1 /* Written by Dr Stephen N Henson ([email protected]) for the OpenSSL
2 * project 1999.
3 */
4 /* ====================================================================
5 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * [email protected].
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * ([email protected]). This product includes software written by Tim
54 * Hudson ([email protected]). */
55
56 #include <openssl/pkcs8.h>
57
58 #include <assert.h>
59 #include <limits.h>
60 #include <string.h>
61
62 #include <openssl/bytestring.h>
63 #include <openssl/cipher.h>
64 #include <openssl/digest.h>
65 #include <openssl/err.h>
66 #include <openssl/mem.h>
67 #include <openssl/nid.h>
68 #include <openssl/rand.h>
69
70 #include "internal.h"
71 #include "../bytestring/internal.h"
72 #include "../internal.h"
73
74
pkcs12_encode_password(const char * in,size_t in_len,uint8_t ** out,size_t * out_len)75 static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out,
76 size_t *out_len) {
77 CBB cbb;
78 if (!CBB_init(&cbb, in_len * 2)) {
79 return 0;
80 }
81
82 // Convert the password to BMPString, or UCS-2. See
83 // https://tools.ietf.org/html/rfc7292#appendix-B.1.
84 CBS cbs;
85 CBS_init(&cbs, (const uint8_t *)in, in_len);
86 while (CBS_len(&cbs) != 0) {
87 uint32_t c;
88 if (!CBS_get_utf8(&cbs, &c) ||
89 !CBB_add_ucs2_be(&cbb, c)) {
90 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
91 goto err;
92 }
93 }
94
95 // Terminate the result with a UCS-2 NUL.
96 if (!CBB_add_ucs2_be(&cbb, 0) ||
97 !CBB_finish(&cbb, out, out_len)) {
98 goto err;
99 }
100
101 return 1;
102
103 err:
104 CBB_cleanup(&cbb);
105 return 0;
106 }
107
pkcs12_key_gen(const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,uint8_t id,uint32_t iterations,size_t out_len,uint8_t * out,const EVP_MD * md)108 int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt,
109 size_t salt_len, uint8_t id, uint32_t iterations,
110 size_t out_len, uint8_t *out, const EVP_MD *md) {
111 // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
112 // specification have errata applied and other typos fixed.
113
114 if (iterations < 1) {
115 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
116 return 0;
117 }
118
119 int ret = 0;
120 EVP_MD_CTX ctx;
121 EVP_MD_CTX_init(&ctx);
122 uint8_t *pass_raw = NULL, *I = NULL;
123 size_t pass_raw_len = 0, I_len = 0;
124 // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw
125 // password.
126 if (pass != NULL &&
127 !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) {
128 goto err;
129 }
130
131 // In the spec, |block_size| is called "v", but measured in bits.
132 size_t block_size = EVP_MD_block_size(md);
133
134 // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
135 // of ID.
136 uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
137 OPENSSL_memset(D, id, block_size);
138
139 // 2. Concatenate copies of the salt together to create a string S of length
140 // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
141 // create S). Note that if the salt is the empty string, then so is S.
142 //
143 // 3. Concatenate copies of the password together to create a string P of
144 // length v(ceiling(p/v)) bits (the final copy of the password may be
145 // truncated to create P). Note that if the password is the empty string,
146 // then so is P.
147 //
148 // 4. Set I=S||P to be the concatenation of S and P.
149 if (salt_len + block_size - 1 < salt_len ||
150 pass_raw_len + block_size - 1 < pass_raw_len) {
151 OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
152 goto err;
153 }
154 size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
155 size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
156 I_len = S_len + P_len;
157 if (I_len < S_len) {
158 OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
159 goto err;
160 }
161
162 I = OPENSSL_malloc(I_len);
163 if (I_len != 0 && I == NULL) {
164 goto err;
165 }
166
167 for (size_t i = 0; i < S_len; i++) {
168 I[i] = salt[i % salt_len];
169 }
170 for (size_t i = 0; i < P_len; i++) {
171 I[i + S_len] = pass_raw[i % pass_raw_len];
172 }
173
174 while (out_len != 0) {
175 // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
176 // H(H(H(... H(D||I))))
177 uint8_t A[EVP_MAX_MD_SIZE];
178 unsigned A_len;
179 if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
180 !EVP_DigestUpdate(&ctx, D, block_size) ||
181 !EVP_DigestUpdate(&ctx, I, I_len) ||
182 !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
183 goto err;
184 }
185 for (uint32_t iter = 1; iter < iterations; iter++) {
186 if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
187 !EVP_DigestUpdate(&ctx, A, A_len) ||
188 !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
189 goto err;
190 }
191 }
192
193 size_t todo = out_len < A_len ? out_len : A_len;
194 OPENSSL_memcpy(out, A, todo);
195 out += todo;
196 out_len -= todo;
197 if (out_len == 0) {
198 break;
199 }
200
201 // B. Concatenate copies of A_i to create a string B of length v bits (the
202 // final copy of A_i may be truncated to create B).
203 uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
204 for (size_t i = 0; i < block_size; i++) {
205 B[i] = A[i % A_len];
206 }
207
208 // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
209 // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
210 // 2^v for each j.
211 assert(I_len % block_size == 0);
212 for (size_t i = 0; i < I_len; i += block_size) {
213 unsigned carry = 1;
214 for (size_t j = block_size - 1; j < block_size; j--) {
215 carry += I[i + j] + B[j];
216 I[i + j] = (uint8_t)carry;
217 carry >>= 8;
218 }
219 }
220 }
221
222 ret = 1;
223
224 err:
225 OPENSSL_free(I);
226 OPENSSL_free(pass_raw);
227 EVP_MD_CTX_cleanup(&ctx);
228 return ret;
229 }
230
pkcs12_pbe_cipher_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,uint32_t iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int is_encrypt)231 static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
232 EVP_CIPHER_CTX *ctx, uint32_t iterations,
233 const char *pass, size_t pass_len,
234 const uint8_t *salt, size_t salt_len,
235 int is_encrypt) {
236 const EVP_CIPHER *cipher = suite->cipher_func();
237 const EVP_MD *md = suite->md_func();
238
239 uint8_t key[EVP_MAX_KEY_LENGTH];
240 uint8_t iv[EVP_MAX_IV_LENGTH];
241 if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations,
242 EVP_CIPHER_key_length(cipher), key, md) ||
243 !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations,
244 EVP_CIPHER_iv_length(cipher), iv, md)) {
245 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
246 return 0;
247 }
248
249 int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
250 OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
251 OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
252 return ret;
253 }
254
pkcs12_pbe_decrypt_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,const char * pass,size_t pass_len,CBS * param)255 static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
256 EVP_CIPHER_CTX *ctx, const char *pass,
257 size_t pass_len, CBS *param) {
258 CBS pbe_param, salt;
259 uint64_t iterations;
260 if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
261 !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
262 !CBS_get_asn1_uint64(&pbe_param, &iterations) ||
263 CBS_len(&pbe_param) != 0 ||
264 CBS_len(param) != 0) {
265 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
266 return 0;
267 }
268
269 if (!pkcs12_iterations_acceptable(iterations)) {
270 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
271 return 0;
272 }
273
274 return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass,
275 pass_len, CBS_data(&salt), CBS_len(&salt),
276 0 /* decrypt */);
277 }
278
279 static const struct pbe_suite kBuiltinPBE[] = {
280 {
281 NID_pbe_WithSHA1And40BitRC2_CBC,
282 // 1.2.840.113549.1.12.1.6
283 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06},
284 10,
285 EVP_rc2_40_cbc,
286 EVP_sha1,
287 pkcs12_pbe_decrypt_init,
288 },
289 {
290 NID_pbe_WithSHA1And128BitRC4,
291 // 1.2.840.113549.1.12.1.1
292 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01},
293 10,
294 EVP_rc4,
295 EVP_sha1,
296 pkcs12_pbe_decrypt_init,
297 },
298 {
299 NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
300 // 1.2.840.113549.1.12.1.3
301 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03},
302 10,
303 EVP_des_ede3_cbc,
304 EVP_sha1,
305 pkcs12_pbe_decrypt_init,
306 },
307 {
308 NID_pbes2,
309 // 1.2.840.113549.1.5.13
310 {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d},
311 9,
312 NULL,
313 NULL,
314 PKCS5_pbe2_decrypt_init,
315 },
316 };
317
get_pkcs12_pbe_suite(int pbe_nid)318 static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) {
319 for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
320 if (kBuiltinPBE[i].pbe_nid == pbe_nid &&
321 // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme.
322 kBuiltinPBE[i].cipher_func != NULL &&
323 kBuiltinPBE[i].md_func != NULL) {
324 return &kBuiltinPBE[i];
325 }
326 }
327
328 return NULL;
329 }
330
pkcs12_pbe_encrypt_init(CBB * out,EVP_CIPHER_CTX * ctx,int alg,uint32_t iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len)331 int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
332 uint32_t iterations, const char *pass,
333 size_t pass_len, const uint8_t *salt,
334 size_t salt_len) {
335 const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg);
336 if (suite == NULL) {
337 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
338 return 0;
339 }
340
341 // See RFC 2898, appendix A.3.
342 CBB algorithm, oid, param, salt_cbb;
343 if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
344 !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
345 !CBB_add_bytes(&oid, suite->oid, suite->oid_len) ||
346 !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) ||
347 !CBB_add_asn1(¶m, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
348 !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
349 !CBB_add_asn1_uint64(¶m, iterations) ||
350 !CBB_flush(out)) {
351 return 0;
352 }
353
354 return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt,
355 salt_len, 1 /* encrypt */);
356 }
357
pkcs8_pbe_decrypt(uint8_t ** out,size_t * out_len,CBS * algorithm,const char * pass,size_t pass_len,const uint8_t * in,size_t in_len)358 int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
359 const char *pass, size_t pass_len, const uint8_t *in,
360 size_t in_len) {
361 int ret = 0;
362 uint8_t *buf = NULL;;
363 EVP_CIPHER_CTX ctx;
364 EVP_CIPHER_CTX_init(&ctx);
365
366 CBS obj;
367 if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
368 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
369 goto err;
370 }
371
372 const struct pbe_suite *suite = NULL;
373 for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
374 if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) {
375 suite = &kBuiltinPBE[i];
376 break;
377 }
378 }
379 if (suite == NULL) {
380 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
381 goto err;
382 }
383
384 if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) {
385 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
386 goto err;
387 }
388
389 buf = OPENSSL_malloc(in_len);
390 if (buf == NULL) {
391 goto err;
392 }
393
394 if (in_len > INT_MAX) {
395 OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
396 goto err;
397 }
398
399 int n1, n2;
400 if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
401 !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
402 goto err;
403 }
404
405 *out = buf;
406 *out_len = n1 + n2;
407 ret = 1;
408 buf = NULL;
409
410 err:
411 OPENSSL_free(buf);
412 EVP_CIPHER_CTX_cleanup(&ctx);
413 return ret;
414 }
415
PKCS8_parse_encrypted_private_key(CBS * cbs,const char * pass,size_t pass_len)416 EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass,
417 size_t pass_len) {
418 // See RFC 5208, section 6.
419 CBS epki, algorithm, ciphertext;
420 if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) ||
421 !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
422 !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
423 CBS_len(&epki) != 0) {
424 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
425 return 0;
426 }
427
428 uint8_t *out;
429 size_t out_len;
430 if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len,
431 CBS_data(&ciphertext), CBS_len(&ciphertext))) {
432 return 0;
433 }
434
435 CBS pki;
436 CBS_init(&pki, out, out_len);
437 EVP_PKEY *ret = EVP_parse_private_key(&pki);
438 OPENSSL_free(out);
439 return ret;
440 }
441
PKCS8_marshal_encrypted_private_key(CBB * out,int pbe_nid,const EVP_CIPHER * cipher,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int iterations,const EVP_PKEY * pkey)442 int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid,
443 const EVP_CIPHER *cipher,
444 const char *pass, size_t pass_len,
445 const uint8_t *salt, size_t salt_len,
446 int iterations, const EVP_PKEY *pkey) {
447 int ret = 0;
448 uint8_t *plaintext = NULL, *salt_buf = NULL;
449 size_t plaintext_len = 0;
450 EVP_CIPHER_CTX ctx;
451 EVP_CIPHER_CTX_init(&ctx);
452
453 // Generate a random salt if necessary.
454 if (salt == NULL) {
455 if (salt_len == 0) {
456 salt_len = PKCS5_SALT_LEN;
457 }
458
459 salt_buf = OPENSSL_malloc(salt_len);
460 if (salt_buf == NULL ||
461 !RAND_bytes(salt_buf, salt_len)) {
462 goto err;
463 }
464
465 salt = salt_buf;
466 }
467
468 if (iterations <= 0) {
469 iterations = PKCS12_DEFAULT_ITER;
470 }
471
472 // Serialize the input key.
473 CBB plaintext_cbb;
474 if (!CBB_init(&plaintext_cbb, 128) ||
475 !EVP_marshal_private_key(&plaintext_cbb, pkey) ||
476 !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) {
477 CBB_cleanup(&plaintext_cbb);
478 goto err;
479 }
480
481 CBB epki;
482 if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) {
483 goto err;
484 }
485
486 // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the
487 // PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will
488 // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses
489 // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL.
490 int alg_ok;
491 if (pbe_nid == -1) {
492 alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (uint32_t)iterations,
493 pass, pass_len, salt, salt_len);
494 } else {
495 alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (uint32_t)iterations,
496 pass, pass_len, salt, salt_len);
497 }
498 if (!alg_ok) {
499 goto err;
500 }
501
502 size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
503 if (max_out < plaintext_len) {
504 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
505 goto err;
506 }
507
508 CBB ciphertext;
509 uint8_t *ptr;
510 int n1, n2;
511 if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
512 !CBB_reserve(&ciphertext, &ptr, max_out) ||
513 !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) ||
514 !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
515 !CBB_did_write(&ciphertext, n1 + n2) ||
516 !CBB_flush(out)) {
517 goto err;
518 }
519
520 ret = 1;
521
522 err:
523 OPENSSL_free(plaintext);
524 OPENSSL_free(salt_buf);
525 EVP_CIPHER_CTX_cleanup(&ctx);
526 return ret;
527 }
528