xref: /aosp_15_r20/external/boringssl/src/crypto/poly1305/poly1305_vec.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // This implementation of poly1305 is by Andrew Moon
16 // (https://github.com/floodyberry/poly1305-donna) and released as public
17 // domain. It implements SIMD vectorization based on the algorithm described in
18 // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte
19 // block size
20 
21 #include <openssl/poly1305.h>
22 
23 #include <assert.h>
24 
25 #include "../internal.h"
26 
27 
28 #if defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_X86_64)
29 
30 #include <emmintrin.h>
31 
32 typedef __m128i xmmi;
33 
34 static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = {
35     (1 << 26) - 1, 0, (1 << 26) - 1, 0};
36 static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0};
37 static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = {
38     (1 << 24), 0, (1 << 24), 0};
39 
add128(uint128_t a,uint128_t b)40 static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; }
41 
add128_64(uint128_t a,uint64_t b)42 static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; }
43 
mul64x64_128(uint64_t a,uint64_t b)44 static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) {
45   return (uint128_t)a * b;
46 }
47 
lo128(uint128_t a)48 static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; }
49 
shr128(uint128_t v,const int shift)50 static inline uint64_t shr128(uint128_t v, const int shift) {
51   return (uint64_t)(v >> shift);
52 }
53 
shr128_pair(uint64_t hi,uint64_t lo,const int shift)54 static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) {
55   return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift);
56 }
57 
58 typedef struct poly1305_power_t {
59   union {
60     xmmi v;
61     uint64_t u[2];
62     uint32_t d[4];
63   } R20, R21, R22, R23, R24, S21, S22, S23, S24;
64 } poly1305_power;
65 
66 typedef struct poly1305_state_internal_t {
67   poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144
68                           bytes of free storage */
69   union {
70     xmmi H[5];  //  80 bytes
71     uint64_t HH[10];
72   };
73   // uint64_t r0,r1,r2;       [24 bytes]
74   // uint64_t pad0,pad1;      [16 bytes]
75   uint64_t started;        //   8 bytes
76   uint64_t leftover;       //   8 bytes
77   uint8_t buffer[64];      //  64 bytes
78 } poly1305_state_internal; /* 448 bytes total + 63 bytes for
79                               alignment = 511 bytes raw */
80 
81 static_assert(sizeof(struct poly1305_state_internal_t) + 63 <=
82                   sizeof(poly1305_state),
83               "poly1305_state isn't large enough to hold aligned "
84               "poly1305_state_internal_t");
85 
poly1305_aligned_state(poly1305_state * state)86 static inline poly1305_state_internal *poly1305_aligned_state(
87     poly1305_state *state) {
88   return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63);
89 }
90 
poly1305_min(size_t a,size_t b)91 static inline size_t poly1305_min(size_t a, size_t b) {
92   return (a < b) ? a : b;
93 }
94 
CRYPTO_poly1305_init(poly1305_state * state,const uint8_t key[32])95 void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) {
96   poly1305_state_internal *st = poly1305_aligned_state(state);
97   poly1305_power *p;
98   uint64_t r0, r1, r2;
99   uint64_t t0, t1;
100 
101   // clamp key
102   t0 = CRYPTO_load_u64_le(key + 0);
103   t1 = CRYPTO_load_u64_le(key + 8);
104   r0 = t0 & 0xffc0fffffff;
105   t0 >>= 44;
106   t0 |= t1 << 20;
107   r1 = t0 & 0xfffffc0ffff;
108   t1 >>= 24;
109   r2 = t1 & 0x00ffffffc0f;
110 
111   // store r in un-used space of st->P[1]
112   p = &st->P[1];
113   p->R20.d[1] = (uint32_t)(r0);
114   p->R20.d[3] = (uint32_t)(r0 >> 32);
115   p->R21.d[1] = (uint32_t)(r1);
116   p->R21.d[3] = (uint32_t)(r1 >> 32);
117   p->R22.d[1] = (uint32_t)(r2);
118   p->R22.d[3] = (uint32_t)(r2 >> 32);
119 
120   // store pad
121   p->R23.d[1] = CRYPTO_load_u32_le(key + 16);
122   p->R23.d[3] = CRYPTO_load_u32_le(key + 20);
123   p->R24.d[1] = CRYPTO_load_u32_le(key + 24);
124   p->R24.d[3] = CRYPTO_load_u32_le(key + 28);
125 
126   // H = 0
127   st->H[0] = _mm_setzero_si128();
128   st->H[1] = _mm_setzero_si128();
129   st->H[2] = _mm_setzero_si128();
130   st->H[3] = _mm_setzero_si128();
131   st->H[4] = _mm_setzero_si128();
132 
133   st->started = 0;
134   st->leftover = 0;
135 }
136 
poly1305_first_block(poly1305_state_internal * st,const uint8_t * m)137 static void poly1305_first_block(poly1305_state_internal *st,
138                                  const uint8_t *m) {
139   const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
140   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
141   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
142   xmmi T5, T6;
143   poly1305_power *p;
144   uint128_t d[3];
145   uint64_t r0, r1, r2;
146   uint64_t r20, r21, r22, s22;
147   uint64_t pad0, pad1;
148   uint64_t c;
149   uint64_t i;
150 
151   // pull out stored info
152   p = &st->P[1];
153 
154   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
155   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
156   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
157   pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
158   pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
159 
160   // compute powers r^2,r^4
161   r20 = r0;
162   r21 = r1;
163   r22 = r2;
164   for (i = 0; i < 2; i++) {
165     s22 = r22 * (5 << 2);
166 
167     d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22));
168     d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21));
169     d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20));
170 
171     r20 = lo128(d[0]) & 0xfffffffffff;
172     c = shr128(d[0], 44);
173     d[1] = add128_64(d[1], c);
174     r21 = lo128(d[1]) & 0xfffffffffff;
175     c = shr128(d[1], 44);
176     d[2] = add128_64(d[2], c);
177     r22 = lo128(d[2]) & 0x3ffffffffff;
178     c = shr128(d[2], 42);
179     r20 += c * 5;
180     c = (r20 >> 44);
181     r20 = r20 & 0xfffffffffff;
182     r21 += c;
183 
184     p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff),
185                                  _MM_SHUFFLE(1, 0, 1, 0));
186     p->R21.v = _mm_shuffle_epi32(
187         _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff),
188         _MM_SHUFFLE(1, 0, 1, 0));
189     p->R22.v =
190         _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff),
191                           _MM_SHUFFLE(1, 0, 1, 0));
192     p->R23.v = _mm_shuffle_epi32(
193         _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff),
194         _MM_SHUFFLE(1, 0, 1, 0));
195     p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))),
196                                  _MM_SHUFFLE(1, 0, 1, 0));
197     p->S21.v = _mm_mul_epu32(p->R21.v, FIVE);
198     p->S22.v = _mm_mul_epu32(p->R22.v, FIVE);
199     p->S23.v = _mm_mul_epu32(p->R23.v, FIVE);
200     p->S24.v = _mm_mul_epu32(p->R24.v, FIVE);
201     p--;
202   }
203 
204   // put saved info back
205   p = &st->P[1];
206   p->R20.d[1] = (uint32_t)(r0);
207   p->R20.d[3] = (uint32_t)(r0 >> 32);
208   p->R21.d[1] = (uint32_t)(r1);
209   p->R21.d[3] = (uint32_t)(r1 >> 32);
210   p->R22.d[1] = (uint32_t)(r2);
211   p->R22.d[3] = (uint32_t)(r2 >> 32);
212   p->R23.d[1] = (uint32_t)(pad0);
213   p->R23.d[3] = (uint32_t)(pad0 >> 32);
214   p->R24.d[1] = (uint32_t)(pad1);
215   p->R24.d[3] = (uint32_t)(pad1 >> 32);
216 
217   // H = [Mx,My]
218   T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
219                           _mm_loadl_epi64((const xmmi *)(m + 16)));
220   T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
221                           _mm_loadl_epi64((const xmmi *)(m + 24)));
222   st->H[0] = _mm_and_si128(MMASK, T5);
223   st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
224   T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
225   st->H[2] = _mm_and_si128(MMASK, T5);
226   st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
227   st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
228 }
229 
poly1305_blocks(poly1305_state_internal * st,const uint8_t * m,size_t bytes)230 static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m,
231                             size_t bytes) {
232   const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
233   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
234   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
235 
236   poly1305_power *p;
237   xmmi H0, H1, H2, H3, H4;
238   xmmi T0, T1, T2, T3, T4, T5, T6;
239   xmmi M0, M1, M2, M3, M4;
240   xmmi C1, C2;
241 
242   H0 = st->H[0];
243   H1 = st->H[1];
244   H2 = st->H[2];
245   H3 = st->H[3];
246   H4 = st->H[4];
247 
248   while (bytes >= 64) {
249     // H *= [r^4,r^4]
250     p = &st->P[0];
251     T0 = _mm_mul_epu32(H0, p->R20.v);
252     T1 = _mm_mul_epu32(H0, p->R21.v);
253     T2 = _mm_mul_epu32(H0, p->R22.v);
254     T3 = _mm_mul_epu32(H0, p->R23.v);
255     T4 = _mm_mul_epu32(H0, p->R24.v);
256     T5 = _mm_mul_epu32(H1, p->S24.v);
257     T6 = _mm_mul_epu32(H1, p->R20.v);
258     T0 = _mm_add_epi64(T0, T5);
259     T1 = _mm_add_epi64(T1, T6);
260     T5 = _mm_mul_epu32(H2, p->S23.v);
261     T6 = _mm_mul_epu32(H2, p->S24.v);
262     T0 = _mm_add_epi64(T0, T5);
263     T1 = _mm_add_epi64(T1, T6);
264     T5 = _mm_mul_epu32(H3, p->S22.v);
265     T6 = _mm_mul_epu32(H3, p->S23.v);
266     T0 = _mm_add_epi64(T0, T5);
267     T1 = _mm_add_epi64(T1, T6);
268     T5 = _mm_mul_epu32(H4, p->S21.v);
269     T6 = _mm_mul_epu32(H4, p->S22.v);
270     T0 = _mm_add_epi64(T0, T5);
271     T1 = _mm_add_epi64(T1, T6);
272     T5 = _mm_mul_epu32(H1, p->R21.v);
273     T6 = _mm_mul_epu32(H1, p->R22.v);
274     T2 = _mm_add_epi64(T2, T5);
275     T3 = _mm_add_epi64(T3, T6);
276     T5 = _mm_mul_epu32(H2, p->R20.v);
277     T6 = _mm_mul_epu32(H2, p->R21.v);
278     T2 = _mm_add_epi64(T2, T5);
279     T3 = _mm_add_epi64(T3, T6);
280     T5 = _mm_mul_epu32(H3, p->S24.v);
281     T6 = _mm_mul_epu32(H3, p->R20.v);
282     T2 = _mm_add_epi64(T2, T5);
283     T3 = _mm_add_epi64(T3, T6);
284     T5 = _mm_mul_epu32(H4, p->S23.v);
285     T6 = _mm_mul_epu32(H4, p->S24.v);
286     T2 = _mm_add_epi64(T2, T5);
287     T3 = _mm_add_epi64(T3, T6);
288     T5 = _mm_mul_epu32(H1, p->R23.v);
289     T4 = _mm_add_epi64(T4, T5);
290     T5 = _mm_mul_epu32(H2, p->R22.v);
291     T4 = _mm_add_epi64(T4, T5);
292     T5 = _mm_mul_epu32(H3, p->R21.v);
293     T4 = _mm_add_epi64(T4, T5);
294     T5 = _mm_mul_epu32(H4, p->R20.v);
295     T4 = _mm_add_epi64(T4, T5);
296 
297     // H += [Mx,My]*[r^2,r^2]
298     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
299                             _mm_loadl_epi64((const xmmi *)(m + 16)));
300     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
301                             _mm_loadl_epi64((const xmmi *)(m + 24)));
302     M0 = _mm_and_si128(MMASK, T5);
303     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
304     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
305     M2 = _mm_and_si128(MMASK, T5);
306     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
307     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
308 
309     p = &st->P[1];
310     T5 = _mm_mul_epu32(M0, p->R20.v);
311     T6 = _mm_mul_epu32(M0, p->R21.v);
312     T0 = _mm_add_epi64(T0, T5);
313     T1 = _mm_add_epi64(T1, T6);
314     T5 = _mm_mul_epu32(M1, p->S24.v);
315     T6 = _mm_mul_epu32(M1, p->R20.v);
316     T0 = _mm_add_epi64(T0, T5);
317     T1 = _mm_add_epi64(T1, T6);
318     T5 = _mm_mul_epu32(M2, p->S23.v);
319     T6 = _mm_mul_epu32(M2, p->S24.v);
320     T0 = _mm_add_epi64(T0, T5);
321     T1 = _mm_add_epi64(T1, T6);
322     T5 = _mm_mul_epu32(M3, p->S22.v);
323     T6 = _mm_mul_epu32(M3, p->S23.v);
324     T0 = _mm_add_epi64(T0, T5);
325     T1 = _mm_add_epi64(T1, T6);
326     T5 = _mm_mul_epu32(M4, p->S21.v);
327     T6 = _mm_mul_epu32(M4, p->S22.v);
328     T0 = _mm_add_epi64(T0, T5);
329     T1 = _mm_add_epi64(T1, T6);
330     T5 = _mm_mul_epu32(M0, p->R22.v);
331     T6 = _mm_mul_epu32(M0, p->R23.v);
332     T2 = _mm_add_epi64(T2, T5);
333     T3 = _mm_add_epi64(T3, T6);
334     T5 = _mm_mul_epu32(M1, p->R21.v);
335     T6 = _mm_mul_epu32(M1, p->R22.v);
336     T2 = _mm_add_epi64(T2, T5);
337     T3 = _mm_add_epi64(T3, T6);
338     T5 = _mm_mul_epu32(M2, p->R20.v);
339     T6 = _mm_mul_epu32(M2, p->R21.v);
340     T2 = _mm_add_epi64(T2, T5);
341     T3 = _mm_add_epi64(T3, T6);
342     T5 = _mm_mul_epu32(M3, p->S24.v);
343     T6 = _mm_mul_epu32(M3, p->R20.v);
344     T2 = _mm_add_epi64(T2, T5);
345     T3 = _mm_add_epi64(T3, T6);
346     T5 = _mm_mul_epu32(M4, p->S23.v);
347     T6 = _mm_mul_epu32(M4, p->S24.v);
348     T2 = _mm_add_epi64(T2, T5);
349     T3 = _mm_add_epi64(T3, T6);
350     T5 = _mm_mul_epu32(M0, p->R24.v);
351     T4 = _mm_add_epi64(T4, T5);
352     T5 = _mm_mul_epu32(M1, p->R23.v);
353     T4 = _mm_add_epi64(T4, T5);
354     T5 = _mm_mul_epu32(M2, p->R22.v);
355     T4 = _mm_add_epi64(T4, T5);
356     T5 = _mm_mul_epu32(M3, p->R21.v);
357     T4 = _mm_add_epi64(T4, T5);
358     T5 = _mm_mul_epu32(M4, p->R20.v);
359     T4 = _mm_add_epi64(T4, T5);
360 
361     // H += [Mx,My]
362     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)),
363                             _mm_loadl_epi64((const xmmi *)(m + 48)));
364     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)),
365                             _mm_loadl_epi64((const xmmi *)(m + 56)));
366     M0 = _mm_and_si128(MMASK, T5);
367     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
368     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
369     M2 = _mm_and_si128(MMASK, T5);
370     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
371     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
372 
373     T0 = _mm_add_epi64(T0, M0);
374     T1 = _mm_add_epi64(T1, M1);
375     T2 = _mm_add_epi64(T2, M2);
376     T3 = _mm_add_epi64(T3, M3);
377     T4 = _mm_add_epi64(T4, M4);
378 
379     // reduce
380     C1 = _mm_srli_epi64(T0, 26);
381     C2 = _mm_srli_epi64(T3, 26);
382     T0 = _mm_and_si128(T0, MMASK);
383     T3 = _mm_and_si128(T3, MMASK);
384     T1 = _mm_add_epi64(T1, C1);
385     T4 = _mm_add_epi64(T4, C2);
386     C1 = _mm_srli_epi64(T1, 26);
387     C2 = _mm_srli_epi64(T4, 26);
388     T1 = _mm_and_si128(T1, MMASK);
389     T4 = _mm_and_si128(T4, MMASK);
390     T2 = _mm_add_epi64(T2, C1);
391     T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
392     C1 = _mm_srli_epi64(T2, 26);
393     C2 = _mm_srli_epi64(T0, 26);
394     T2 = _mm_and_si128(T2, MMASK);
395     T0 = _mm_and_si128(T0, MMASK);
396     T3 = _mm_add_epi64(T3, C1);
397     T1 = _mm_add_epi64(T1, C2);
398     C1 = _mm_srli_epi64(T3, 26);
399     T3 = _mm_and_si128(T3, MMASK);
400     T4 = _mm_add_epi64(T4, C1);
401 
402     // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My])
403     H0 = T0;
404     H1 = T1;
405     H2 = T2;
406     H3 = T3;
407     H4 = T4;
408 
409     m += 64;
410     bytes -= 64;
411   }
412 
413   st->H[0] = H0;
414   st->H[1] = H1;
415   st->H[2] = H2;
416   st->H[3] = H3;
417   st->H[4] = H4;
418 }
419 
poly1305_combine(poly1305_state_internal * st,const uint8_t * m,size_t bytes)420 static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m,
421                                size_t bytes) {
422   const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
423   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
424   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
425 
426   poly1305_power *p;
427   xmmi H0, H1, H2, H3, H4;
428   xmmi M0, M1, M2, M3, M4;
429   xmmi T0, T1, T2, T3, T4, T5, T6;
430   xmmi C1, C2;
431 
432   uint64_t r0, r1, r2;
433   uint64_t t0, t1, t2, t3, t4;
434   uint64_t c;
435   size_t consumed = 0;
436 
437   H0 = st->H[0];
438   H1 = st->H[1];
439   H2 = st->H[2];
440   H3 = st->H[3];
441   H4 = st->H[4];
442 
443   // p = [r^2,r^2]
444   p = &st->P[1];
445 
446   if (bytes >= 32) {
447     // H *= [r^2,r^2]
448     T0 = _mm_mul_epu32(H0, p->R20.v);
449     T1 = _mm_mul_epu32(H0, p->R21.v);
450     T2 = _mm_mul_epu32(H0, p->R22.v);
451     T3 = _mm_mul_epu32(H0, p->R23.v);
452     T4 = _mm_mul_epu32(H0, p->R24.v);
453     T5 = _mm_mul_epu32(H1, p->S24.v);
454     T6 = _mm_mul_epu32(H1, p->R20.v);
455     T0 = _mm_add_epi64(T0, T5);
456     T1 = _mm_add_epi64(T1, T6);
457     T5 = _mm_mul_epu32(H2, p->S23.v);
458     T6 = _mm_mul_epu32(H2, p->S24.v);
459     T0 = _mm_add_epi64(T0, T5);
460     T1 = _mm_add_epi64(T1, T6);
461     T5 = _mm_mul_epu32(H3, p->S22.v);
462     T6 = _mm_mul_epu32(H3, p->S23.v);
463     T0 = _mm_add_epi64(T0, T5);
464     T1 = _mm_add_epi64(T1, T6);
465     T5 = _mm_mul_epu32(H4, p->S21.v);
466     T6 = _mm_mul_epu32(H4, p->S22.v);
467     T0 = _mm_add_epi64(T0, T5);
468     T1 = _mm_add_epi64(T1, T6);
469     T5 = _mm_mul_epu32(H1, p->R21.v);
470     T6 = _mm_mul_epu32(H1, p->R22.v);
471     T2 = _mm_add_epi64(T2, T5);
472     T3 = _mm_add_epi64(T3, T6);
473     T5 = _mm_mul_epu32(H2, p->R20.v);
474     T6 = _mm_mul_epu32(H2, p->R21.v);
475     T2 = _mm_add_epi64(T2, T5);
476     T3 = _mm_add_epi64(T3, T6);
477     T5 = _mm_mul_epu32(H3, p->S24.v);
478     T6 = _mm_mul_epu32(H3, p->R20.v);
479     T2 = _mm_add_epi64(T2, T5);
480     T3 = _mm_add_epi64(T3, T6);
481     T5 = _mm_mul_epu32(H4, p->S23.v);
482     T6 = _mm_mul_epu32(H4, p->S24.v);
483     T2 = _mm_add_epi64(T2, T5);
484     T3 = _mm_add_epi64(T3, T6);
485     T5 = _mm_mul_epu32(H1, p->R23.v);
486     T4 = _mm_add_epi64(T4, T5);
487     T5 = _mm_mul_epu32(H2, p->R22.v);
488     T4 = _mm_add_epi64(T4, T5);
489     T5 = _mm_mul_epu32(H3, p->R21.v);
490     T4 = _mm_add_epi64(T4, T5);
491     T5 = _mm_mul_epu32(H4, p->R20.v);
492     T4 = _mm_add_epi64(T4, T5);
493 
494     // H += [Mx,My]
495     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
496                             _mm_loadl_epi64((const xmmi *)(m + 16)));
497     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
498                             _mm_loadl_epi64((const xmmi *)(m + 24)));
499     M0 = _mm_and_si128(MMASK, T5);
500     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
501     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
502     M2 = _mm_and_si128(MMASK, T5);
503     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
504     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
505 
506     T0 = _mm_add_epi64(T0, M0);
507     T1 = _mm_add_epi64(T1, M1);
508     T2 = _mm_add_epi64(T2, M2);
509     T3 = _mm_add_epi64(T3, M3);
510     T4 = _mm_add_epi64(T4, M4);
511 
512     // reduce
513     C1 = _mm_srli_epi64(T0, 26);
514     C2 = _mm_srli_epi64(T3, 26);
515     T0 = _mm_and_si128(T0, MMASK);
516     T3 = _mm_and_si128(T3, MMASK);
517     T1 = _mm_add_epi64(T1, C1);
518     T4 = _mm_add_epi64(T4, C2);
519     C1 = _mm_srli_epi64(T1, 26);
520     C2 = _mm_srli_epi64(T4, 26);
521     T1 = _mm_and_si128(T1, MMASK);
522     T4 = _mm_and_si128(T4, MMASK);
523     T2 = _mm_add_epi64(T2, C1);
524     T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
525     C1 = _mm_srli_epi64(T2, 26);
526     C2 = _mm_srli_epi64(T0, 26);
527     T2 = _mm_and_si128(T2, MMASK);
528     T0 = _mm_and_si128(T0, MMASK);
529     T3 = _mm_add_epi64(T3, C1);
530     T1 = _mm_add_epi64(T1, C2);
531     C1 = _mm_srli_epi64(T3, 26);
532     T3 = _mm_and_si128(T3, MMASK);
533     T4 = _mm_add_epi64(T4, C1);
534 
535     // H = (H*[r^2,r^2] + [Mx,My])
536     H0 = T0;
537     H1 = T1;
538     H2 = T2;
539     H3 = T3;
540     H4 = T4;
541 
542     consumed = 32;
543   }
544 
545   // finalize, H *= [r^2,r]
546   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
547   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
548   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
549 
550   p->R20.d[2] = (uint32_t)(r0)&0x3ffffff;
551   p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff;
552   p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff;
553   p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff;
554   p->R24.d[2] = (uint32_t)((r2 >> 16));
555   p->S21.d[2] = p->R21.d[2] * 5;
556   p->S22.d[2] = p->R22.d[2] * 5;
557   p->S23.d[2] = p->R23.d[2] * 5;
558   p->S24.d[2] = p->R24.d[2] * 5;
559 
560   // H *= [r^2,r]
561   T0 = _mm_mul_epu32(H0, p->R20.v);
562   T1 = _mm_mul_epu32(H0, p->R21.v);
563   T2 = _mm_mul_epu32(H0, p->R22.v);
564   T3 = _mm_mul_epu32(H0, p->R23.v);
565   T4 = _mm_mul_epu32(H0, p->R24.v);
566   T5 = _mm_mul_epu32(H1, p->S24.v);
567   T6 = _mm_mul_epu32(H1, p->R20.v);
568   T0 = _mm_add_epi64(T0, T5);
569   T1 = _mm_add_epi64(T1, T6);
570   T5 = _mm_mul_epu32(H2, p->S23.v);
571   T6 = _mm_mul_epu32(H2, p->S24.v);
572   T0 = _mm_add_epi64(T0, T5);
573   T1 = _mm_add_epi64(T1, T6);
574   T5 = _mm_mul_epu32(H3, p->S22.v);
575   T6 = _mm_mul_epu32(H3, p->S23.v);
576   T0 = _mm_add_epi64(T0, T5);
577   T1 = _mm_add_epi64(T1, T6);
578   T5 = _mm_mul_epu32(H4, p->S21.v);
579   T6 = _mm_mul_epu32(H4, p->S22.v);
580   T0 = _mm_add_epi64(T0, T5);
581   T1 = _mm_add_epi64(T1, T6);
582   T5 = _mm_mul_epu32(H1, p->R21.v);
583   T6 = _mm_mul_epu32(H1, p->R22.v);
584   T2 = _mm_add_epi64(T2, T5);
585   T3 = _mm_add_epi64(T3, T6);
586   T5 = _mm_mul_epu32(H2, p->R20.v);
587   T6 = _mm_mul_epu32(H2, p->R21.v);
588   T2 = _mm_add_epi64(T2, T5);
589   T3 = _mm_add_epi64(T3, T6);
590   T5 = _mm_mul_epu32(H3, p->S24.v);
591   T6 = _mm_mul_epu32(H3, p->R20.v);
592   T2 = _mm_add_epi64(T2, T5);
593   T3 = _mm_add_epi64(T3, T6);
594   T5 = _mm_mul_epu32(H4, p->S23.v);
595   T6 = _mm_mul_epu32(H4, p->S24.v);
596   T2 = _mm_add_epi64(T2, T5);
597   T3 = _mm_add_epi64(T3, T6);
598   T5 = _mm_mul_epu32(H1, p->R23.v);
599   T4 = _mm_add_epi64(T4, T5);
600   T5 = _mm_mul_epu32(H2, p->R22.v);
601   T4 = _mm_add_epi64(T4, T5);
602   T5 = _mm_mul_epu32(H3, p->R21.v);
603   T4 = _mm_add_epi64(T4, T5);
604   T5 = _mm_mul_epu32(H4, p->R20.v);
605   T4 = _mm_add_epi64(T4, T5);
606 
607   C1 = _mm_srli_epi64(T0, 26);
608   C2 = _mm_srli_epi64(T3, 26);
609   T0 = _mm_and_si128(T0, MMASK);
610   T3 = _mm_and_si128(T3, MMASK);
611   T1 = _mm_add_epi64(T1, C1);
612   T4 = _mm_add_epi64(T4, C2);
613   C1 = _mm_srli_epi64(T1, 26);
614   C2 = _mm_srli_epi64(T4, 26);
615   T1 = _mm_and_si128(T1, MMASK);
616   T4 = _mm_and_si128(T4, MMASK);
617   T2 = _mm_add_epi64(T2, C1);
618   T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
619   C1 = _mm_srli_epi64(T2, 26);
620   C2 = _mm_srli_epi64(T0, 26);
621   T2 = _mm_and_si128(T2, MMASK);
622   T0 = _mm_and_si128(T0, MMASK);
623   T3 = _mm_add_epi64(T3, C1);
624   T1 = _mm_add_epi64(T1, C2);
625   C1 = _mm_srli_epi64(T3, 26);
626   T3 = _mm_and_si128(T3, MMASK);
627   T4 = _mm_add_epi64(T4, C1);
628 
629   // H = H[0]+H[1]
630   H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8));
631   H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8));
632   H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8));
633   H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8));
634   H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8));
635 
636   t0 = _mm_cvtsi128_si32(H0);
637   c = (t0 >> 26);
638   t0 &= 0x3ffffff;
639   t1 = _mm_cvtsi128_si32(H1) + c;
640   c = (t1 >> 26);
641   t1 &= 0x3ffffff;
642   t2 = _mm_cvtsi128_si32(H2) + c;
643   c = (t2 >> 26);
644   t2 &= 0x3ffffff;
645   t3 = _mm_cvtsi128_si32(H3) + c;
646   c = (t3 >> 26);
647   t3 &= 0x3ffffff;
648   t4 = _mm_cvtsi128_si32(H4) + c;
649   c = (t4 >> 26);
650   t4 &= 0x3ffffff;
651   t0 = t0 + (c * 5);
652   c = (t0 >> 26);
653   t0 &= 0x3ffffff;
654   t1 = t1 + c;
655 
656   st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff);
657   st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff);
658   st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff);
659 
660   return consumed;
661 }
662 
CRYPTO_poly1305_update(poly1305_state * state,const uint8_t * m,size_t bytes)663 void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m,
664                             size_t bytes) {
665   poly1305_state_internal *st = poly1305_aligned_state(state);
666   size_t want;
667 
668   // Work around a C language bug. See https://crbug.com/1019588.
669   if (bytes == 0) {
670     return;
671   }
672 
673   // need at least 32 initial bytes to start the accelerated branch
674   if (!st->started) {
675     if ((st->leftover == 0) && (bytes > 32)) {
676       poly1305_first_block(st, m);
677       m += 32;
678       bytes -= 32;
679     } else {
680       want = poly1305_min(32 - st->leftover, bytes);
681       OPENSSL_memcpy(st->buffer + st->leftover, m, want);
682       bytes -= want;
683       m += want;
684       st->leftover += want;
685       if ((st->leftover < 32) || (bytes == 0)) {
686         return;
687       }
688       poly1305_first_block(st, st->buffer);
689       st->leftover = 0;
690     }
691     st->started = 1;
692   }
693 
694   // handle leftover
695   if (st->leftover) {
696     want = poly1305_min(64 - st->leftover, bytes);
697     OPENSSL_memcpy(st->buffer + st->leftover, m, want);
698     bytes -= want;
699     m += want;
700     st->leftover += want;
701     if (st->leftover < 64) {
702       return;
703     }
704     poly1305_blocks(st, st->buffer, 64);
705     st->leftover = 0;
706   }
707 
708   // process 64 byte blocks
709   if (bytes >= 64) {
710     want = (bytes & ~63);
711     poly1305_blocks(st, m, want);
712     m += want;
713     bytes -= want;
714   }
715 
716   if (bytes) {
717     OPENSSL_memcpy(st->buffer + st->leftover, m, bytes);
718     st->leftover += bytes;
719   }
720 }
721 
CRYPTO_poly1305_finish(poly1305_state * state,uint8_t mac[16])722 void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) {
723   poly1305_state_internal *st = poly1305_aligned_state(state);
724   size_t leftover = st->leftover;
725   uint8_t *m = st->buffer;
726   uint128_t d[3];
727   uint64_t h0, h1, h2;
728   uint64_t t0, t1;
729   uint64_t g0, g1, g2, c, nc;
730   uint64_t r0, r1, r2, s1, s2;
731   poly1305_power *p;
732 
733   if (st->started) {
734     size_t consumed = poly1305_combine(st, m, leftover);
735     leftover -= consumed;
736     m += consumed;
737   }
738 
739   // st->HH will either be 0 or have the combined result
740   h0 = st->HH[0];
741   h1 = st->HH[1];
742   h2 = st->HH[2];
743 
744   p = &st->P[1];
745   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
746   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
747   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
748   s1 = r1 * (5 << 2);
749   s2 = r2 * (5 << 2);
750 
751   if (leftover < 16) {
752     goto poly1305_donna_atmost15bytes;
753   }
754 
755 poly1305_donna_atleast16bytes:
756   t0 = CRYPTO_load_u64_le(m + 0);
757   t1 = CRYPTO_load_u64_le(m + 8);
758   h0 += t0 & 0xfffffffffff;
759   t0 = shr128_pair(t1, t0, 44);
760   h1 += t0 & 0xfffffffffff;
761   h2 += (t1 >> 24) | ((uint64_t)1 << 40);
762 
763 poly1305_donna_mul:
764   d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)),
765                 mul64x64_128(h2, s1));
766   d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)),
767                 mul64x64_128(h2, s2));
768   d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)),
769                 mul64x64_128(h2, r0));
770   h0 = lo128(d[0]) & 0xfffffffffff;
771   c = shr128(d[0], 44);
772   d[1] = add128_64(d[1], c);
773   h1 = lo128(d[1]) & 0xfffffffffff;
774   c = shr128(d[1], 44);
775   d[2] = add128_64(d[2], c);
776   h2 = lo128(d[2]) & 0x3ffffffffff;
777   c = shr128(d[2], 42);
778   h0 += c * 5;
779 
780   m += 16;
781   leftover -= 16;
782   if (leftover >= 16) {
783     goto poly1305_donna_atleast16bytes;
784   }
785 
786 // final bytes
787 poly1305_donna_atmost15bytes:
788   if (!leftover) {
789     goto poly1305_donna_finish;
790   }
791 
792   m[leftover++] = 1;
793   OPENSSL_memset(m + leftover, 0, 16 - leftover);
794   leftover = 16;
795 
796   t0 = CRYPTO_load_u64_le(m + 0);
797   t1 = CRYPTO_load_u64_le(m + 8);
798   h0 += t0 & 0xfffffffffff;
799   t0 = shr128_pair(t1, t0, 44);
800   h1 += t0 & 0xfffffffffff;
801   h2 += (t1 >> 24);
802 
803   goto poly1305_donna_mul;
804 
805 poly1305_donna_finish:
806   c = (h0 >> 44);
807   h0 &= 0xfffffffffff;
808   h1 += c;
809   c = (h1 >> 44);
810   h1 &= 0xfffffffffff;
811   h2 += c;
812   c = (h2 >> 42);
813   h2 &= 0x3ffffffffff;
814   h0 += c * 5;
815 
816   g0 = h0 + 5;
817   c = (g0 >> 44);
818   g0 &= 0xfffffffffff;
819   g1 = h1 + c;
820   c = (g1 >> 44);
821   g1 &= 0xfffffffffff;
822   g2 = h2 + c - ((uint64_t)1 << 42);
823 
824   c = (g2 >> 63) - 1;
825   nc = ~c;
826   h0 = (h0 & nc) | (g0 & c);
827   h1 = (h1 & nc) | (g1 & c);
828   h2 = (h2 & nc) | (g2 & c);
829 
830   // pad
831   t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
832   t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
833   h0 += (t0 & 0xfffffffffff);
834   c = (h0 >> 44);
835   h0 &= 0xfffffffffff;
836   t0 = shr128_pair(t1, t0, 44);
837   h1 += (t0 & 0xfffffffffff) + c;
838   c = (h1 >> 44);
839   h1 &= 0xfffffffffff;
840   t1 = (t1 >> 24);
841   h2 += (t1)+c;
842 
843   CRYPTO_store_u64_le(mac + 0, ((h0) | (h1 << 44)));
844   CRYPTO_store_u64_le(mac + 8, ((h1 >> 20) | (h2 << 24)));
845 }
846 
847 #endif  // BORINGSSL_HAS_UINT128 && OPENSSL_X86_64
848