1#! /usr/bin/env perl 2# Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <[email protected]> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# SHA512 block transform for x86. September 2007. 18# 19# May 2013. 20# 21# Add SSSE3 code path, 20-25% improvement [over original SSE2 code]. 22# 23# Performance in clock cycles per processed byte (less is better): 24# 25# gcc icc x86 asm SIMD(*) x86_64(**) 26# Pentium 100 97 61 - - 27# PIII 75 77 56 - - 28# P4 116 95 82 34.6 30.8 29# AMD K8 54 55 36 20.7 9.57 30# Core2 66 57 40 15.9 9.97 31# Westmere 70 - 38 12.2 9.58 32# Sandy Bridge 58 - 35 11.9 11.2 33# Ivy Bridge 50 - 33 11.5 8.17 34# Haswell 46 - 29 11.3 7.66 35# Skylake 40 - 26 13.3 7.25 36# Bulldozer 121 - 50 14.0 13.5 37# VIA Nano 91 - 52 33 14.7 38# Atom 126 - 68 48(***) 14.7 39# Silvermont 97 - 58 42(***) 17.5 40# Goldmont 80 - 48 19.5 12.0 41# 42# (*) whichever best applicable. 43# (**) x86_64 assembler performance is presented for reference 44# purposes, the results are for integer-only code. 45# (***) paddq is incredibly slow on Atom. 46# 47# IALU code-path is optimized for elder Pentiums. On vanilla Pentium 48# performance improvement over compiler generated code reaches ~60%, 49# while on PIII - ~35%. On newer µ-archs improvement varies from 15% 50# to 50%, but it's less important as they are expected to execute SSE2 51# code-path, which is commonly ~2-3x faster [than compiler generated 52# code]. SSE2 code-path is as fast as original sha512-sse2.pl, even 53# though it does not use 128-bit operations. The latter means that 54# SSE2-aware kernel is no longer required to execute the code. Another 55# difference is that new code optimizes amount of writes, but at the 56# cost of increased data cache "footprint" by 1/2KB. 57 58$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 59push(@INC,"${dir}","${dir}../../../perlasm"); 60require "x86asm.pl"; 61 62$output=pop; 63open STDOUT,">$output"; 64 65&asm_init($ARGV[0]); 66 67$sse2=1; 68 69$Tlo=&DWP(0,"esp"); $Thi=&DWP(4,"esp"); 70$Alo=&DWP(8,"esp"); $Ahi=&DWP(8+4,"esp"); 71$Blo=&DWP(16,"esp"); $Bhi=&DWP(16+4,"esp"); 72$Clo=&DWP(24,"esp"); $Chi=&DWP(24+4,"esp"); 73$Dlo=&DWP(32,"esp"); $Dhi=&DWP(32+4,"esp"); 74$Elo=&DWP(40,"esp"); $Ehi=&DWP(40+4,"esp"); 75$Flo=&DWP(48,"esp"); $Fhi=&DWP(48+4,"esp"); 76$Glo=&DWP(56,"esp"); $Ghi=&DWP(56+4,"esp"); 77$Hlo=&DWP(64,"esp"); $Hhi=&DWP(64+4,"esp"); 78$K512="ebp"; 79 80$Asse2=&QWP(0,"esp"); 81$Bsse2=&QWP(8,"esp"); 82$Csse2=&QWP(16,"esp"); 83$Dsse2=&QWP(24,"esp"); 84$Esse2=&QWP(32,"esp"); 85$Fsse2=&QWP(40,"esp"); 86$Gsse2=&QWP(48,"esp"); 87$Hsse2=&QWP(56,"esp"); 88 89$A="mm0"; # B-D and 90$E="mm4"; # F-H are commonly loaded to respectively mm1-mm3 and 91 # mm5-mm7, but it's done on on-demand basis... 92$BxC="mm2"; # ... except for B^C 93 94sub BODY_00_15_sse2 { 95 my $phase=shift; 96 97 #&movq ("mm5",$Fsse2); # load f 98 #&movq ("mm6",$Gsse2); # load g 99 100 &movq ("mm1",$E); # %mm1 is sliding right 101 &pxor ("mm5","mm6"); # f^=g 102 &psrlq ("mm1",14); 103 &movq ($Esse2,$E); # modulo-scheduled save e 104 &pand ("mm5",$E); # f&=e 105 &psllq ($E,23); # $E is sliding left 106 &movq ($A,"mm3") if ($phase<2); 107 &movq (&QWP(8*9,"esp"),"mm7") # save X[i] 108 &movq ("mm3","mm1"); # %mm3 is T1 109 &psrlq ("mm1",4); 110 &pxor ("mm5","mm6"); # Ch(e,f,g) 111 &pxor ("mm3",$E); 112 &psllq ($E,23); 113 &pxor ("mm3","mm1"); 114 &movq ($Asse2,$A); # modulo-scheduled save a 115 &paddq ("mm7","mm5"); # X[i]+=Ch(e,f,g) 116 &pxor ("mm3",$E); 117 &psrlq ("mm1",23); 118 &paddq ("mm7",$Hsse2); # X[i]+=h 119 &pxor ("mm3","mm1"); 120 &psllq ($E,4); 121 &paddq ("mm7",QWP(0,$K512)); # X[i]+=K512[i] 122 &pxor ("mm3",$E); # T1=Sigma1_512(e) 123 124 &movq ($E,$Dsse2); # e = load d, e in next round 125 &paddq ("mm3","mm7"); # T1+=X[i] 126 &movq ("mm5",$A); # %mm5 is sliding right 127 &psrlq ("mm5",28); 128 &paddq ($E,"mm3"); # d += T1 129 &movq ("mm6",$A); # %mm6 is sliding left 130 &movq ("mm7","mm5"); 131 &psllq ("mm6",25); 132 &movq ("mm1",$Bsse2); # load b 133 &psrlq ("mm5",6); 134 &pxor ("mm7","mm6"); 135 &sub ("esp",8); 136 &psllq ("mm6",5); 137 &pxor ("mm7","mm5"); 138 &pxor ($A,"mm1"); # a^b, b^c in next round 139 &psrlq ("mm5",5); 140 &pxor ("mm7","mm6"); 141 &pand ($BxC,$A); # (b^c)&(a^b) 142 &psllq ("mm6",6); 143 &pxor ("mm7","mm5"); 144 &pxor ($BxC,"mm1"); # [h=]Maj(a,b,c) 145 &pxor ("mm6","mm7"); # Sigma0_512(a) 146 &movq ("mm7",&QWP(8*(9+16-1),"esp")) if ($phase!=0); # pre-fetch 147 &movq ("mm5",$Fsse2) if ($phase==0); # load f 148 149 if ($phase>1) { 150 &paddq ($BxC,"mm6"); # h+=Sigma0(a) 151 &add ($K512,8); 152 #&paddq ($BxC,"mm3"); # h+=T1 153 154 ($A,$BxC) = ($BxC,$A); # rotate registers 155 } else { 156 &paddq ("mm3",$BxC); # T1+=Maj(a,b,c) 157 &movq ($BxC,$A); 158 &add ($K512,8); 159 &paddq ("mm3","mm6"); # T1+=Sigma0(a) 160 &movq ("mm6",$Gsse2) if ($phase==0); # load g 161 #&movq ($A,"mm3"); # h=T1 162 } 163} 164 165sub BODY_00_15_x86 { 166 #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) 167 # LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23 168 # HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23 169 &mov ("ecx",$Elo); 170 &mov ("edx",$Ehi); 171 &mov ("esi","ecx"); 172 173 &shr ("ecx",9); # lo>>9 174 &mov ("edi","edx"); 175 &shr ("edx",9); # hi>>9 176 &mov ("ebx","ecx"); 177 &shl ("esi",14); # lo<<14 178 &mov ("eax","edx"); 179 &shl ("edi",14); # hi<<14 180 &xor ("ebx","esi"); 181 182 &shr ("ecx",14-9); # lo>>14 183 &xor ("eax","edi"); 184 &shr ("edx",14-9); # hi>>14 185 &xor ("eax","ecx"); 186 &shl ("esi",18-14); # lo<<18 187 &xor ("ebx","edx"); 188 &shl ("edi",18-14); # hi<<18 189 &xor ("ebx","esi"); 190 191 &shr ("ecx",18-14); # lo>>18 192 &xor ("eax","edi"); 193 &shr ("edx",18-14); # hi>>18 194 &xor ("eax","ecx"); 195 &shl ("esi",23-18); # lo<<23 196 &xor ("ebx","edx"); 197 &shl ("edi",23-18); # hi<<23 198 &xor ("eax","esi"); 199 &xor ("ebx","edi"); # T1 = Sigma1(e) 200 201 &mov ("ecx",$Flo); 202 &mov ("edx",$Fhi); 203 &mov ("esi",$Glo); 204 &mov ("edi",$Ghi); 205 &add ("eax",$Hlo); 206 &adc ("ebx",$Hhi); # T1 += h 207 &xor ("ecx","esi"); 208 &xor ("edx","edi"); 209 &and ("ecx",$Elo); 210 &and ("edx",$Ehi); 211 &add ("eax",&DWP(8*(9+15)+0,"esp")); 212 &adc ("ebx",&DWP(8*(9+15)+4,"esp")); # T1 += X[0] 213 &xor ("ecx","esi"); 214 &xor ("edx","edi"); # Ch(e,f,g) = (f^g)&e)^g 215 216 &mov ("esi",&DWP(0,$K512)); 217 &mov ("edi",&DWP(4,$K512)); # K[i] 218 &add ("eax","ecx"); 219 &adc ("ebx","edx"); # T1 += Ch(e,f,g) 220 &mov ("ecx",$Dlo); 221 &mov ("edx",$Dhi); 222 &add ("eax","esi"); 223 &adc ("ebx","edi"); # T1 += K[i] 224 &mov ($Tlo,"eax"); 225 &mov ($Thi,"ebx"); # put T1 away 226 &add ("eax","ecx"); 227 &adc ("ebx","edx"); # d += T1 228 229 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) 230 # LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25 231 # HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25 232 &mov ("ecx",$Alo); 233 &mov ("edx",$Ahi); 234 &mov ($Dlo,"eax"); 235 &mov ($Dhi,"ebx"); 236 &mov ("esi","ecx"); 237 238 &shr ("ecx",2); # lo>>2 239 &mov ("edi","edx"); 240 &shr ("edx",2); # hi>>2 241 &mov ("ebx","ecx"); 242 &shl ("esi",4); # lo<<4 243 &mov ("eax","edx"); 244 &shl ("edi",4); # hi<<4 245 &xor ("ebx","esi"); 246 247 &shr ("ecx",7-2); # lo>>7 248 &xor ("eax","edi"); 249 &shr ("edx",7-2); # hi>>7 250 &xor ("ebx","ecx"); 251 &shl ("esi",25-4); # lo<<25 252 &xor ("eax","edx"); 253 &shl ("edi",25-4); # hi<<25 254 &xor ("eax","esi"); 255 256 &shr ("ecx",28-7); # lo>>28 257 &xor ("ebx","edi"); 258 &shr ("edx",28-7); # hi>>28 259 &xor ("eax","ecx"); 260 &shl ("esi",30-25); # lo<<30 261 &xor ("ebx","edx"); 262 &shl ("edi",30-25); # hi<<30 263 &xor ("eax","esi"); 264 &xor ("ebx","edi"); # Sigma0(a) 265 266 &mov ("ecx",$Alo); 267 &mov ("edx",$Ahi); 268 &mov ("esi",$Blo); 269 &mov ("edi",$Bhi); 270 &add ("eax",$Tlo); 271 &adc ("ebx",$Thi); # T1 = Sigma0(a)+T1 272 &or ("ecx","esi"); 273 &or ("edx","edi"); 274 &and ("ecx",$Clo); 275 &and ("edx",$Chi); 276 &and ("esi",$Alo); 277 &and ("edi",$Ahi); 278 &or ("ecx","esi"); 279 &or ("edx","edi"); # Maj(a,b,c) = ((a|b)&c)|(a&b) 280 281 &add ("eax","ecx"); 282 &adc ("ebx","edx"); # T1 += Maj(a,b,c) 283 &mov ($Tlo,"eax"); 284 &mov ($Thi,"ebx"); 285 286 &mov (&LB("edx"),&BP(0,$K512)); # pre-fetch LSB of *K 287 &sub ("esp",8); 288 &lea ($K512,&DWP(8,$K512)); # K++ 289} 290 291&static_label("K512"); 292 293&function_begin("sha512_block_data_order_nohw"); 294 &mov ("esi",wparam(0)); # ctx 295 &mov ("edi",wparam(1)); # inp 296 &mov ("eax",wparam(2)); # num 297 &mov ("ebx","esp"); # saved sp 298 299 &call (&label("pic_point")); # make it PIC! 300&set_label("pic_point"); 301 &blindpop($K512); 302 &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512)); 303 304 &sub ("esp",16); 305 &and ("esp",-64); 306 307 &shl ("eax",7); 308 &add ("eax","edi"); 309 &mov (&DWP(0,"esp"),"esi"); # ctx 310 &mov (&DWP(4,"esp"),"edi"); # inp 311 &mov (&DWP(8,"esp"),"eax"); # inp+num*128 312 &mov (&DWP(12,"esp"),"ebx"); # saved sp 313 314if ($sse2) { 315 # load ctx->h[0-7] 316 &movq ($A,&QWP(0,"esi")); 317 &movq ("mm1",&QWP(8,"esi")); 318 &movq ($BxC,&QWP(16,"esi")); 319 &movq ("mm3",&QWP(24,"esi")); 320 &movq ($E,&QWP(32,"esi")); 321 &movq ("mm5",&QWP(40,"esi")); 322 &movq ("mm6",&QWP(48,"esi")); 323 &movq ("mm7",&QWP(56,"esi")); 324 &sub ("esp",8*10); 325 &jmp (&label("loop_sse2")); 326 327 # TODO(davidben): The preamble above this point comes from the original 328 # merged sha512_block_data_order function, which performed some common 329 # setup and then jumped to the particular SHA-512 implementation. The 330 # parts of the preamble that do not apply to this function can be 331 # removed. 332 333&set_label("loop_sse2",16); 334 #&movq ($Asse2,$A); 335 &movq ($Bsse2,"mm1"); 336 &movq ($Csse2,$BxC); 337 &movq ($Dsse2,"mm3"); 338 #&movq ($Esse2,$E); 339 &movq ($Fsse2,"mm5"); 340 &movq ($Gsse2,"mm6"); 341 &pxor ($BxC,"mm1"); # magic 342 &movq ($Hsse2,"mm7"); 343 &movq ("mm3",$A); # magic 344 345 &mov ("eax",&DWP(0,"edi")); 346 &mov ("ebx",&DWP(4,"edi")); 347 &add ("edi",8); 348 &mov ("edx",15); # counter 349 &bswap ("eax"); 350 &bswap ("ebx"); 351 &jmp (&label("00_14_sse2")); 352 353&set_label("00_14_sse2",16); 354 &movd ("mm1","eax"); 355 &mov ("eax",&DWP(0,"edi")); 356 &movd ("mm7","ebx"); 357 &mov ("ebx",&DWP(4,"edi")); 358 &add ("edi",8); 359 &bswap ("eax"); 360 &bswap ("ebx"); 361 &punpckldq("mm7","mm1"); 362 363 &BODY_00_15_sse2(); 364 365 &dec ("edx"); 366 &jnz (&label("00_14_sse2")); 367 368 &movd ("mm1","eax"); 369 &movd ("mm7","ebx"); 370 &punpckldq("mm7","mm1"); 371 372 &BODY_00_15_sse2(1); 373 374 &pxor ($A,$A); # A is in %mm3 375 &mov ("edx",32); # counter 376 &jmp (&label("16_79_sse2")); 377 378&set_label("16_79_sse2",16); 379 for ($j=0;$j<2;$j++) { # 2x unroll 380 #&movq ("mm7",&QWP(8*(9+16-1),"esp")); # prefetched in BODY_00_15 381 &movq ("mm5",&QWP(8*(9+16-14),"esp")); 382 &movq ("mm1","mm7"); 383 &psrlq ("mm7",1); 384 &movq ("mm6","mm5"); 385 &psrlq ("mm5",6); 386 &psllq ("mm1",56); 387 &paddq ($A,"mm3"); # from BODY_00_15 388 &movq ("mm3","mm7"); 389 &psrlq ("mm7",7-1); 390 &pxor ("mm3","mm1"); 391 &psllq ("mm1",63-56); 392 &pxor ("mm3","mm7"); 393 &psrlq ("mm7",8-7); 394 &pxor ("mm3","mm1"); 395 &movq ("mm1","mm5"); 396 &psrlq ("mm5",19-6); 397 &pxor ("mm7","mm3"); # sigma0 398 399 &psllq ("mm6",3); 400 &pxor ("mm1","mm5"); 401 &paddq ("mm7",&QWP(8*(9+16),"esp")); 402 &pxor ("mm1","mm6"); 403 &psrlq ("mm5",61-19); 404 &paddq ("mm7",&QWP(8*(9+16-9),"esp")); 405 &pxor ("mm1","mm5"); 406 &psllq ("mm6",45-3); 407 &movq ("mm5",$Fsse2); # load f 408 &pxor ("mm1","mm6"); # sigma1 409 &movq ("mm6",$Gsse2); # load g 410 411 &paddq ("mm7","mm1"); # X[i] 412 #&movq (&QWP(8*9,"esp"),"mm7"); # moved to BODY_00_15 413 414 &BODY_00_15_sse2(2); 415 } 416 &dec ("edx"); 417 &jnz (&label("16_79_sse2")); 418 419 #&movq ($A,$Asse2); 420 &paddq ($A,"mm3"); # from BODY_00_15 421 &movq ("mm1",$Bsse2); 422 #&movq ($BxC,$Csse2); 423 &movq ("mm3",$Dsse2); 424 #&movq ($E,$Esse2); 425 &movq ("mm5",$Fsse2); 426 &movq ("mm6",$Gsse2); 427 &movq ("mm7",$Hsse2); 428 429 &pxor ($BxC,"mm1"); # de-magic 430 &paddq ($A,&QWP(0,"esi")); 431 &paddq ("mm1",&QWP(8,"esi")); 432 &paddq ($BxC,&QWP(16,"esi")); 433 &paddq ("mm3",&QWP(24,"esi")); 434 &paddq ($E,&QWP(32,"esi")); 435 &paddq ("mm5",&QWP(40,"esi")); 436 &paddq ("mm6",&QWP(48,"esi")); 437 &paddq ("mm7",&QWP(56,"esi")); 438 439 &mov ("eax",8*80); 440 &movq (&QWP(0,"esi"),$A); 441 &movq (&QWP(8,"esi"),"mm1"); 442 &movq (&QWP(16,"esi"),$BxC); 443 &movq (&QWP(24,"esi"),"mm3"); 444 &movq (&QWP(32,"esi"),$E); 445 &movq (&QWP(40,"esi"),"mm5"); 446 &movq (&QWP(48,"esi"),"mm6"); 447 &movq (&QWP(56,"esi"),"mm7"); 448 449 &lea ("esp",&DWP(0,"esp","eax")); # destroy frame 450 &sub ($K512,"eax"); # rewind K 451 452 &cmp ("edi",&DWP(8*10+8,"esp")); # are we done yet? 453 &jb (&label("loop_sse2")); 454 455 &mov ("esp",&DWP(8*10+12,"esp")); # restore sp 456 &emms (); 457&function_end("sha512_block_data_order_nohw"); 458 459{ my ($cnt,$frame)=("ecx","edx"); 460 my @X=map("xmm$_",(0..7)); 461 my $j; 462 my $i=0; 463 464&function_begin("sha512_block_data_order_ssse3"); 465 &mov ("esi",wparam(0)); # ctx 466 &mov ("edi",wparam(1)); # inp 467 &mov ("eax",wparam(2)); # num 468 &mov ("ebx","esp"); # saved sp 469 470 &call (&label("pic_point")); # make it PIC! 471&set_label("pic_point"); 472 &blindpop($K512); 473 &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512)); 474 475 &sub ("esp",16); 476 &and ("esp",-64); 477 478 &shl ("eax",7); 479 &add ("eax","edi"); 480 &mov (&DWP(0,"esp"),"esi"); # ctx 481 &mov (&DWP(4,"esp"),"edi"); # inp 482 &mov (&DWP(8,"esp"),"eax"); # inp+num*128 483 &mov (&DWP(12,"esp"),"ebx"); # saved sp 484 485 # load ctx->h[0-7] 486 &movq ($A,&QWP(0,"esi")); 487 &movq ("mm1",&QWP(8,"esi")); 488 &movq ($BxC,&QWP(16,"esi")); 489 &movq ("mm3",&QWP(24,"esi")); 490 &movq ($E,&QWP(32,"esi")); 491 &movq ("mm5",&QWP(40,"esi")); 492 &movq ("mm6",&QWP(48,"esi")); 493 &movq ("mm7",&QWP(56,"esi")); 494 495 # TODO(davidben): The preamble above this point comes from the original 496 # merged sha512_block_data_order function, which performed some common 497 # setup and then jumped to the particular SHA-512 implementation. The 498 # parts of the preamble that do not apply to this function can be 499 # removed. 500 501 &lea ($frame,&DWP(-64,"esp")); 502 &sub ("esp",256); 503 504 # fixed stack frame layout 505 # 506 # +0 A B C D E F G H # backing store 507 # +64 X[0]+K[i] .. X[15]+K[i] # XMM->MM xfer area 508 # +192 # XMM off-load ring buffer 509 # +256 # saved parameters 510 511 &movdqa (@X[1],&QWP(80*8,$K512)); # byte swap mask 512 &movdqu (@X[0],&QWP(0,"edi")); 513 &pshufb (@X[0],@X[1]); 514 for ($j=0;$j<8;$j++) { 515 &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load 516 &movdqa (@X[3],&QWP(16*($j%8),$K512)); 517 &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask 518 &movdqu (@X[1],&QWP(16*($j+1),"edi")) if ($j<7); # next input 519 &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] 520 &paddq (@X[3],@X[0]); 521 &pshufb (@X[1],@X[2]) if ($j<7); 522 &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]); # xfer X[i]+K[i] 523 524 push(@X,shift(@X)); # rotate(@X) 525 } 526 #&jmp (&label("loop_ssse3")); 527 &nop (); 528 529&set_label("loop_ssse3",32); 530 &movdqa (@X[2],&QWP(16*(($j+1)%4),$frame)); # pre-restore @X[1] 531 &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]); # off-load @X[3] 532 &lea ($K512,&DWP(16*8,$K512)); 533 534 #&movq ($Asse2,$A); # off-load A-H 535 &movq ($Bsse2,"mm1"); 536 &mov ("ebx","edi"); 537 &movq ($Csse2,$BxC); 538 &lea ("edi",&DWP(128,"edi")); # advance input 539 &movq ($Dsse2,"mm3"); 540 &cmp ("edi","eax"); 541 #&movq ($Esse2,$E); 542 &movq ($Fsse2,"mm5"); 543 &cmovb ("ebx","edi"); 544 &movq ($Gsse2,"mm6"); 545 &mov ("ecx",4); # loop counter 546 &pxor ($BxC,"mm1"); # magic 547 &movq ($Hsse2,"mm7"); 548 &pxor ("mm3","mm3"); # magic 549 550 &jmp (&label("00_47_ssse3")); 551 552sub BODY_00_15_ssse3 { # "phase-less" copy of BODY_00_15_sse2 553 ( 554 '&movq ("mm1",$E)', # %mm1 is sliding right 555 '&movq ("mm7",&QWP(((-8*$i)%128)-128,$frame))',# X[i]+K[i] 556 '&pxor ("mm5","mm6")', # f^=g 557 '&psrlq ("mm1",14)', 558 '&movq (&QWP(8*($i+4)%64,"esp"),$E)', # modulo-scheduled save e 559 '&pand ("mm5",$E)', # f&=e 560 '&psllq ($E,23)', # $E is sliding left 561 '&paddq ($A,"mm3")', # [h+=Maj(a,b,c)] 562 '&movq ("mm3","mm1")', # %mm3 is T1 563 '&psrlq("mm1",4)', 564 '&pxor ("mm5","mm6")', # Ch(e,f,g) 565 '&pxor ("mm3",$E)', 566 '&psllq($E,23)', 567 '&pxor ("mm3","mm1")', 568 '&movq (&QWP(8*$i%64,"esp"),$A)', # modulo-scheduled save a 569 '&paddq("mm7","mm5")', # X[i]+=Ch(e,f,g) 570 '&pxor ("mm3",$E)', 571 '&psrlq("mm1",23)', 572 '&paddq("mm7",&QWP(8*($i+7)%64,"esp"))', # X[i]+=h 573 '&pxor ("mm3","mm1")', 574 '&psllq($E,4)', 575 '&pxor ("mm3",$E)', # T1=Sigma1_512(e) 576 577 '&movq ($E,&QWP(8*($i+3)%64,"esp"))', # e = load d, e in next round 578 '&paddq ("mm3","mm7")', # T1+=X[i] 579 '&movq ("mm5",$A)', # %mm5 is sliding right 580 '&psrlq("mm5",28)', 581 '&paddq ($E,"mm3")', # d += T1 582 '&movq ("mm6",$A)', # %mm6 is sliding left 583 '&movq ("mm7","mm5")', 584 '&psllq("mm6",25)', 585 '&movq ("mm1",&QWP(8*($i+1)%64,"esp"))', # load b 586 '&psrlq("mm5",6)', 587 '&pxor ("mm7","mm6")', 588 '&psllq("mm6",5)', 589 '&pxor ("mm7","mm5")', 590 '&pxor ($A,"mm1")', # a^b, b^c in next round 591 '&psrlq("mm5",5)', 592 '&pxor ("mm7","mm6")', 593 '&pand ($BxC,$A)', # (b^c)&(a^b) 594 '&psllq("mm6",6)', 595 '&pxor ("mm7","mm5")', 596 '&pxor ($BxC,"mm1")', # [h=]Maj(a,b,c) 597 '&pxor ("mm6","mm7")', # Sigma0_512(a) 598 '&movq ("mm5",&QWP(8*($i+5-1)%64,"esp"))', # pre-load f 599 '&paddq ($BxC,"mm6")', # h+=Sigma0(a) 600 '&movq ("mm6",&QWP(8*($i+6-1)%64,"esp"))', # pre-load g 601 602 '($A,$BxC) = ($BxC,$A); $i--;' 603 ); 604} 605 606&set_label("00_47_ssse3",32); 607 608 for(;$j<16;$j++) { 609 my ($t0,$t2,$t1)=@X[2..4]; 610 my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); 611 612 &movdqa ($t2,@X[5]); 613 &movdqa (@X[1],$t0); # restore @X[1] 614 &palignr ($t0,@X[0],8); # X[1..2] 615 &movdqa (&QWP(16*($j%4),$frame),@X[4]); # off-load @X[4] 616 &palignr ($t2,@X[4],8); # X[9..10] 617 618 &movdqa ($t1,$t0); 619 &psrlq ($t0,7); 620 &paddq (@X[0],$t2); # X[0..1] += X[9..10] 621 &movdqa ($t2,$t1); 622 &psrlq ($t1,1); 623 &psllq ($t2,64-8); 624 &pxor ($t0,$t1); 625 &psrlq ($t1,8-1); 626 &pxor ($t0,$t2); 627 &psllq ($t2,8-1); 628 &pxor ($t0,$t1); 629 &movdqa ($t1,@X[7]); 630 &pxor ($t0,$t2); # sigma0(X[1..2]) 631 &movdqa ($t2,@X[7]); 632 &psrlq ($t1,6); 633 &paddq (@X[0],$t0); # X[0..1] += sigma0(X[1..2]) 634 635 &movdqa ($t0,@X[7]); 636 &psrlq ($t2,19); 637 &psllq ($t0,64-61); 638 &pxor ($t1,$t2); 639 &psrlq ($t2,61-19); 640 &pxor ($t1,$t0); 641 &psllq ($t0,61-19); 642 &pxor ($t1,$t2); 643 &movdqa ($t2,&QWP(16*(($j+2)%4),$frame));# pre-restore @X[1] 644 &pxor ($t1,$t0); # sigma0(X[1..2]) 645 &movdqa ($t0,&QWP(16*($j%8),$K512)); 646 eval(shift(@insns)); 647 &paddq (@X[0],$t1); # X[0..1] += sigma0(X[14..15]) 648 eval(shift(@insns)); 649 eval(shift(@insns)); 650 eval(shift(@insns)); 651 eval(shift(@insns)); 652 &paddq ($t0,@X[0]); 653 foreach(@insns) { eval; } 654 &movdqa (&QWP(16*($j%8)-128,$frame),$t0);# xfer X[i]+K[i] 655 656 push(@X,shift(@X)); # rotate(@X) 657 } 658 &lea ($K512,&DWP(16*8,$K512)); 659 &dec ("ecx"); 660 &jnz (&label("00_47_ssse3")); 661 662 &movdqa (@X[1],&QWP(0,$K512)); # byte swap mask 663 &lea ($K512,&DWP(-80*8,$K512)); # rewind 664 &movdqu (@X[0],&QWP(0,"ebx")); 665 &pshufb (@X[0],@X[1]); 666 667 for ($j=0;$j<8;$j++) { # load next or same block 668 my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); 669 670 &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load 671 &movdqa (@X[3],&QWP(16*($j%8),$K512)); 672 &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask 673 &movdqu (@X[1],&QWP(16*($j+1),"ebx")) if ($j<7); # next input 674 &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] 675 &paddq (@X[3],@X[0]); 676 &pshufb (@X[1],@X[2]) if ($j<7); 677 foreach(@insns) { eval; } 678 &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]);# xfer X[i]+K[i] 679 680 push(@X,shift(@X)); # rotate(@X) 681 } 682 683 #&movq ($A,$Asse2); # load A-H 684 &movq ("mm1",$Bsse2); 685 &paddq ($A,"mm3"); # from BODY_00_15 686 #&movq ($BxC,$Csse2); 687 &movq ("mm3",$Dsse2); 688 #&movq ($E,$Esse2); 689 #&movq ("mm5",$Fsse2); 690 #&movq ("mm6",$Gsse2); 691 &movq ("mm7",$Hsse2); 692 693 &pxor ($BxC,"mm1"); # de-magic 694 &paddq ($A,&QWP(0,"esi")); 695 &paddq ("mm1",&QWP(8,"esi")); 696 &paddq ($BxC,&QWP(16,"esi")); 697 &paddq ("mm3",&QWP(24,"esi")); 698 &paddq ($E,&QWP(32,"esi")); 699 &paddq ("mm5",&QWP(40,"esi")); 700 &paddq ("mm6",&QWP(48,"esi")); 701 &paddq ("mm7",&QWP(56,"esi")); 702 703 &movq (&QWP(0,"esi"),$A); 704 &movq (&QWP(8,"esi"),"mm1"); 705 &movq (&QWP(16,"esi"),$BxC); 706 &movq (&QWP(24,"esi"),"mm3"); 707 &movq (&QWP(32,"esi"),$E); 708 &movq (&QWP(40,"esi"),"mm5"); 709 &movq (&QWP(48,"esi"),"mm6"); 710 &movq (&QWP(56,"esi"),"mm7"); 711 712 &cmp ("edi","eax") # are we done yet? 713 &jb (&label("loop_ssse3")); 714 715 &mov ("esp",&DWP(64+12,$frame)); # restore sp 716 &emms (); 717} 718&function_end("sha512_block_data_order_ssse3"); 719} 720 721&set_label("K512",64); # Yes! I keep it in the code segment! 722 &data_word(0xd728ae22,0x428a2f98); # u64 723 &data_word(0x23ef65cd,0x71374491); # u64 724 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64 725 &data_word(0x8189dbbc,0xe9b5dba5); # u64 726 &data_word(0xf348b538,0x3956c25b); # u64 727 &data_word(0xb605d019,0x59f111f1); # u64 728 &data_word(0xaf194f9b,0x923f82a4); # u64 729 &data_word(0xda6d8118,0xab1c5ed5); # u64 730 &data_word(0xa3030242,0xd807aa98); # u64 731 &data_word(0x45706fbe,0x12835b01); # u64 732 &data_word(0x4ee4b28c,0x243185be); # u64 733 &data_word(0xd5ffb4e2,0x550c7dc3); # u64 734 &data_word(0xf27b896f,0x72be5d74); # u64 735 &data_word(0x3b1696b1,0x80deb1fe); # u64 736 &data_word(0x25c71235,0x9bdc06a7); # u64 737 &data_word(0xcf692694,0xc19bf174); # u64 738 &data_word(0x9ef14ad2,0xe49b69c1); # u64 739 &data_word(0x384f25e3,0xefbe4786); # u64 740 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64 741 &data_word(0x77ac9c65,0x240ca1cc); # u64 742 &data_word(0x592b0275,0x2de92c6f); # u64 743 &data_word(0x6ea6e483,0x4a7484aa); # u64 744 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64 745 &data_word(0x831153b5,0x76f988da); # u64 746 &data_word(0xee66dfab,0x983e5152); # u64 747 &data_word(0x2db43210,0xa831c66d); # u64 748 &data_word(0x98fb213f,0xb00327c8); # u64 749 &data_word(0xbeef0ee4,0xbf597fc7); # u64 750 &data_word(0x3da88fc2,0xc6e00bf3); # u64 751 &data_word(0x930aa725,0xd5a79147); # u64 752 &data_word(0xe003826f,0x06ca6351); # u64 753 &data_word(0x0a0e6e70,0x14292967); # u64 754 &data_word(0x46d22ffc,0x27b70a85); # u64 755 &data_word(0x5c26c926,0x2e1b2138); # u64 756 &data_word(0x5ac42aed,0x4d2c6dfc); # u64 757 &data_word(0x9d95b3df,0x53380d13); # u64 758 &data_word(0x8baf63de,0x650a7354); # u64 759 &data_word(0x3c77b2a8,0x766a0abb); # u64 760 &data_word(0x47edaee6,0x81c2c92e); # u64 761 &data_word(0x1482353b,0x92722c85); # u64 762 &data_word(0x4cf10364,0xa2bfe8a1); # u64 763 &data_word(0xbc423001,0xa81a664b); # u64 764 &data_word(0xd0f89791,0xc24b8b70); # u64 765 &data_word(0x0654be30,0xc76c51a3); # u64 766 &data_word(0xd6ef5218,0xd192e819); # u64 767 &data_word(0x5565a910,0xd6990624); # u64 768 &data_word(0x5771202a,0xf40e3585); # u64 769 &data_word(0x32bbd1b8,0x106aa070); # u64 770 &data_word(0xb8d2d0c8,0x19a4c116); # u64 771 &data_word(0x5141ab53,0x1e376c08); # u64 772 &data_word(0xdf8eeb99,0x2748774c); # u64 773 &data_word(0xe19b48a8,0x34b0bcb5); # u64 774 &data_word(0xc5c95a63,0x391c0cb3); # u64 775 &data_word(0xe3418acb,0x4ed8aa4a); # u64 776 &data_word(0x7763e373,0x5b9cca4f); # u64 777 &data_word(0xd6b2b8a3,0x682e6ff3); # u64 778 &data_word(0x5defb2fc,0x748f82ee); # u64 779 &data_word(0x43172f60,0x78a5636f); # u64 780 &data_word(0xa1f0ab72,0x84c87814); # u64 781 &data_word(0x1a6439ec,0x8cc70208); # u64 782 &data_word(0x23631e28,0x90befffa); # u64 783 &data_word(0xde82bde9,0xa4506ceb); # u64 784 &data_word(0xb2c67915,0xbef9a3f7); # u64 785 &data_word(0xe372532b,0xc67178f2); # u64 786 &data_word(0xea26619c,0xca273ece); # u64 787 &data_word(0x21c0c207,0xd186b8c7); # u64 788 &data_word(0xcde0eb1e,0xeada7dd6); # u64 789 &data_word(0xee6ed178,0xf57d4f7f); # u64 790 &data_word(0x72176fba,0x06f067aa); # u64 791 &data_word(0xa2c898a6,0x0a637dc5); # u64 792 &data_word(0xbef90dae,0x113f9804); # u64 793 &data_word(0x131c471b,0x1b710b35); # u64 794 &data_word(0x23047d84,0x28db77f5); # u64 795 &data_word(0x40c72493,0x32caab7b); # u64 796 &data_word(0x15c9bebc,0x3c9ebe0a); # u64 797 &data_word(0x9c100d4c,0x431d67c4); # u64 798 &data_word(0xcb3e42b6,0x4cc5d4be); # u64 799 &data_word(0xfc657e2a,0x597f299c); # u64 800 &data_word(0x3ad6faec,0x5fcb6fab); # u64 801 &data_word(0x4a475817,0x6c44198c); # u64 802 803 &data_word(0x04050607,0x00010203); # byte swap 804 &data_word(0x0c0d0e0f,0x08090a0b); # mask 805&asciz("SHA512 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); 806 807&asm_finish(); 808 809close STDOUT or die "error closing STDOUT: $!"; 810