xref: /aosp_15_r20/external/boringssl/src/crypto/pkcs8/pkcs8.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Written by Dr Stephen N Henson ([email protected]) for the OpenSSL
2  * project 1999.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    [email protected].
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * ([email protected]).  This product includes software written by Tim
54  * Hudson ([email protected]). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <assert.h>
59 #include <limits.h>
60 #include <string.h>
61 
62 #include <openssl/bytestring.h>
63 #include <openssl/cipher.h>
64 #include <openssl/digest.h>
65 #include <openssl/err.h>
66 #include <openssl/mem.h>
67 #include <openssl/nid.h>
68 #include <openssl/rand.h>
69 
70 #include "internal.h"
71 #include "../bytestring/internal.h"
72 #include "../internal.h"
73 
74 
pkcs12_encode_password(const char * in,size_t in_len,uint8_t ** out,size_t * out_len)75 static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out,
76                                   size_t *out_len) {
77   CBB cbb;
78   if (!CBB_init(&cbb, in_len * 2)) {
79     return 0;
80   }
81 
82   // Convert the password to BMPString, or UCS-2. See
83   // https://tools.ietf.org/html/rfc7292#appendix-B.1.
84   CBS cbs;
85   CBS_init(&cbs, (const uint8_t *)in, in_len);
86   while (CBS_len(&cbs) != 0) {
87     uint32_t c;
88     if (!CBS_get_utf8(&cbs, &c) ||
89         !CBB_add_ucs2_be(&cbb, c)) {
90       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
91       goto err;
92     }
93   }
94 
95   // Terminate the result with a UCS-2 NUL.
96   if (!CBB_add_ucs2_be(&cbb, 0) ||
97       !CBB_finish(&cbb, out, out_len)) {
98     goto err;
99   }
100 
101   return 1;
102 
103 err:
104   CBB_cleanup(&cbb);
105   return 0;
106 }
107 
pkcs12_key_gen(const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,uint8_t id,uint32_t iterations,size_t out_len,uint8_t * out,const EVP_MD * md)108 int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt,
109                    size_t salt_len, uint8_t id, uint32_t iterations,
110                    size_t out_len, uint8_t *out, const EVP_MD *md) {
111   // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
112   // specification have errata applied and other typos fixed.
113 
114   if (iterations < 1) {
115     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
116     return 0;
117   }
118 
119   int ret = 0;
120   EVP_MD_CTX ctx;
121   EVP_MD_CTX_init(&ctx);
122   uint8_t *pass_raw = NULL, *I = NULL;
123   size_t pass_raw_len = 0, I_len = 0;
124   // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw
125   // password.
126   if (pass != NULL &&
127       !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) {
128     goto err;
129   }
130 
131   // In the spec, |block_size| is called "v", but measured in bits.
132   size_t block_size = EVP_MD_block_size(md);
133 
134   // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
135   // of ID.
136   uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
137   OPENSSL_memset(D, id, block_size);
138 
139   // 2. Concatenate copies of the salt together to create a string S of length
140   // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
141   // create S). Note that if the salt is the empty string, then so is S.
142   //
143   // 3. Concatenate copies of the password together to create a string P of
144   // length v(ceiling(p/v)) bits (the final copy of the password may be
145   // truncated to create P).  Note that if the password is the empty string,
146   // then so is P.
147   //
148   // 4. Set I=S||P to be the concatenation of S and P.
149   if (salt_len + block_size - 1 < salt_len ||
150       pass_raw_len + block_size - 1 < pass_raw_len) {
151     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
152     goto err;
153   }
154   size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
155   size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
156   I_len = S_len + P_len;
157   if (I_len < S_len) {
158     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
159     goto err;
160   }
161 
162   I = OPENSSL_malloc(I_len);
163   if (I_len != 0 && I == NULL) {
164     goto err;
165   }
166 
167   for (size_t i = 0; i < S_len; i++) {
168     I[i] = salt[i % salt_len];
169   }
170   for (size_t i = 0; i < P_len; i++) {
171     I[i + S_len] = pass_raw[i % pass_raw_len];
172   }
173 
174   while (out_len != 0) {
175     // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
176     // H(H(H(... H(D||I))))
177     uint8_t A[EVP_MAX_MD_SIZE];
178     unsigned A_len;
179     if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
180         !EVP_DigestUpdate(&ctx, D, block_size) ||
181         !EVP_DigestUpdate(&ctx, I, I_len) ||
182         !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
183       goto err;
184     }
185     for (uint32_t iter = 1; iter < iterations; iter++) {
186       if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
187           !EVP_DigestUpdate(&ctx, A, A_len) ||
188           !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
189         goto err;
190       }
191     }
192 
193     size_t todo = out_len < A_len ? out_len : A_len;
194     OPENSSL_memcpy(out, A, todo);
195     out += todo;
196     out_len -= todo;
197     if (out_len == 0) {
198       break;
199     }
200 
201     // B. Concatenate copies of A_i to create a string B of length v bits (the
202     // final copy of A_i may be truncated to create B).
203     uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
204     for (size_t i = 0; i < block_size; i++) {
205       B[i] = A[i % A_len];
206     }
207 
208     // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
209     // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
210     // 2^v for each j.
211     assert(I_len % block_size == 0);
212     for (size_t i = 0; i < I_len; i += block_size) {
213       unsigned carry = 1;
214       for (size_t j = block_size - 1; j < block_size; j--) {
215         carry += I[i + j] + B[j];
216         I[i + j] = (uint8_t)carry;
217         carry >>= 8;
218       }
219     }
220   }
221 
222   ret = 1;
223 
224 err:
225   OPENSSL_free(I);
226   OPENSSL_free(pass_raw);
227   EVP_MD_CTX_cleanup(&ctx);
228   return ret;
229 }
230 
pkcs12_pbe_cipher_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,uint32_t iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int is_encrypt)231 static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
232                                   EVP_CIPHER_CTX *ctx, uint32_t iterations,
233                                   const char *pass, size_t pass_len,
234                                   const uint8_t *salt, size_t salt_len,
235                                   int is_encrypt) {
236   const EVP_CIPHER *cipher = suite->cipher_func();
237   const EVP_MD *md = suite->md_func();
238 
239   uint8_t key[EVP_MAX_KEY_LENGTH];
240   uint8_t iv[EVP_MAX_IV_LENGTH];
241   if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations,
242                       EVP_CIPHER_key_length(cipher), key, md) ||
243       !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations,
244                       EVP_CIPHER_iv_length(cipher), iv, md)) {
245     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
246     return 0;
247   }
248 
249   int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
250   OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
251   OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
252   return ret;
253 }
254 
pkcs12_pbe_decrypt_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,const char * pass,size_t pass_len,CBS * param)255 static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
256                                    EVP_CIPHER_CTX *ctx, const char *pass,
257                                    size_t pass_len, CBS *param) {
258   CBS pbe_param, salt;
259   uint64_t iterations;
260   if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
261       !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
262       !CBS_get_asn1_uint64(&pbe_param, &iterations) ||
263       CBS_len(&pbe_param) != 0 ||
264       CBS_len(param) != 0) {
265     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
266     return 0;
267   }
268 
269   if (!pkcs12_iterations_acceptable(iterations)) {
270     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
271     return 0;
272   }
273 
274   return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass,
275                                 pass_len, CBS_data(&salt), CBS_len(&salt),
276                                 0 /* decrypt */);
277 }
278 
279 static const struct pbe_suite kBuiltinPBE[] = {
280     {
281         NID_pbe_WithSHA1And40BitRC2_CBC,
282         // 1.2.840.113549.1.12.1.6
283         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06},
284         10,
285         EVP_rc2_40_cbc,
286         EVP_sha1,
287         pkcs12_pbe_decrypt_init,
288     },
289     {
290         NID_pbe_WithSHA1And128BitRC4,
291         // 1.2.840.113549.1.12.1.1
292         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01},
293         10,
294         EVP_rc4,
295         EVP_sha1,
296         pkcs12_pbe_decrypt_init,
297     },
298     {
299         NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
300         // 1.2.840.113549.1.12.1.3
301         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03},
302         10,
303         EVP_des_ede3_cbc,
304         EVP_sha1,
305         pkcs12_pbe_decrypt_init,
306     },
307     {
308         NID_pbes2,
309         // 1.2.840.113549.1.5.13
310         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d},
311         9,
312         NULL,
313         NULL,
314         PKCS5_pbe2_decrypt_init,
315     },
316 };
317 
get_pkcs12_pbe_suite(int pbe_nid)318 static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) {
319   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
320     if (kBuiltinPBE[i].pbe_nid == pbe_nid &&
321         // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme.
322         kBuiltinPBE[i].cipher_func != NULL &&
323         kBuiltinPBE[i].md_func != NULL) {
324       return &kBuiltinPBE[i];
325     }
326   }
327 
328   return NULL;
329 }
330 
pkcs12_pbe_encrypt_init(CBB * out,EVP_CIPHER_CTX * ctx,int alg,uint32_t iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len)331 int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
332                             uint32_t iterations, const char *pass,
333                             size_t pass_len, const uint8_t *salt,
334                             size_t salt_len) {
335   const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg);
336   if (suite == NULL) {
337     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
338     return 0;
339   }
340 
341   // See RFC 2898, appendix A.3.
342   CBB algorithm, oid, param, salt_cbb;
343   if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
344       !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
345       !CBB_add_bytes(&oid, suite->oid, suite->oid_len) ||
346       !CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
347       !CBB_add_asn1(&param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
348       !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
349       !CBB_add_asn1_uint64(&param, iterations) ||
350       !CBB_flush(out)) {
351     return 0;
352   }
353 
354   return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt,
355                                 salt_len, 1 /* encrypt */);
356 }
357 
pkcs8_pbe_decrypt(uint8_t ** out,size_t * out_len,CBS * algorithm,const char * pass,size_t pass_len,const uint8_t * in,size_t in_len)358 int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
359                       const char *pass, size_t pass_len, const uint8_t *in,
360                       size_t in_len) {
361   int ret = 0;
362   uint8_t *buf = NULL;;
363   EVP_CIPHER_CTX ctx;
364   EVP_CIPHER_CTX_init(&ctx);
365 
366   CBS obj;
367   if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
368     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
369     goto err;
370   }
371 
372   const struct pbe_suite *suite = NULL;
373   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
374     if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) {
375       suite = &kBuiltinPBE[i];
376       break;
377     }
378   }
379   if (suite == NULL) {
380     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
381     goto err;
382   }
383 
384   if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) {
385     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
386     goto err;
387   }
388 
389   buf = OPENSSL_malloc(in_len);
390   if (buf == NULL) {
391     goto err;
392   }
393 
394   if (in_len > INT_MAX) {
395     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
396     goto err;
397   }
398 
399   int n1, n2;
400   if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
401       !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
402     goto err;
403   }
404 
405   *out = buf;
406   *out_len = n1 + n2;
407   ret = 1;
408   buf = NULL;
409 
410 err:
411   OPENSSL_free(buf);
412   EVP_CIPHER_CTX_cleanup(&ctx);
413   return ret;
414 }
415 
PKCS8_parse_encrypted_private_key(CBS * cbs,const char * pass,size_t pass_len)416 EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass,
417                                             size_t pass_len) {
418   // See RFC 5208, section 6.
419   CBS epki, algorithm, ciphertext;
420   if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) ||
421       !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
422       !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
423       CBS_len(&epki) != 0) {
424     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
425     return 0;
426   }
427 
428   uint8_t *out;
429   size_t out_len;
430   if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len,
431                          CBS_data(&ciphertext), CBS_len(&ciphertext))) {
432     return 0;
433   }
434 
435   CBS pki;
436   CBS_init(&pki, out, out_len);
437   EVP_PKEY *ret = EVP_parse_private_key(&pki);
438   OPENSSL_free(out);
439   return ret;
440 }
441 
PKCS8_marshal_encrypted_private_key(CBB * out,int pbe_nid,const EVP_CIPHER * cipher,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int iterations,const EVP_PKEY * pkey)442 int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid,
443                                         const EVP_CIPHER *cipher,
444                                         const char *pass, size_t pass_len,
445                                         const uint8_t *salt, size_t salt_len,
446                                         int iterations, const EVP_PKEY *pkey) {
447   int ret = 0;
448   uint8_t *plaintext = NULL, *salt_buf = NULL;
449   size_t plaintext_len = 0;
450   EVP_CIPHER_CTX ctx;
451   EVP_CIPHER_CTX_init(&ctx);
452 
453   // Generate a random salt if necessary.
454   if (salt == NULL) {
455     if (salt_len == 0) {
456       salt_len = PKCS5_SALT_LEN;
457     }
458 
459     salt_buf = OPENSSL_malloc(salt_len);
460     if (salt_buf == NULL ||
461         !RAND_bytes(salt_buf, salt_len)) {
462       goto err;
463     }
464 
465     salt = salt_buf;
466   }
467 
468   if (iterations <= 0) {
469     iterations = PKCS12_DEFAULT_ITER;
470   }
471 
472   // Serialize the input key.
473   CBB plaintext_cbb;
474   if (!CBB_init(&plaintext_cbb, 128) ||
475       !EVP_marshal_private_key(&plaintext_cbb, pkey) ||
476       !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) {
477     CBB_cleanup(&plaintext_cbb);
478     goto err;
479   }
480 
481   CBB epki;
482   if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) {
483     goto err;
484   }
485 
486   // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the
487   // PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will
488   // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses
489   // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL.
490   int alg_ok;
491   if (pbe_nid == -1) {
492     alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (uint32_t)iterations,
493                                      pass, pass_len, salt, salt_len);
494   } else {
495     alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (uint32_t)iterations,
496                                      pass, pass_len, salt, salt_len);
497   }
498   if (!alg_ok) {
499     goto err;
500   }
501 
502   size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
503   if (max_out < plaintext_len) {
504     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
505     goto err;
506   }
507 
508   CBB ciphertext;
509   uint8_t *ptr;
510   int n1, n2;
511   if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
512       !CBB_reserve(&ciphertext, &ptr, max_out) ||
513       !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) ||
514       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
515       !CBB_did_write(&ciphertext, n1 + n2) ||
516       !CBB_flush(out)) {
517     goto err;
518   }
519 
520   ret = 1;
521 
522 err:
523   OPENSSL_free(plaintext);
524   OPENSSL_free(salt_buf);
525   EVP_CIPHER_CTX_cleanup(&ctx);
526   return ret;
527 }
528