_cmp_func old = sk->comp;
479 
480   if (sk->comp != comp) {
481     sk->sorted = 0;
482   }
483   sk->comp = comp;
484 
485   return old;
486 }
487 
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)488 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
489                                     OPENSSL_sk_call_copy_func call_copy_func,
490                                     OPENSSL_sk_copy_func copy_func,
491                                     OPENSSL_sk_call_free_func call_free_func,
492                                     OPENSSL_sk_free_func free_func) {
493   OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
494   if (ret == NULL) {
495     return NULL;
496   }
497 
498   for (size_t i = 0; i < ret->num; i++) {
499     if (ret->data[i] == NULL) {
500       continue;
501     }
502     ret->data[i] = call_copy_func(copy_func, ret->data[i]);
503     if (ret->data[i] == NULL) {
504       for (size_t j = 0; j < i; j++) {
505         if (ret->data[j] != NULL) {
506           call_free_func(free_func, ret->data[j]);
507         }
508       }
509       OPENSSL_sk_free(ret);
510       return NULL;
511     }
512   }
513 
514   return ret;
515 }
516 
sk_new_null(void)517 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
518 
sk_num(const OPENSSL_STACK * sk)519 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
520 
sk_value(const OPENSSL_STACK * sk,size_t i)521 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
522   return OPENSSL_sk_value(sk, i);
523 }
524 
sk_free(OPENSSL_STACK * sk)525 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
526 
sk_push(OPENSSL_STACK * sk,void * p)527 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
528 
sk_pop(OPENSSL_STACK * sk)529 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
530 
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)531 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
532                     OPENSSL_sk_free_func free_func) {
533   OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
534 }
535