1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/stack.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64
65 #include "../internal.h"
66
67
68 struct stack_st {
69 // num contains the number of valid pointers in |data|.
70 size_t num;
71 void **data;
72 // sorted is non-zero if the values pointed to by |data| are in ascending
73 // order, based on |comp|.
74 int sorted;
75 // num_alloc contains the number of pointers allocated in the buffer pointed
76 // to by |data|, which may be larger than |num|.
77 size_t num_alloc;
78 // comp is an optional comparison function.
79 OPENSSL_sk_cmp_func comp;
80 };
81
82 // kMinSize is the number of pointers that will be initially allocated in a new
83 // stack.
84 static const size_t kMinSize = 4;
85
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)86 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
87 OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
88 if (ret == NULL) {
89 return NULL;
90 }
91
92 ret->data = OPENSSL_calloc(kMinSize, sizeof(void *));
93 if (ret->data == NULL) {
94 goto err;
95 }
96
97 ret->comp = comp;
98 ret->num_alloc = kMinSize;
99
100 return ret;
101
102 err:
103 OPENSSL_free(ret);
104 return NULL;
105 }
106
OPENSSL_sk_new_null(void)107 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
108
OPENSSL_sk_num(const OPENSSL_STACK * sk)109 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
110 if (sk == NULL) {
111 return 0;
112 }
113 return sk->num;
114 }
115
OPENSSL_sk_zero(OPENSSL_STACK * sk)116 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
117 if (sk == NULL || sk->num == 0) {
118 return;
119 }
120 OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num);
121 sk->num = 0;
122 sk->sorted = 0;
123 }
124
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)125 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
126 if (!sk || i >= sk->num) {
127 return NULL;
128 }
129 return sk->data[i];
130 }
131
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)132 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
133 if (!sk || i >= sk->num) {
134 return NULL;
135 }
136 return sk->data[i] = value;
137 }
138
OPENSSL_sk_free(OPENSSL_STACK * sk)139 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
140 if (sk == NULL) {
141 return;
142 }
143 OPENSSL_free(sk->data);
144 OPENSSL_free(sk);
145 }
146
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)147 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
148 OPENSSL_sk_call_free_func call_free_func,
149 OPENSSL_sk_free_func free_func) {
150 if (sk == NULL) {
151 return;
152 }
153
154 for (size_t i = 0; i < sk->num; i++) {
155 if (sk->data[i] != NULL) {
156 call_free_func(free_func, sk->data[i]);
157 }
158 }
159 OPENSSL_sk_free(sk);
160 }
161
162 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
163 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
164 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)165 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
166 func(ptr);
167 }
168
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)169 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
170 OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
171 }
172
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)173 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
174 if (sk == NULL) {
175 return 0;
176 }
177
178 if (sk->num >= INT_MAX) {
179 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
180 return 0;
181 }
182
183 if (sk->num_alloc <= sk->num + 1) {
184 // Attempt to double the size of the array.
185 size_t new_alloc = sk->num_alloc << 1;
186 size_t alloc_size = new_alloc * sizeof(void *);
187 void **data;
188
189 // If the doubling overflowed, try to increment.
190 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
191 new_alloc = sk->num_alloc + 1;
192 alloc_size = new_alloc * sizeof(void *);
193 }
194
195 // If the increment also overflowed, fail.
196 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
197 return 0;
198 }
199
200 data = OPENSSL_realloc(sk->data, alloc_size);
201 if (data == NULL) {
202 return 0;
203 }
204
205 sk->data = data;
206 sk->num_alloc = new_alloc;
207 }
208
209 if (where >= sk->num) {
210 sk->data[sk->num] = p;
211 } else {
212 OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
213 sizeof(void *) * (sk->num - where));
214 sk->data[where] = p;
215 }
216
217 sk->num++;
218 sk->sorted = 0;
219
220 return sk->num;
221 }
222
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)223 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
224 void *ret;
225
226 if (!sk || where >= sk->num) {
227 return NULL;
228 }
229
230 ret = sk->data[where];
231
232 if (where != sk->num - 1) {
233 OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
234 sizeof(void *) * (sk->num - where - 1));
235 }
236
237 sk->num--;
238 return ret;
239 }
240
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)241 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
242 if (sk == NULL) {
243 return NULL;
244 }
245
246 for (size_t i = 0; i < sk->num; i++) {
247 if (sk->data[i] == p) {
248 return OPENSSL_sk_delete(sk, i);
249 }
250 }
251
252 return NULL;
253 }
254
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)255 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
256 OPENSSL_sk_call_delete_if_func call_func,
257 OPENSSL_sk_delete_if_func func, void *data) {
258 if (sk == NULL) {
259 return;
260 }
261
262 size_t new_num = 0;
263 for (size_t i = 0; i < sk->num; i++) {
264 if (!call_func(func, sk->data[i], data)) {
265 sk->data[new_num] = sk->data[i];
266 new_num++;
267 }
268 }
269 sk->num = new_num;
270 }
271
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)272 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
273 OPENSSL_sk_call_cmp_func call_cmp_func) {
274 if (sk == NULL) {
275 return 0;
276 }
277
278 if (sk->comp == NULL) {
279 // Use pointer equality when no comparison function has been set.
280 for (size_t i = 0; i < sk->num; i++) {
281 if (sk->data[i] == p) {
282 if (out_index) {
283 *out_index = i;
284 }
285 return 1;
286 }
287 }
288 return 0;
289 }
290
291 if (p == NULL) {
292 return 0;
293 }
294
295 if (!OPENSSL_sk_is_sorted(sk)) {
296 for (size_t i = 0; i < sk->num; i++) {
297 if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
298 if (out_index) {
299 *out_index = i;
300 }
301 return 1;
302 }
303 }
304 return 0;
305 }
306
307 // The stack is sorted, so binary search to find the element.
308 //
309 // |lo| and |hi| maintain a half-open interval of where the answer may be. All
310 // indices such that |lo <= idx < hi| are candidates.
311 size_t lo = 0, hi = sk->num;
312 while (lo < hi) {
313 // Bias |mid| towards |lo|. See the |r == 0| case below.
314 size_t mid = lo + (hi - lo - 1) / 2;
315 assert(lo <= mid && mid < hi);
316 int r = call_cmp_func(sk->comp, p, sk->data[mid]);
317 if (r > 0) {
318 lo = mid + 1; // |mid| is too low.
319 } else if (r < 0) {
320 hi = mid; // |mid| is too high.
321 } else {
322 // |mid| matches. However, this function returns the earliest match, so we
323 // can only return if the range has size one.
324 if (hi - lo == 1) {
325 if (out_index != NULL) {
326 *out_index = mid;
327 }
328 return 1;
329 }
330 // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
331 // |hi - lo| was one, so this makes forward progress.
332 assert(mid + 1 < hi);
333 hi = mid + 1;
334 }
335 }
336
337 assert(lo == hi);
338 return 0; // Not found.
339 }
340
OPENSSL_sk_shift(OPENSSL_STACK * sk)341 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
342 if (sk == NULL) {
343 return NULL;
344 }
345 if (sk->num == 0) {
346 return NULL;
347 }
348 return OPENSSL_sk_delete(sk, 0);
349 }
350
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)351 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
352 return OPENSSL_sk_insert(sk, p, sk->num);
353 }
354
OPENSSL_sk_pop(OPENSSL_STACK * sk)355 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
356 if (sk == NULL) {
357 return NULL;
358 }
359 if (sk->num == 0) {
360 return NULL;
361 }
362 return OPENSSL_sk_delete(sk, sk->num - 1);
363 }
364
OPENSSL_sk_dup(const OPENSSL_STACK * sk)365 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
366 if (sk == NULL) {
367 return NULL;
368 }
369
370 OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
371 if (ret == NULL) {
372 return NULL;
373 }
374
375 ret->data = OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc);
376 if (ret->data == NULL) {
377 goto err;
378 }
379
380 ret->num = sk->num;
381 ret->sorted = sk->sorted;
382 ret->num_alloc = sk->num_alloc;
383 ret->comp = sk->comp;
384 return ret;
385
386 err:
387 OPENSSL_sk_free(ret);
388 return NULL;
389 }
390
parent_idx(size_t idx)391 static size_t parent_idx(size_t idx) {
392 assert(idx > 0);
393 return (idx - 1) / 2;
394 }
395
left_idx(size_t idx)396 static size_t left_idx(size_t idx) {
397 // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
398 // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
399 // overflow.
400 assert(idx <= PTRDIFF_MAX);
401 static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
402 return 2 * idx + 1;
403 }
404
405 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
406 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)407 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
408 size_t i, size_t num) {
409 assert(i < num && num <= sk->num);
410 for (;;) {
411 size_t left = left_idx(i);
412 if (left >= num) {
413 break; // No left child.
414 }
415
416 // Swap |i| with the largest of its children.
417 size_t next = i;
418 if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
419 next = left;
420 }
421 size_t right = left + 1; // Cannot overflow because |left < num|.
422 if (right < num &&
423 call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
424 next = right;
425 }
426
427 if (i == next) {
428 break; // |i| is already larger than its children.
429 }
430
431 void *tmp = sk->data[i];
432 sk->data[i] = sk->data[next];
433 sk->data[next] = tmp;
434 i = next;
435 }
436 }
437
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)438 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
439 OPENSSL_sk_call_cmp_func call_cmp_func) {
440 if (sk == NULL || sk->comp == NULL || sk->sorted) {
441 return;
442 }
443
444 if (sk->num >= 2) {
445 // |qsort| lacks a context parameter in the comparison function for us to
446 // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
447 // the expected type, it is undefined behavior in C can trip sanitizers.
448 // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
449 // https://stackoverflow.com/a/39561369
450 //
451 // Use our own heap sort instead. This is not performance-sensitive, so we
452 // optimize for simplicity and size. First, build a max-heap in place.
453 for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
454 down_heap(sk, call_cmp_func, i, sk->num);
455 }
456
457 // Iteratively remove the maximum element to populate the result in reverse.
458 for (size_t i = sk->num - 1; i > 0; i--) {
459 void *tmp = sk->data[0];
460 sk->data[0] = sk->data[i];
461 sk->data[i] = tmp;
462 down_heap(sk, call_cmp_func, 0, i);
463 }
464 }
465 sk->sorted = 1;
466 }
467
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)468 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
469 if (!sk) {
470 return 1;
471 }
472 // Zero- and one-element lists are always sorted.
473 return sk->sorted || (sk->comp != NULL && sk->num < 2);
474 }
475
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)476 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
477 OPENSSL_sk_cmp_func comp) {
478 OPENSSL_sk_cmp_func old = sk->comp;
479
480 if (sk->comp != comp) {
481 sk->sorted = 0;
482 }
483 sk->comp = comp;
484
485 return old;
486 }
487
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)488 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
489 OPENSSL_sk_call_copy_func call_copy_func,
490 OPENSSL_sk_copy_func copy_func,
491 OPENSSL_sk_call_free_func call_free_func,
492 OPENSSL_sk_free_func free_func) {
493 OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
494 if (ret == NULL) {
495 return NULL;
496 }
497
498 for (size_t i = 0; i < ret->num; i++) {
499 if (ret->data[i] == NULL) {
500 continue;
501 }
502 ret->data[i] = call_copy_func(copy_func, ret->data[i]);
503 if (ret->data[i] == NULL) {
504 for (size_t j = 0; j < i; j++) {
505 if (ret->data[j] != NULL) {
506 call_free_func(free_func, ret->data[j]);
507 }
508 }
509 OPENSSL_sk_free(ret);
510 return NULL;
511 }
512 }
513
514 return ret;
515 }
516
sk_new_null(void)517 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
518
sk_num(const OPENSSL_STACK * sk)519 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
520
sk_value(const OPENSSL_STACK * sk,size_t i)521 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
522 return OPENSSL_sk_value(sk, i);
523 }
524
sk_free(OPENSSL_STACK * sk)525 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
526
sk_push(OPENSSL_STACK * sk,void * p)527 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
528
sk_pop(OPENSSL_STACK * sk)529 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
530
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)531 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
532 OPENSSL_sk_free_func free_func) {
533 OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
534 }
535