xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/sha/sha1.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/sha.h>
58 
59 #include <string.h>
60 
61 #include <openssl/mem.h>
62 
63 #include "../../internal.h"
64 #include "../digest/md32_common.h"
65 #include "../service_indicator/internal.h"
66 #include "internal.h"
67 
68 
SHA1_Init(SHA_CTX * sha)69 int SHA1_Init(SHA_CTX *sha) {
70   OPENSSL_memset(sha, 0, sizeof(SHA_CTX));
71   sha->h[0] = 0x67452301UL;
72   sha->h[1] = 0xefcdab89UL;
73   sha->h[2] = 0x98badcfeUL;
74   sha->h[3] = 0x10325476UL;
75   sha->h[4] = 0xc3d2e1f0UL;
76   return 1;
77 }
78 
SHA1(const uint8_t * data,size_t len,uint8_t out[SHA_DIGEST_LENGTH])79 uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t out[SHA_DIGEST_LENGTH]) {
80   SHA_CTX ctx;
81   SHA1_Init(&ctx);
82   SHA1_Update(&ctx, data, len);
83   SHA1_Final(out, &ctx);
84   OPENSSL_cleanse(&ctx, sizeof(ctx));
85   return out;
86 }
87 
88 #if !defined(SHA1_ASM)
89 static void sha1_block_data_order(uint32_t state[5], const uint8_t *data,
90                                   size_t num);
91 #endif
92 
SHA1_Transform(SHA_CTX * c,const uint8_t data[SHA_CBLOCK])93 void SHA1_Transform(SHA_CTX *c, const uint8_t data[SHA_CBLOCK]) {
94   sha1_block_data_order(c->h, data, 1);
95 }
96 
SHA1_Update(SHA_CTX * c,const void * data,size_t len)97 int SHA1_Update(SHA_CTX *c, const void *data, size_t len) {
98   crypto_md32_update(&sha1_block_data_order, c->h, c->data, SHA_CBLOCK, &c->num,
99                      &c->Nh, &c->Nl, data, len);
100   return 1;
101 }
102 
sha1_output_state(uint8_t out[SHA_DIGEST_LENGTH],const SHA_CTX * ctx)103 static void sha1_output_state(uint8_t out[SHA_DIGEST_LENGTH],
104                               const SHA_CTX *ctx) {
105   CRYPTO_store_u32_be(out, ctx->h[0]);
106   CRYPTO_store_u32_be(out + 4, ctx->h[1]);
107   CRYPTO_store_u32_be(out + 8, ctx->h[2]);
108   CRYPTO_store_u32_be(out + 12, ctx->h[3]);
109   CRYPTO_store_u32_be(out + 16, ctx->h[4]);
110 }
111 
SHA1_Final(uint8_t out[SHA_DIGEST_LENGTH],SHA_CTX * c)112 int SHA1_Final(uint8_t out[SHA_DIGEST_LENGTH], SHA_CTX *c) {
113   crypto_md32_final(&sha1_block_data_order, c->h, c->data, SHA_CBLOCK, &c->num,
114                     c->Nh, c->Nl, /*is_big_endian=*/1);
115 
116   sha1_output_state(out, c);
117   FIPS_service_indicator_update_state();
118   return 1;
119 }
120 
CRYPTO_fips_186_2_prf(uint8_t * out,size_t out_len,const uint8_t xkey[SHA_DIGEST_LENGTH])121 void CRYPTO_fips_186_2_prf(uint8_t *out, size_t out_len,
122                            const uint8_t xkey[SHA_DIGEST_LENGTH]) {
123   // XKEY and XVAL are 160-bit values, but are internally right-padded up to
124   // block size. See FIPS 186-2, Appendix 3.3. This buffer maintains both the
125   // current value of XKEY and the padding.
126   uint8_t block[SHA_CBLOCK] = {0};
127   OPENSSL_memcpy(block, xkey, SHA_DIGEST_LENGTH);
128 
129   while (out_len != 0) {
130     // We always use a zero XSEED, so we can merge the inner and outer loops.
131     // XVAL is also always equal to XKEY.
132     SHA_CTX ctx;
133     SHA1_Init(&ctx);
134     SHA1_Transform(&ctx, block);
135 
136     // XKEY = (1 + XKEY + w_i) mod 2^b
137     uint32_t carry = 1;
138     for (int i = 4; i >= 0; i--) {
139       uint32_t tmp = CRYPTO_load_u32_be(block + i * 4);
140       tmp = CRYPTO_addc_u32(tmp, ctx.h[i], carry, &carry);
141       CRYPTO_store_u32_be(block + i * 4, tmp);
142     }
143 
144     // Output w_i.
145     if (out_len < SHA_DIGEST_LENGTH) {
146       uint8_t buf[SHA_DIGEST_LENGTH];
147       sha1_output_state(buf, &ctx);
148       OPENSSL_memcpy(out, buf, out_len);
149       break;
150     }
151     sha1_output_state(out, &ctx);
152     out += SHA_DIGEST_LENGTH;
153     out_len -= SHA_DIGEST_LENGTH;
154   }
155 }
156 
157 #define Xupdate(a, ix, ia, ib, ic, id)    \
158   do {                                    \
159     (a) = ((ia) ^ (ib) ^ (ic) ^ (id));    \
160     (ix) = (a) = CRYPTO_rotl_u32((a), 1); \
161   } while (0)
162 
163 #define K_00_19 0x5a827999UL
164 #define K_20_39 0x6ed9eba1UL
165 #define K_40_59 0x8f1bbcdcUL
166 #define K_60_79 0xca62c1d6UL
167 
168 // As  pointed out by Wei Dai <[email protected]>, F() below can be simplified
169 // to the code in F_00_19.  Wei attributes these optimisations to Peter
170 // Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define
171 // F(x,y,z) (((x) & (y))  |  ((~(x)) & (z))) I've just become aware of another
172 // tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a
173 #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d))
174 #define F_20_39(b, c, d) ((b) ^ (c) ^ (d))
175 #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d)))
176 #define F_60_79(b, c, d) F_20_39(b, c, d)
177 
178 #define BODY_00_15(i, a, b, c, d, e, f, xi)                \
179   do {                                                     \
180     (f) = (xi) + (e) + K_00_19 + CRYPTO_rotl_u32((a), 5) + \
181           F_00_19((b), (c), (d));                          \
182     (b) = CRYPTO_rotl_u32((b), 30);                        \
183   } while (0)
184 
185 #define BODY_16_19(i, a, b, c, d, e, f, xi, xa, xb, xc, xd)                  \
186   do {                                                                       \
187     Xupdate(f, xi, xa, xb, xc, xd);                                          \
188     (f) += (e) + K_00_19 + CRYPTO_rotl_u32((a), 5) + F_00_19((b), (c), (d)); \
189     (b) = CRYPTO_rotl_u32((b), 30);                                          \
190   } while (0)
191 
192 #define BODY_20_31(i, a, b, c, d, e, f, xi, xa, xb, xc, xd)                  \
193   do {                                                                       \
194     Xupdate(f, xi, xa, xb, xc, xd);                                          \
195     (f) += (e) + K_20_39 + CRYPTO_rotl_u32((a), 5) + F_20_39((b), (c), (d)); \
196     (b) = CRYPTO_rotl_u32((b), 30);                                          \
197   } while (0)
198 
199 #define BODY_32_39(i, a, b, c, d, e, f, xa, xb, xc, xd)                      \
200   do {                                                                       \
201     Xupdate(f, xa, xa, xb, xc, xd);                                          \
202     (f) += (e) + K_20_39 + CRYPTO_rotl_u32((a), 5) + F_20_39((b), (c), (d)); \
203     (b) = CRYPTO_rotl_u32((b), 30);                                          \
204   } while (0)
205 
206 #define BODY_40_59(i, a, b, c, d, e, f, xa, xb, xc, xd)                      \
207   do {                                                                       \
208     Xupdate(f, xa, xa, xb, xc, xd);                                          \
209     (f) += (e) + K_40_59 + CRYPTO_rotl_u32((a), 5) + F_40_59((b), (c), (d)); \
210     (b) = CRYPTO_rotl_u32((b), 30);                                          \
211   } while (0)
212 
213 #define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd)    \
214   do {                                                     \
215     Xupdate(f, xa, xa, xb, xc, xd);                        \
216     (f) = (xa) + (e) + K_60_79 + CRYPTO_rotl_u32((a), 5) + \
217           F_60_79((b), (c), (d));                          \
218     (b) = CRYPTO_rotl_u32((b), 30);                        \
219   } while (0)
220 
221 #ifdef X
222 #undef X
223 #endif
224 
225 /* Originally X was an array. As it's automatic it's natural
226 * to expect RISC compiler to accomodate at least part of it in
227 * the register bank, isn't it? Unfortunately not all compilers
228 * "find" this expectation reasonable:-( On order to make such
229 * compilers generate better code I replace X[] with a bunch of
230 * X0, X1, etc. See the function body below...
231 *         <[email protected]> */
232 #define X(i)  XX##i
233 
234 #if !defined(SHA1_ASM)
235 
236 #if !defined(SHA1_ASM_NOHW)
sha1_block_data_order_nohw(uint32_t state[5],const uint8_t * data,size_t num)237 static void sha1_block_data_order_nohw(uint32_t state[5], const uint8_t *data,
238                                        size_t num) {
239   register uint32_t A, B, C, D, E, T;
240   uint32_t XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10,
241       XX11, XX12, XX13, XX14, XX15;
242 
243   A = state[0];
244   B = state[1];
245   C = state[2];
246   D = state[3];
247   E = state[4];
248 
249   for (;;) {
250     X(0) = CRYPTO_load_u32_be(data);
251     data += 4;
252     X(1) = CRYPTO_load_u32_be(data);
253     data += 4;
254     BODY_00_15(0, A, B, C, D, E, T, X(0));
255     X(2) = CRYPTO_load_u32_be(data);
256     data += 4;
257     BODY_00_15(1, T, A, B, C, D, E, X(1));
258     X(3) = CRYPTO_load_u32_be(data);
259     data += 4;
260     BODY_00_15(2, E, T, A, B, C, D, X(2));
261     X(4) = CRYPTO_load_u32_be(data);
262     data += 4;
263     BODY_00_15(3, D, E, T, A, B, C, X(3));
264     X(5) = CRYPTO_load_u32_be(data);
265     data += 4;
266     BODY_00_15(4, C, D, E, T, A, B, X(4));
267     X(6) = CRYPTO_load_u32_be(data);
268     data += 4;
269     BODY_00_15(5, B, C, D, E, T, A, X(5));
270     X(7) = CRYPTO_load_u32_be(data);
271     data += 4;
272     BODY_00_15(6, A, B, C, D, E, T, X(6));
273     X(8) = CRYPTO_load_u32_be(data);
274     data += 4;
275     BODY_00_15(7, T, A, B, C, D, E, X(7));
276     X(9) = CRYPTO_load_u32_be(data);
277     data += 4;
278     BODY_00_15(8, E, T, A, B, C, D, X(8));
279     X(10) = CRYPTO_load_u32_be(data);
280     data += 4;
281     BODY_00_15(9, D, E, T, A, B, C, X(9));
282     X(11) = CRYPTO_load_u32_be(data);
283     data += 4;
284     BODY_00_15(10, C, D, E, T, A, B, X(10));
285     X(12) = CRYPTO_load_u32_be(data);
286     data += 4;
287     BODY_00_15(11, B, C, D, E, T, A, X(11));
288     X(13) = CRYPTO_load_u32_be(data);
289     data += 4;
290     BODY_00_15(12, A, B, C, D, E, T, X(12));
291     X(14) = CRYPTO_load_u32_be(data);
292     data += 4;
293     BODY_00_15(13, T, A, B, C, D, E, X(13));
294     X(15) = CRYPTO_load_u32_be(data);
295     data += 4;
296     BODY_00_15(14, E, T, A, B, C, D, X(14));
297     BODY_00_15(15, D, E, T, A, B, C, X(15));
298 
299     BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
300     BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
301     BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
302     BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
303 
304     BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
305     BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
306     BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
307     BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
308     BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
309     BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
310     BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
311     BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
312     BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
313     BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
314     BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
315     BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
316 
317     BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
318     BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
319     BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
320     BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
321     BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
322     BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
323     BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
324     BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
325 
326     BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
327     BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
328     BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
329     BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
330     BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
331     BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
332     BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
333     BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
334     BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
335     BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
336     BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
337     BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
338     BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
339     BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
340     BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
341     BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
342     BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
343     BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
344     BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
345     BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
346 
347     BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
348     BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
349     BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
350     BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
351     BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
352     BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
353     BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
354     BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
355     BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
356     BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
357     BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
358     BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
359     BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
360     BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
361     BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
362     BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
363     BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
364     BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
365     BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
366     BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
367 
368     state[0] = (state[0] + E) & 0xffffffffL;
369     state[1] = (state[1] + T) & 0xffffffffL;
370     state[2] = (state[2] + A) & 0xffffffffL;
371     state[3] = (state[3] + B) & 0xffffffffL;
372     state[4] = (state[4] + C) & 0xffffffffL;
373 
374     if (--num == 0) {
375       break;
376     }
377 
378     A = state[0];
379     B = state[1];
380     C = state[2];
381     D = state[3];
382     E = state[4];
383   }
384 }
385 #endif  // !SHA1_ASM_NOHW
386 
sha1_block_data_order(uint32_t state[5],const uint8_t * data,size_t num)387 static void sha1_block_data_order(uint32_t state[5], const uint8_t *data,
388                                   size_t num) {
389 #if defined(SHA1_ASM_HW)
390   if (sha1_hw_capable()) {
391     sha1_block_data_order_hw(state, data, num);
392     return;
393   }
394 #endif
395 #if defined(SHA1_ASM_AVX2)
396   if (sha1_avx2_capable()) {
397     sha1_block_data_order_avx2(state, data, num);
398     return;
399   }
400 #endif
401 #if defined(SHA1_ASM_AVX)
402   if (sha1_avx_capable()) {
403     sha1_block_data_order_avx(state, data, num);
404     return;
405   }
406 #endif
407 #if defined(SHA1_ASM_SSSE3)
408   if (sha1_ssse3_capable()) {
409     sha1_block_data_order_ssse3(state, data, num);
410     return;
411   }
412 #endif
413 #if defined(SHA1_ASM_NEON)
414   if (CRYPTO_is_NEON_capable()) {
415     sha1_block_data_order_neon(state, data, num);
416     return;
417   }
418 #endif
419   sha1_block_data_order_nohw(state, data, num);
420 }
421 
422 #endif  // !SHA1_ASM
423 
424 #undef Xupdate
425 #undef K_00_19
426 #undef K_20_39
427 #undef K_40_59
428 #undef K_60_79
429 #undef F_00_19
430 #undef F_20_39
431 #undef F_40_59
432 #undef F_60_79
433 #undef BODY_00_15
434 #undef BODY_16_19
435 #undef BODY_20_31
436 #undef BODY_32_39
437 #undef BODY_40_59
438 #undef BODY_60_79
439 #undef X
440