xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/sha/asm/sha512-586.pl (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1#! /usr/bin/env perl
2# Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# SHA512 block transform for x86. September 2007.
18#
19# May 2013.
20#
21# Add SSSE3 code path, 20-25% improvement [over original SSE2 code].
22#
23# Performance in clock cycles per processed byte (less is better):
24#
25#		gcc	icc	x86 asm	SIMD(*)	x86_64(**)
26# Pentium	100	97	61	-	-
27# PIII		75	77	56	-	-
28# P4		116	95	82	34.6	30.8
29# AMD K8	54	55	36	20.7	9.57
30# Core2		66	57	40	15.9	9.97
31# Westmere	70	-	38	12.2	9.58
32# Sandy Bridge	58	-	35	11.9	11.2
33# Ivy Bridge	50	-	33	11.5	8.17
34# Haswell	46	-	29	11.3	7.66
35# Skylake	40	-	26	13.3	7.25
36# Bulldozer	121	-	50	14.0	13.5
37# VIA Nano	91	-	52	33	14.7
38# Atom		126	-	68	48(***)	14.7
39# Silvermont	97	-	58	42(***)	17.5
40# Goldmont	80	-	48	19.5	12.0
41#
42# (*)	whichever best applicable.
43# (**)	x86_64 assembler performance is presented for reference
44#	purposes, the results are for integer-only code.
45# (***)	paddq is incredibly slow on Atom.
46#
47# IALU code-path is optimized for elder Pentiums. On vanilla Pentium
48# performance improvement over compiler generated code reaches ~60%,
49# while on PIII - ~35%. On newer µ-archs improvement varies from 15%
50# to 50%, but it's less important as they are expected to execute SSE2
51# code-path, which is commonly ~2-3x faster [than compiler generated
52# code]. SSE2 code-path is as fast as original sha512-sse2.pl, even
53# though it does not use 128-bit operations. The latter means that
54# SSE2-aware kernel is no longer required to execute the code. Another
55# difference is that new code optimizes amount of writes, but at the
56# cost of increased data cache "footprint" by 1/2KB.
57
58$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
59push(@INC,"${dir}","${dir}../../../perlasm");
60require "x86asm.pl";
61
62$output=pop;
63open STDOUT,">$output";
64
65&asm_init($ARGV[0]);
66
67$sse2=1;
68
69$Tlo=&DWP(0,"esp");	$Thi=&DWP(4,"esp");
70$Alo=&DWP(8,"esp");	$Ahi=&DWP(8+4,"esp");
71$Blo=&DWP(16,"esp");	$Bhi=&DWP(16+4,"esp");
72$Clo=&DWP(24,"esp");	$Chi=&DWP(24+4,"esp");
73$Dlo=&DWP(32,"esp");	$Dhi=&DWP(32+4,"esp");
74$Elo=&DWP(40,"esp");	$Ehi=&DWP(40+4,"esp");
75$Flo=&DWP(48,"esp");	$Fhi=&DWP(48+4,"esp");
76$Glo=&DWP(56,"esp");	$Ghi=&DWP(56+4,"esp");
77$Hlo=&DWP(64,"esp");	$Hhi=&DWP(64+4,"esp");
78$K512="ebp";
79
80$Asse2=&QWP(0,"esp");
81$Bsse2=&QWP(8,"esp");
82$Csse2=&QWP(16,"esp");
83$Dsse2=&QWP(24,"esp");
84$Esse2=&QWP(32,"esp");
85$Fsse2=&QWP(40,"esp");
86$Gsse2=&QWP(48,"esp");
87$Hsse2=&QWP(56,"esp");
88
89$A="mm0";	# B-D and
90$E="mm4";	# F-H are commonly loaded to respectively mm1-mm3 and
91		# mm5-mm7, but it's done on on-demand basis...
92$BxC="mm2";	# ... except for B^C
93
94sub BODY_00_15_sse2 {
95    my $phase=shift;
96
97	#&movq	("mm5",$Fsse2);			# load f
98	#&movq	("mm6",$Gsse2);			# load g
99
100	&movq	("mm1",$E);			# %mm1 is sliding right
101	 &pxor	("mm5","mm6");			# f^=g
102	&psrlq	("mm1",14);
103	 &movq	($Esse2,$E);			# modulo-scheduled save e
104	 &pand	("mm5",$E);			# f&=e
105	&psllq	($E,23);			# $E is sliding left
106	 &movq	($A,"mm3")			if ($phase<2);
107	 &movq	(&QWP(8*9,"esp"),"mm7")		# save X[i]
108	&movq	("mm3","mm1");			# %mm3 is T1
109	 &psrlq	("mm1",4);
110	 &pxor	("mm5","mm6");			# Ch(e,f,g)
111	&pxor	("mm3",$E);
112	 &psllq	($E,23);
113	&pxor	("mm3","mm1");
114	 &movq	($Asse2,$A);			# modulo-scheduled save a
115	 &paddq	("mm7","mm5");			# X[i]+=Ch(e,f,g)
116	&pxor	("mm3",$E);
117	 &psrlq	("mm1",23);
118	 &paddq	("mm7",$Hsse2);			# X[i]+=h
119	&pxor	("mm3","mm1");
120	 &psllq	($E,4);
121	 &paddq	("mm7",QWP(0,$K512));		# X[i]+=K512[i]
122	&pxor	("mm3",$E);			# T1=Sigma1_512(e)
123
124	 &movq	($E,$Dsse2);			# e = load d, e in next round
125	&paddq	("mm3","mm7");			# T1+=X[i]
126	 &movq	("mm5",$A);			# %mm5 is sliding right
127	 &psrlq	("mm5",28);
128	&paddq	($E,"mm3");			# d += T1
129	 &movq	("mm6",$A);			# %mm6 is sliding left
130	 &movq	("mm7","mm5");
131	 &psllq	("mm6",25);
132	&movq	("mm1",$Bsse2);			# load b
133	 &psrlq	("mm5",6);
134	 &pxor	("mm7","mm6");
135	&sub	("esp",8);
136	 &psllq	("mm6",5);
137	 &pxor	("mm7","mm5");
138	&pxor	($A,"mm1");			# a^b, b^c in next round
139	 &psrlq	("mm5",5);
140	 &pxor	("mm7","mm6");
141	&pand	($BxC,$A);			# (b^c)&(a^b)
142	 &psllq	("mm6",6);
143	 &pxor	("mm7","mm5");
144	&pxor	($BxC,"mm1");			# [h=]Maj(a,b,c)
145	 &pxor	("mm6","mm7");			# Sigma0_512(a)
146	 &movq	("mm7",&QWP(8*(9+16-1),"esp"))	if ($phase!=0);	# pre-fetch
147	 &movq	("mm5",$Fsse2)			if ($phase==0);	# load f
148
149    if ($phase>1) {
150	&paddq	($BxC,"mm6");			# h+=Sigma0(a)
151	 &add	($K512,8);
152	#&paddq	($BxC,"mm3");			# h+=T1
153
154	($A,$BxC) = ($BxC,$A);			# rotate registers
155    } else {
156	&paddq	("mm3",$BxC);			# T1+=Maj(a,b,c)
157	 &movq	($BxC,$A);
158	 &add	($K512,8);
159	&paddq	("mm3","mm6");			# T1+=Sigma0(a)
160	 &movq	("mm6",$Gsse2)			if ($phase==0);	# load g
161	#&movq	($A,"mm3");			# h=T1
162    }
163}
164
165sub BODY_00_15_x86 {
166	#define Sigma1(x)	(ROTR((x),14) ^ ROTR((x),18)  ^ ROTR((x),41))
167	#	LO		lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23
168	#	HI		hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23
169	&mov	("ecx",$Elo);
170	&mov	("edx",$Ehi);
171	&mov	("esi","ecx");
172
173	&shr	("ecx",9);	# lo>>9
174	&mov	("edi","edx");
175	&shr	("edx",9);	# hi>>9
176	&mov	("ebx","ecx");
177	&shl	("esi",14);	# lo<<14
178	&mov	("eax","edx");
179	&shl	("edi",14);	# hi<<14
180	&xor	("ebx","esi");
181
182	&shr	("ecx",14-9);	# lo>>14
183	&xor	("eax","edi");
184	&shr	("edx",14-9);	# hi>>14
185	&xor	("eax","ecx");
186	&shl	("esi",18-14);	# lo<<18
187	&xor	("ebx","edx");
188	&shl	("edi",18-14);	# hi<<18
189	&xor	("ebx","esi");
190
191	&shr	("ecx",18-14);	# lo>>18
192	&xor	("eax","edi");
193	&shr	("edx",18-14);	# hi>>18
194	&xor	("eax","ecx");
195	&shl	("esi",23-18);	# lo<<23
196	&xor	("ebx","edx");
197	&shl	("edi",23-18);	# hi<<23
198	&xor	("eax","esi");
199	&xor	("ebx","edi");			# T1 = Sigma1(e)
200
201	&mov	("ecx",$Flo);
202	&mov	("edx",$Fhi);
203	&mov	("esi",$Glo);
204	&mov	("edi",$Ghi);
205	 &add	("eax",$Hlo);
206	 &adc	("ebx",$Hhi);			# T1 += h
207	&xor	("ecx","esi");
208	&xor	("edx","edi");
209	&and	("ecx",$Elo);
210	&and	("edx",$Ehi);
211	 &add	("eax",&DWP(8*(9+15)+0,"esp"));
212	 &adc	("ebx",&DWP(8*(9+15)+4,"esp"));	# T1 += X[0]
213	&xor	("ecx","esi");
214	&xor	("edx","edi");			# Ch(e,f,g) = (f^g)&e)^g
215
216	&mov	("esi",&DWP(0,$K512));
217	&mov	("edi",&DWP(4,$K512));		# K[i]
218	&add	("eax","ecx");
219	&adc	("ebx","edx");			# T1 += Ch(e,f,g)
220	&mov	("ecx",$Dlo);
221	&mov	("edx",$Dhi);
222	&add	("eax","esi");
223	&adc	("ebx","edi");			# T1 += K[i]
224	&mov	($Tlo,"eax");
225	&mov	($Thi,"ebx");			# put T1 away
226	&add	("eax","ecx");
227	&adc	("ebx","edx");			# d += T1
228
229	#define Sigma0(x)	(ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
230	#	LO		lo>>28^hi<<4  ^ hi>>2^lo<<30 ^ hi>>7^lo<<25
231	#	HI		hi>>28^lo<<4  ^ lo>>2^hi<<30 ^ lo>>7^hi<<25
232	&mov	("ecx",$Alo);
233	&mov	("edx",$Ahi);
234	&mov	($Dlo,"eax");
235	&mov	($Dhi,"ebx");
236	&mov	("esi","ecx");
237
238	&shr	("ecx",2);	# lo>>2
239	&mov	("edi","edx");
240	&shr	("edx",2);	# hi>>2
241	&mov	("ebx","ecx");
242	&shl	("esi",4);	# lo<<4
243	&mov	("eax","edx");
244	&shl	("edi",4);	# hi<<4
245	&xor	("ebx","esi");
246
247	&shr	("ecx",7-2);	# lo>>7
248	&xor	("eax","edi");
249	&shr	("edx",7-2);	# hi>>7
250	&xor	("ebx","ecx");
251	&shl	("esi",25-4);	# lo<<25
252	&xor	("eax","edx");
253	&shl	("edi",25-4);	# hi<<25
254	&xor	("eax","esi");
255
256	&shr	("ecx",28-7);	# lo>>28
257	&xor	("ebx","edi");
258	&shr	("edx",28-7);	# hi>>28
259	&xor	("eax","ecx");
260	&shl	("esi",30-25);	# lo<<30
261	&xor	("ebx","edx");
262	&shl	("edi",30-25);	# hi<<30
263	&xor	("eax","esi");
264	&xor	("ebx","edi");			# Sigma0(a)
265
266	&mov	("ecx",$Alo);
267	&mov	("edx",$Ahi);
268	&mov	("esi",$Blo);
269	&mov	("edi",$Bhi);
270	&add	("eax",$Tlo);
271	&adc	("ebx",$Thi);			# T1 = Sigma0(a)+T1
272	&or	("ecx","esi");
273	&or	("edx","edi");
274	&and	("ecx",$Clo);
275	&and	("edx",$Chi);
276	&and	("esi",$Alo);
277	&and	("edi",$Ahi);
278	&or	("ecx","esi");
279	&or	("edx","edi");			# Maj(a,b,c) = ((a|b)&c)|(a&b)
280
281	&add	("eax","ecx");
282	&adc	("ebx","edx");			# T1 += Maj(a,b,c)
283	&mov	($Tlo,"eax");
284	&mov	($Thi,"ebx");
285
286	&mov	(&LB("edx"),&BP(0,$K512));	# pre-fetch LSB of *K
287	&sub	("esp",8);
288	&lea	($K512,&DWP(8,$K512));		# K++
289}
290
291&static_label("K512");
292
293&function_begin("sha512_block_data_order_nohw");
294	&mov	("esi",wparam(0));	# ctx
295	&mov	("edi",wparam(1));	# inp
296	&mov	("eax",wparam(2));	# num
297	&mov	("ebx","esp");		# saved sp
298
299	&call	(&label("pic_point"));	# make it PIC!
300&set_label("pic_point");
301	&blindpop($K512);
302	&lea	($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
303
304	&sub	("esp",16);
305	&and	("esp",-64);
306
307	&shl	("eax",7);
308	&add	("eax","edi");
309	&mov	(&DWP(0,"esp"),"esi");	# ctx
310	&mov	(&DWP(4,"esp"),"edi");	# inp
311	&mov	(&DWP(8,"esp"),"eax");	# inp+num*128
312	&mov	(&DWP(12,"esp"),"ebx");	# saved sp
313
314if ($sse2) {
315	# load ctx->h[0-7]
316	&movq	($A,&QWP(0,"esi"));
317	&movq	("mm1",&QWP(8,"esi"));
318	&movq	($BxC,&QWP(16,"esi"));
319	&movq	("mm3",&QWP(24,"esi"));
320	&movq	($E,&QWP(32,"esi"));
321	&movq	("mm5",&QWP(40,"esi"));
322	&movq	("mm6",&QWP(48,"esi"));
323	&movq	("mm7",&QWP(56,"esi"));
324	&sub	("esp",8*10);
325	&jmp	(&label("loop_sse2"));
326
327	# TODO(davidben): The preamble above this point comes from the original
328	# merged sha512_block_data_order function, which performed some common
329	# setup and then jumped to the particular SHA-512 implementation. The
330	# parts of the preamble that do not apply to this function can be
331	# removed.
332
333&set_label("loop_sse2",16);
334	#&movq	($Asse2,$A);
335	&movq	($Bsse2,"mm1");
336	&movq	($Csse2,$BxC);
337	&movq	($Dsse2,"mm3");
338	#&movq	($Esse2,$E);
339	&movq	($Fsse2,"mm5");
340	&movq	($Gsse2,"mm6");
341	&pxor	($BxC,"mm1");			# magic
342	&movq	($Hsse2,"mm7");
343	&movq	("mm3",$A);			# magic
344
345	&mov	("eax",&DWP(0,"edi"));
346	&mov	("ebx",&DWP(4,"edi"));
347	&add	("edi",8);
348	&mov	("edx",15);			# counter
349	&bswap	("eax");
350	&bswap	("ebx");
351	&jmp	(&label("00_14_sse2"));
352
353&set_label("00_14_sse2",16);
354	&movd	("mm1","eax");
355	&mov	("eax",&DWP(0,"edi"));
356	&movd	("mm7","ebx");
357	&mov	("ebx",&DWP(4,"edi"));
358	&add	("edi",8);
359	&bswap	("eax");
360	&bswap	("ebx");
361	&punpckldq("mm7","mm1");
362
363	&BODY_00_15_sse2();
364
365	&dec	("edx");
366	&jnz	(&label("00_14_sse2"));
367
368	&movd	("mm1","eax");
369	&movd	("mm7","ebx");
370	&punpckldq("mm7","mm1");
371
372	&BODY_00_15_sse2(1);
373
374	&pxor	($A,$A);			# A is in %mm3
375	&mov	("edx",32);			# counter
376	&jmp	(&label("16_79_sse2"));
377
378&set_label("16_79_sse2",16);
379    for ($j=0;$j<2;$j++) {			# 2x unroll
380	#&movq	("mm7",&QWP(8*(9+16-1),"esp"));	# prefetched in BODY_00_15
381	&movq	("mm5",&QWP(8*(9+16-14),"esp"));
382	&movq	("mm1","mm7");
383	&psrlq	("mm7",1);
384	 &movq	("mm6","mm5");
385	 &psrlq	("mm5",6);
386	&psllq	("mm1",56);
387	 &paddq	($A,"mm3");			# from BODY_00_15
388	 &movq	("mm3","mm7");
389	&psrlq	("mm7",7-1);
390	 &pxor	("mm3","mm1");
391	 &psllq	("mm1",63-56);
392	&pxor	("mm3","mm7");
393	 &psrlq	("mm7",8-7);
394	&pxor	("mm3","mm1");
395	 &movq	("mm1","mm5");
396	 &psrlq	("mm5",19-6);
397	&pxor	("mm7","mm3");			# sigma0
398
399	 &psllq	("mm6",3);
400	 &pxor	("mm1","mm5");
401	&paddq	("mm7",&QWP(8*(9+16),"esp"));
402	 &pxor	("mm1","mm6");
403	 &psrlq	("mm5",61-19);
404	&paddq	("mm7",&QWP(8*(9+16-9),"esp"));
405	 &pxor	("mm1","mm5");
406	 &psllq	("mm6",45-3);
407	&movq	("mm5",$Fsse2);			# load f
408	 &pxor	("mm1","mm6");			# sigma1
409	&movq	("mm6",$Gsse2);			# load g
410
411	&paddq	("mm7","mm1");			# X[i]
412	#&movq	(&QWP(8*9,"esp"),"mm7");	# moved to BODY_00_15
413
414	&BODY_00_15_sse2(2);
415    }
416	&dec	("edx");
417	&jnz	(&label("16_79_sse2"));
418
419	#&movq	($A,$Asse2);
420	&paddq	($A,"mm3");			# from BODY_00_15
421	&movq	("mm1",$Bsse2);
422	#&movq	($BxC,$Csse2);
423	&movq	("mm3",$Dsse2);
424	#&movq	($E,$Esse2);
425	&movq	("mm5",$Fsse2);
426	&movq	("mm6",$Gsse2);
427	&movq	("mm7",$Hsse2);
428
429	&pxor	($BxC,"mm1");			# de-magic
430	&paddq	($A,&QWP(0,"esi"));
431	&paddq	("mm1",&QWP(8,"esi"));
432	&paddq	($BxC,&QWP(16,"esi"));
433	&paddq	("mm3",&QWP(24,"esi"));
434	&paddq	($E,&QWP(32,"esi"));
435	&paddq	("mm5",&QWP(40,"esi"));
436	&paddq	("mm6",&QWP(48,"esi"));
437	&paddq	("mm7",&QWP(56,"esi"));
438
439	&mov	("eax",8*80);
440	&movq	(&QWP(0,"esi"),$A);
441	&movq	(&QWP(8,"esi"),"mm1");
442	&movq	(&QWP(16,"esi"),$BxC);
443	&movq	(&QWP(24,"esi"),"mm3");
444	&movq	(&QWP(32,"esi"),$E);
445	&movq	(&QWP(40,"esi"),"mm5");
446	&movq	(&QWP(48,"esi"),"mm6");
447	&movq	(&QWP(56,"esi"),"mm7");
448
449	&lea	("esp",&DWP(0,"esp","eax"));	# destroy frame
450	&sub	($K512,"eax");			# rewind K
451
452	&cmp	("edi",&DWP(8*10+8,"esp"));	# are we done yet?
453	&jb	(&label("loop_sse2"));
454
455	&mov	("esp",&DWP(8*10+12,"esp"));	# restore sp
456	&emms	();
457&function_end("sha512_block_data_order_nohw");
458
459{ my ($cnt,$frame)=("ecx","edx");
460  my @X=map("xmm$_",(0..7));
461  my $j;
462  my $i=0;
463
464&function_begin("sha512_block_data_order_ssse3");
465	&mov	("esi",wparam(0));	# ctx
466	&mov	("edi",wparam(1));	# inp
467	&mov	("eax",wparam(2));	# num
468	&mov	("ebx","esp");		# saved sp
469
470	&call	(&label("pic_point"));	# make it PIC!
471&set_label("pic_point");
472	&blindpop($K512);
473	&lea	($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
474
475	&sub	("esp",16);
476	&and	("esp",-64);
477
478	&shl	("eax",7);
479	&add	("eax","edi");
480	&mov	(&DWP(0,"esp"),"esi");	# ctx
481	&mov	(&DWP(4,"esp"),"edi");	# inp
482	&mov	(&DWP(8,"esp"),"eax");	# inp+num*128
483	&mov	(&DWP(12,"esp"),"ebx");	# saved sp
484
485	# load ctx->h[0-7]
486	&movq	($A,&QWP(0,"esi"));
487	&movq	("mm1",&QWP(8,"esi"));
488	&movq	($BxC,&QWP(16,"esi"));
489	&movq	("mm3",&QWP(24,"esi"));
490	&movq	($E,&QWP(32,"esi"));
491	&movq	("mm5",&QWP(40,"esi"));
492	&movq	("mm6",&QWP(48,"esi"));
493	&movq	("mm7",&QWP(56,"esi"));
494
495	# TODO(davidben): The preamble above this point comes from the original
496	# merged sha512_block_data_order function, which performed some common
497	# setup and then jumped to the particular SHA-512 implementation. The
498	# parts of the preamble that do not apply to this function can be
499	# removed.
500
501	&lea	($frame,&DWP(-64,"esp"));
502	&sub	("esp",256);
503
504	# fixed stack frame layout
505	#
506	# +0	A B C D E F G H		# backing store
507	# +64	X[0]+K[i] .. X[15]+K[i]	# XMM->MM xfer area
508	# +192				# XMM off-load ring buffer
509	# +256				# saved parameters
510
511	&movdqa		(@X[1],&QWP(80*8,$K512));		# byte swap mask
512	&movdqu		(@X[0],&QWP(0,"edi"));
513	&pshufb		(@X[0],@X[1]);
514    for ($j=0;$j<8;$j++) {
515	&movdqa		(&QWP(16*(($j-1)%4),$frame),@X[3])	if ($j>4); # off-load
516	&movdqa		(@X[3],&QWP(16*($j%8),$K512));
517	&movdqa		(@X[2],@X[1])				if ($j<7); # perpetuate byte swap mask
518	&movdqu		(@X[1],&QWP(16*($j+1),"edi"))		if ($j<7); # next input
519	&movdqa		(@X[1],&QWP(16*(($j+1)%4),$frame))	if ($j==7);# restore @X[0]
520	&paddq		(@X[3],@X[0]);
521	&pshufb		(@X[1],@X[2])				if ($j<7);
522	&movdqa		(&QWP(16*($j%8)-128,$frame),@X[3]);	# xfer X[i]+K[i]
523
524	push(@X,shift(@X));					# rotate(@X)
525    }
526	#&jmp		(&label("loop_ssse3"));
527	&nop		();
528
529&set_label("loop_ssse3",32);
530	&movdqa		(@X[2],&QWP(16*(($j+1)%4),$frame));	# pre-restore @X[1]
531	&movdqa		(&QWP(16*(($j-1)%4),$frame),@X[3]);	# off-load @X[3]
532	&lea		($K512,&DWP(16*8,$K512));
533
534	#&movq	($Asse2,$A);			# off-load A-H
535	&movq	($Bsse2,"mm1");
536	 &mov	("ebx","edi");
537	&movq	($Csse2,$BxC);
538	 &lea	("edi",&DWP(128,"edi"));	# advance input
539	&movq	($Dsse2,"mm3");
540	 &cmp	("edi","eax");
541	#&movq	($Esse2,$E);
542	&movq	($Fsse2,"mm5");
543	 &cmovb	("ebx","edi");
544	&movq	($Gsse2,"mm6");
545	 &mov	("ecx",4);			# loop counter
546	&pxor	($BxC,"mm1");			# magic
547	&movq	($Hsse2,"mm7");
548	&pxor	("mm3","mm3");			# magic
549
550	&jmp		(&label("00_47_ssse3"));
551
552sub BODY_00_15_ssse3 {		# "phase-less" copy of BODY_00_15_sse2
553	(
554	'&movq	("mm1",$E)',				# %mm1 is sliding right
555	'&movq	("mm7",&QWP(((-8*$i)%128)-128,$frame))',# X[i]+K[i]
556	 '&pxor	("mm5","mm6")',				# f^=g
557	'&psrlq	("mm1",14)',
558	 '&movq	(&QWP(8*($i+4)%64,"esp"),$E)',		# modulo-scheduled save e
559	 '&pand	("mm5",$E)',				# f&=e
560	'&psllq	($E,23)',				# $E is sliding left
561	'&paddq	($A,"mm3")',				# [h+=Maj(a,b,c)]
562	'&movq	("mm3","mm1")',				# %mm3 is T1
563	 '&psrlq("mm1",4)',
564	 '&pxor	("mm5","mm6")',				# Ch(e,f,g)
565	'&pxor	("mm3",$E)',
566	 '&psllq($E,23)',
567	'&pxor	("mm3","mm1")',
568	 '&movq	(&QWP(8*$i%64,"esp"),$A)',		# modulo-scheduled save a
569	 '&paddq("mm7","mm5")',				# X[i]+=Ch(e,f,g)
570	'&pxor	("mm3",$E)',
571	 '&psrlq("mm1",23)',
572	 '&paddq("mm7",&QWP(8*($i+7)%64,"esp"))',	# X[i]+=h
573	'&pxor	("mm3","mm1")',
574	 '&psllq($E,4)',
575	'&pxor	("mm3",$E)',				# T1=Sigma1_512(e)
576
577	 '&movq	($E,&QWP(8*($i+3)%64,"esp"))',		# e = load d, e in next round
578	'&paddq	("mm3","mm7")',				# T1+=X[i]
579	 '&movq	("mm5",$A)',				# %mm5 is sliding right
580	 '&psrlq("mm5",28)',
581	'&paddq	($E,"mm3")',				# d += T1
582	 '&movq	("mm6",$A)',				# %mm6 is sliding left
583	 '&movq	("mm7","mm5")',
584	 '&psllq("mm6",25)',
585	'&movq	("mm1",&QWP(8*($i+1)%64,"esp"))',	# load b
586	 '&psrlq("mm5",6)',
587	 '&pxor	("mm7","mm6")',
588	 '&psllq("mm6",5)',
589	 '&pxor	("mm7","mm5")',
590	'&pxor	($A,"mm1")',				# a^b, b^c in next round
591	 '&psrlq("mm5",5)',
592	 '&pxor	("mm7","mm6")',
593	'&pand	($BxC,$A)',				# (b^c)&(a^b)
594	 '&psllq("mm6",6)',
595	 '&pxor	("mm7","mm5")',
596	'&pxor	($BxC,"mm1")',				# [h=]Maj(a,b,c)
597	 '&pxor	("mm6","mm7")',				# Sigma0_512(a)
598	 '&movq	("mm5",&QWP(8*($i+5-1)%64,"esp"))',	# pre-load f
599	'&paddq	($BxC,"mm6")',				# h+=Sigma0(a)
600	 '&movq	("mm6",&QWP(8*($i+6-1)%64,"esp"))',	# pre-load g
601
602	'($A,$BxC) = ($BxC,$A); $i--;'
603	);
604}
605
606&set_label("00_47_ssse3",32);
607
608    for(;$j<16;$j++) {
609	my ($t0,$t2,$t1)=@X[2..4];
610	my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3());
611
612	&movdqa		($t2,@X[5]);
613	&movdqa		(@X[1],$t0);			# restore @X[1]
614	&palignr	($t0,@X[0],8);			# X[1..2]
615	&movdqa		(&QWP(16*($j%4),$frame),@X[4]);	# off-load @X[4]
616	 &palignr	($t2,@X[4],8);			# X[9..10]
617
618	&movdqa		($t1,$t0);
619	&psrlq		($t0,7);
620	 &paddq		(@X[0],$t2);			# X[0..1] += X[9..10]
621	&movdqa		($t2,$t1);
622	&psrlq		($t1,1);
623	&psllq		($t2,64-8);
624	&pxor		($t0,$t1);
625	&psrlq		($t1,8-1);
626	&pxor		($t0,$t2);
627	&psllq		($t2,8-1);
628	&pxor		($t0,$t1);
629	 &movdqa	($t1,@X[7]);
630	&pxor		($t0,$t2);			# sigma0(X[1..2])
631	 &movdqa	($t2,@X[7]);
632	 &psrlq		($t1,6);
633	&paddq		(@X[0],$t0);			# X[0..1] += sigma0(X[1..2])
634
635	&movdqa		($t0,@X[7]);
636	&psrlq		($t2,19);
637	&psllq		($t0,64-61);
638	&pxor		($t1,$t2);
639	&psrlq		($t2,61-19);
640	&pxor		($t1,$t0);
641	&psllq		($t0,61-19);
642	&pxor		($t1,$t2);
643	&movdqa		($t2,&QWP(16*(($j+2)%4),$frame));# pre-restore @X[1]
644	&pxor		($t1,$t0);			# sigma0(X[1..2])
645	&movdqa		($t0,&QWP(16*($j%8),$K512));
646	 eval(shift(@insns));
647	&paddq		(@X[0],$t1);			# X[0..1] += sigma0(X[14..15])
648	 eval(shift(@insns));
649	 eval(shift(@insns));
650	 eval(shift(@insns));
651	 eval(shift(@insns));
652	&paddq		($t0,@X[0]);
653	 foreach(@insns) { eval; }
654	&movdqa		(&QWP(16*($j%8)-128,$frame),$t0);# xfer X[i]+K[i]
655
656	push(@X,shift(@X));				# rotate(@X)
657    }
658	&lea		($K512,&DWP(16*8,$K512));
659	&dec		("ecx");
660	&jnz		(&label("00_47_ssse3"));
661
662	&movdqa		(@X[1],&QWP(0,$K512));		# byte swap mask
663	&lea		($K512,&DWP(-80*8,$K512));	# rewind
664	&movdqu		(@X[0],&QWP(0,"ebx"));
665	&pshufb		(@X[0],@X[1]);
666
667    for ($j=0;$j<8;$j++) {	# load next or same block
668	my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3());
669
670	&movdqa		(&QWP(16*(($j-1)%4),$frame),@X[3])	if ($j>4); # off-load
671	&movdqa		(@X[3],&QWP(16*($j%8),$K512));
672	&movdqa		(@X[2],@X[1])				if ($j<7); # perpetuate byte swap mask
673	&movdqu		(@X[1],&QWP(16*($j+1),"ebx"))		if ($j<7); # next input
674	&movdqa		(@X[1],&QWP(16*(($j+1)%4),$frame))	if ($j==7);# restore @X[0]
675	&paddq		(@X[3],@X[0]);
676	&pshufb		(@X[1],@X[2])				if ($j<7);
677	 foreach(@insns) { eval; }
678	&movdqa		(&QWP(16*($j%8)-128,$frame),@X[3]);# xfer X[i]+K[i]
679
680	push(@X,shift(@X));				# rotate(@X)
681    }
682
683	#&movq	($A,$Asse2);			# load A-H
684	&movq	("mm1",$Bsse2);
685	&paddq	($A,"mm3");			# from BODY_00_15
686	#&movq	($BxC,$Csse2);
687	&movq	("mm3",$Dsse2);
688	#&movq	($E,$Esse2);
689	#&movq	("mm5",$Fsse2);
690	#&movq	("mm6",$Gsse2);
691	&movq	("mm7",$Hsse2);
692
693	&pxor	($BxC,"mm1");			# de-magic
694	&paddq	($A,&QWP(0,"esi"));
695	&paddq	("mm1",&QWP(8,"esi"));
696	&paddq	($BxC,&QWP(16,"esi"));
697	&paddq	("mm3",&QWP(24,"esi"));
698	&paddq	($E,&QWP(32,"esi"));
699	&paddq	("mm5",&QWP(40,"esi"));
700	&paddq	("mm6",&QWP(48,"esi"));
701	&paddq	("mm7",&QWP(56,"esi"));
702
703	&movq	(&QWP(0,"esi"),$A);
704	&movq	(&QWP(8,"esi"),"mm1");
705	&movq	(&QWP(16,"esi"),$BxC);
706	&movq	(&QWP(24,"esi"),"mm3");
707	&movq	(&QWP(32,"esi"),$E);
708	&movq	(&QWP(40,"esi"),"mm5");
709	&movq	(&QWP(48,"esi"),"mm6");
710	&movq	(&QWP(56,"esi"),"mm7");
711
712    	&cmp	("edi","eax")			# are we done yet?
713	&jb	(&label("loop_ssse3"));
714
715	&mov	("esp",&DWP(64+12,$frame));	# restore sp
716	&emms	();
717}
718&function_end("sha512_block_data_order_ssse3");
719}
720
721&set_label("K512",64);	# Yes! I keep it in the code segment!
722	&data_word(0xd728ae22,0x428a2f98);	# u64
723	&data_word(0x23ef65cd,0x71374491);	# u64
724	&data_word(0xec4d3b2f,0xb5c0fbcf);	# u64
725	&data_word(0x8189dbbc,0xe9b5dba5);	# u64
726	&data_word(0xf348b538,0x3956c25b);	# u64
727	&data_word(0xb605d019,0x59f111f1);	# u64
728	&data_word(0xaf194f9b,0x923f82a4);	# u64
729	&data_word(0xda6d8118,0xab1c5ed5);	# u64
730	&data_word(0xa3030242,0xd807aa98);	# u64
731	&data_word(0x45706fbe,0x12835b01);	# u64
732	&data_word(0x4ee4b28c,0x243185be);	# u64
733	&data_word(0xd5ffb4e2,0x550c7dc3);	# u64
734	&data_word(0xf27b896f,0x72be5d74);	# u64
735	&data_word(0x3b1696b1,0x80deb1fe);	# u64
736	&data_word(0x25c71235,0x9bdc06a7);	# u64
737	&data_word(0xcf692694,0xc19bf174);	# u64
738	&data_word(0x9ef14ad2,0xe49b69c1);	# u64
739	&data_word(0x384f25e3,0xefbe4786);	# u64
740	&data_word(0x8b8cd5b5,0x0fc19dc6);	# u64
741	&data_word(0x77ac9c65,0x240ca1cc);	# u64
742	&data_word(0x592b0275,0x2de92c6f);	# u64
743	&data_word(0x6ea6e483,0x4a7484aa);	# u64
744	&data_word(0xbd41fbd4,0x5cb0a9dc);	# u64
745	&data_word(0x831153b5,0x76f988da);	# u64
746	&data_word(0xee66dfab,0x983e5152);	# u64
747	&data_word(0x2db43210,0xa831c66d);	# u64
748	&data_word(0x98fb213f,0xb00327c8);	# u64
749	&data_word(0xbeef0ee4,0xbf597fc7);	# u64
750	&data_word(0x3da88fc2,0xc6e00bf3);	# u64
751	&data_word(0x930aa725,0xd5a79147);	# u64
752	&data_word(0xe003826f,0x06ca6351);	# u64
753	&data_word(0x0a0e6e70,0x14292967);	# u64
754	&data_word(0x46d22ffc,0x27b70a85);	# u64
755	&data_word(0x5c26c926,0x2e1b2138);	# u64
756	&data_word(0x5ac42aed,0x4d2c6dfc);	# u64
757	&data_word(0x9d95b3df,0x53380d13);	# u64
758	&data_word(0x8baf63de,0x650a7354);	# u64
759	&data_word(0x3c77b2a8,0x766a0abb);	# u64
760	&data_word(0x47edaee6,0x81c2c92e);	# u64
761	&data_word(0x1482353b,0x92722c85);	# u64
762	&data_word(0x4cf10364,0xa2bfe8a1);	# u64
763	&data_word(0xbc423001,0xa81a664b);	# u64
764	&data_word(0xd0f89791,0xc24b8b70);	# u64
765	&data_word(0x0654be30,0xc76c51a3);	# u64
766	&data_word(0xd6ef5218,0xd192e819);	# u64
767	&data_word(0x5565a910,0xd6990624);	# u64
768	&data_word(0x5771202a,0xf40e3585);	# u64
769	&data_word(0x32bbd1b8,0x106aa070);	# u64
770	&data_word(0xb8d2d0c8,0x19a4c116);	# u64
771	&data_word(0x5141ab53,0x1e376c08);	# u64
772	&data_word(0xdf8eeb99,0x2748774c);	# u64
773	&data_word(0xe19b48a8,0x34b0bcb5);	# u64
774	&data_word(0xc5c95a63,0x391c0cb3);	# u64
775	&data_word(0xe3418acb,0x4ed8aa4a);	# u64
776	&data_word(0x7763e373,0x5b9cca4f);	# u64
777	&data_word(0xd6b2b8a3,0x682e6ff3);	# u64
778	&data_word(0x5defb2fc,0x748f82ee);	# u64
779	&data_word(0x43172f60,0x78a5636f);	# u64
780	&data_word(0xa1f0ab72,0x84c87814);	# u64
781	&data_word(0x1a6439ec,0x8cc70208);	# u64
782	&data_word(0x23631e28,0x90befffa);	# u64
783	&data_word(0xde82bde9,0xa4506ceb);	# u64
784	&data_word(0xb2c67915,0xbef9a3f7);	# u64
785	&data_word(0xe372532b,0xc67178f2);	# u64
786	&data_word(0xea26619c,0xca273ece);	# u64
787	&data_word(0x21c0c207,0xd186b8c7);	# u64
788	&data_word(0xcde0eb1e,0xeada7dd6);	# u64
789	&data_word(0xee6ed178,0xf57d4f7f);	# u64
790	&data_word(0x72176fba,0x06f067aa);	# u64
791	&data_word(0xa2c898a6,0x0a637dc5);	# u64
792	&data_word(0xbef90dae,0x113f9804);	# u64
793	&data_word(0x131c471b,0x1b710b35);	# u64
794	&data_word(0x23047d84,0x28db77f5);	# u64
795	&data_word(0x40c72493,0x32caab7b);	# u64
796	&data_word(0x15c9bebc,0x3c9ebe0a);	# u64
797	&data_word(0x9c100d4c,0x431d67c4);	# u64
798	&data_word(0xcb3e42b6,0x4cc5d4be);	# u64
799	&data_word(0xfc657e2a,0x597f299c);	# u64
800	&data_word(0x3ad6faec,0x5fcb6fab);	# u64
801	&data_word(0x4a475817,0x6c44198c);	# u64
802
803	&data_word(0x04050607,0x00010203);	# byte swap
804	&data_word(0x0c0d0e0f,0x08090a0b);	# mask
805&asciz("SHA512 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
806
807&asm_finish();
808
809close STDOUT or die "error closing STDOUT: $!";
810