xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/sha/asm/sha1-586.pl (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1#! /usr/bin/env perl
2# Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# [Re]written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
18# functions were re-implemented to address P4 performance issue [see
19# commentary below], and in 2006 the rest was rewritten in order to
20# gain freedom to liberate licensing terms.
21
22# January, September 2004.
23#
24# It was noted that Intel IA-32 C compiler generates code which
25# performs ~30% *faster* on P4 CPU than original *hand-coded*
26# SHA1 assembler implementation. To address this problem (and
27# prove that humans are still better than machines:-), the
28# original code was overhauled, which resulted in following
29# performance changes:
30#
31#		compared with original	compared with Intel cc
32#		assembler impl.		generated code
33# Pentium	-16%			+48%
34# PIII/AMD	+8%			+16%
35# P4		+85%(!)			+45%
36#
37# As you can see Pentium came out as looser:-( Yet I reckoned that
38# improvement on P4 outweighs the loss and incorporate this
39# re-tuned code to 0.9.7 and later.
40# ----------------------------------------------------------------
41
42# August 2009.
43#
44# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
45# '(c&d) + (b&(c^d))', which allows to accumulate partial results
46# and lighten "pressure" on scratch registers. This resulted in
47# >12% performance improvement on contemporary AMD cores (with no
48# degradation on other CPUs:-). Also, the code was revised to maximize
49# "distance" between instructions producing input to 'lea' instruction
50# and the 'lea' instruction itself, which is essential for Intel Atom
51# core and resulted in ~15% improvement.
52
53# October 2010.
54#
55# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
56# is to offload message schedule denoted by Wt in NIST specification,
57# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
58# and in SSE2 context was first explored by Dean Gaudet in 2004, see
59# http://arctic.org/~dean/crypto/sha1.html. Since then several things
60# have changed that made it interesting again:
61#
62# a) XMM units became faster and wider;
63# b) instruction set became more versatile;
64# c) an important observation was made by Max Locktykhin, which made
65#    it possible to reduce amount of instructions required to perform
66#    the operation in question, for further details see
67#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
68
69# April 2011.
70#
71# Add AVX code path, probably most controversial... The thing is that
72# switch to AVX alone improves performance by as little as 4% in
73# comparison to SSSE3 code path. But below result doesn't look like
74# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
75# pair of µ-ops, and it's the additional µ-ops, two per round, that
76# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
77# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
78# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
79# cycles per processed byte. But 'sh[rl]d' is not something that used
80# to be fast, nor does it appear to be fast in upcoming Bulldozer
81# [according to its optimization manual]. Which is why AVX code path
82# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
83# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
84# makes no sense to keep the AVX code path. If somebody feels that
85# strongly, it's probably more appropriate to discuss possibility of
86# using vector rotate XOP on AMD...
87
88# March 2014.
89#
90# Add support for Intel SHA Extensions.
91
92######################################################################
93# Current performance is summarized in following table. Numbers are
94# CPU clock cycles spent to process single byte (less is better).
95#
96#		x86		SSSE3		AVX
97# Pentium	15.7		-
98# PIII		11.5		-
99# P4		10.6		-
100# AMD K8	7.1		-
101# Core2		7.3		6.0/+22%	-
102# Westmere	7.3		5.5/+33%	-
103# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
104# Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
105# Haswell	6.5		4.3/+51%	4.1(**)/+58%
106# Skylake	6.4		4.1/+55%	4.1(**)/+55%
107# Bulldozer	11.6		6.0/+92%
108# VIA Nano	10.6		7.5/+41%
109# Atom		12.5		9.3(*)/+35%
110# Silvermont	14.5		9.9(*)/+46%
111# Goldmont	8.8		6.7/+30%	1.7(***)/+415%
112#
113# (*)	Loop is 1056 instructions long and expected result is ~8.25.
114#	The discrepancy is because of front-end limitations, so
115#	called MS-ROM penalties, and on Silvermont even rotate's
116#	limited parallelism.
117#
118# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
119#
120# (***)	SHAEXT result
121
122$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
123push(@INC,"${dir}","${dir}../../../perlasm");
124require "x86asm.pl";
125
126$output=pop;
127open STDOUT,">$output";
128
129&asm_init($ARGV[0]);
130
131$xmm = 1;
132
133# In upstream, this is controlled by shelling out to the compiler to check
134# versions, but BoringSSL is intended to be used with pre-generated perlasm
135# output, so this isn't useful anyway.
136$ymm = 1;
137
138$shaext=$xmm;	### set to zero if compiling for 1.0.1
139
140# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
141# been tested.
142$shaext = 0;
143
144
145$A="eax";
146$B="ebx";
147$C="ecx";
148$D="edx";
149$E="edi";
150$T="esi";
151$tmp1="ebp";
152
153@V=($A,$B,$C,$D,$E,$T);
154
155$alt=0;	# 1 denotes alternative IALU implementation, which performs
156	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
157	# Sandy Bridge...
158
159sub BODY_00_15
160	{
161	local($n,$a,$b,$c,$d,$e,$f)=@_;
162
163	&comment("00_15 $n");
164
165	&mov($f,$c);			# f to hold F_00_19(b,c,d)
166	 if ($n==0)  { &mov($tmp1,$a); }
167	 else        { &mov($a,$tmp1); }
168	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
169	 &xor($f,$d);
170	&add($tmp1,$e);			# tmp1+=e;
171	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
172	 				# with xi, also note that e becomes
173					# f in next round...
174	&and($f,$b);
175	&rotr($b,2);			# b=ROTATE(b,30)
176	 &xor($f,$d);			# f holds F_00_19(b,c,d)
177	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
178
179	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
180		      &add($f,$tmp1); }	# f+=tmp1
181	else        { &add($tmp1,$f); }	# f becomes a in next round
182	&mov($tmp1,$a)			if ($alt && $n==15);
183	}
184
185sub BODY_16_19
186	{
187	local($n,$a,$b,$c,$d,$e,$f)=@_;
188
189	&comment("16_19 $n");
190
191if ($alt) {
192	&xor($c,$d);
193	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
194	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
195	 &xor($f,&swtmp(($n+8)%16));
196	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
197	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
198	&rotl($f,1);			# f=ROTATE(f,1)
199	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
200	&xor($c,$d);			# restore $c
201	 &mov($tmp1,$a);		# b in next round
202	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
203	 &mov(&swtmp($n%16),$f);	# xi=f
204	&rotl($a,5);			# ROTATE(a,5)
205	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
206	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
207	 &add($f,$a);			# f+=ROTATE(a,5)
208} else {
209	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
210	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
211	&xor($tmp1,$d);
212	 &xor($f,&swtmp(($n+8)%16));
213	&and($tmp1,$b);
214	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
215	&rotl($f,1);			# f=ROTATE(f,1)
216	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
217	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
218	 &mov($tmp1,$a);
219	&rotr($b,2);			# b=ROTATE(b,30)
220	 &mov(&swtmp($n%16),$f);	# xi=f
221	&rotl($tmp1,5);			# ROTATE(a,5)
222	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
223	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
224	 &add($f,$tmp1);		# f+=ROTATE(a,5)
225}
226	}
227
228sub BODY_20_39
229	{
230	local($n,$a,$b,$c,$d,$e,$f)=@_;
231	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
232
233	&comment("20_39 $n");
234
235if ($alt) {
236	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
237	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
238	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
239	 &xor($f,&swtmp(($n+8)%16));
240	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
241	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
242	&rotl($f,1);			# f=ROTATE(f,1)
243	 &mov($tmp1,$a);		# b in next round
244	&rotr($b,7);			# b=ROTATE(b,30)
245	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
246	&rotl($a,5);			# ROTATE(a,5)
247	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
248	&and($tmp1,$b)			if($n==39);
249	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
250	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
251	 &add($f,$a);			# f+=ROTATE(a,5)
252	&rotr($a,5)			if ($n==79);
253} else {
254	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
255	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
256	&xor($tmp1,$c);
257	 &xor($f,&swtmp(($n+8)%16));
258	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
259	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
260	&rotl($f,1);			# f=ROTATE(f,1)
261	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
262	&rotr($b,2);			# b=ROTATE(b,30)
263	 &mov($tmp1,$a);
264	&rotl($tmp1,5);			# ROTATE(a,5)
265	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
266	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
267	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
268	&add($f,$tmp1);			# f+=ROTATE(a,5)
269}
270	}
271
272sub BODY_40_59
273	{
274	local($n,$a,$b,$c,$d,$e,$f)=@_;
275
276	&comment("40_59 $n");
277
278if ($alt) {
279	&add($e,$tmp1);			# e+=b&(c^d)
280	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
281	&mov($tmp1,$d);
282	 &xor($f,&swtmp(($n+8)%16));
283	&xor($c,$d);			# restore $c
284	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
285	&rotl($f,1);			# f=ROTATE(f,1)
286	 &and($tmp1,$c);
287	&rotr($b,7);			# b=ROTATE(b,30)
288	 &add($e,$tmp1);		# e+=c&d
289	&mov($tmp1,$a);			# b in next round
290	 &mov(&swtmp($n%16),$f);	# xi=f
291	&rotl($a,5);			# ROTATE(a,5)
292	 &xor($b,$c)			if ($n<59);
293	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
294	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
295	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
296	 &add($f,$a);			# f+=ROTATE(a,5)
297} else {
298	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
299	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
300	&xor($tmp1,$d);
301	 &xor($f,&swtmp(($n+8)%16));
302	&and($tmp1,$b);
303	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
304	&rotl($f,1);			# f=ROTATE(f,1)
305	 &add($tmp1,$e);		# b&(c^d)+=e
306	&rotr($b,2);			# b=ROTATE(b,30)
307	 &mov($e,$a);			# e becomes volatile
308	&rotl($e,5);			# ROTATE(a,5)
309	 &mov(&swtmp($n%16),$f);	# xi=f
310	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
311	 &mov($tmp1,$c);
312	&add($f,$e);			# f+=ROTATE(a,5)
313	 &and($tmp1,$d);
314	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
315	 &add($f,$tmp1);		# f+=c&d
316}
317	}
318
319&static_label("K_XX_XX");
320
321&function_begin("sha1_block_data_order_nohw");
322	&mov($tmp1,&wparam(0));	# SHA_CTX *c
323	&mov($T,&wparam(1));	# const void *input
324	&mov($A,&wparam(2));	# size_t num
325	&stack_push(16+3);	# allocate X[16]
326	&shl($A,6);
327	&add($A,$T);
328	&mov(&wparam(2),$A);	# pointer beyond the end of input
329	&mov($E,&DWP(16,$tmp1));# pre-load E
330	&jmp(&label("loop"));
331
332&set_label("loop",16);
333
334	# copy input chunk to X, but reversing byte order!
335	for ($i=0; $i<16; $i+=4)
336		{
337		&mov($A,&DWP(4*($i+0),$T));
338		&mov($B,&DWP(4*($i+1),$T));
339		&mov($C,&DWP(4*($i+2),$T));
340		&mov($D,&DWP(4*($i+3),$T));
341		&bswap($A);
342		&bswap($B);
343		&bswap($C);
344		&bswap($D);
345		&mov(&swtmp($i+0),$A);
346		&mov(&swtmp($i+1),$B);
347		&mov(&swtmp($i+2),$C);
348		&mov(&swtmp($i+3),$D);
349		}
350	&mov(&wparam(1),$T);	# redundant in 1st spin
351
352	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
353	&mov($B,&DWP(4,$tmp1));
354	&mov($C,&DWP(8,$tmp1));
355	&mov($D,&DWP(12,$tmp1));
356	# E is pre-loaded
357
358	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
359	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
360	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
361	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
362	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
363
364	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
365
366	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
367	&mov($D,&wparam(1));	# D is last "T" and is discarded
368
369	&add($E,&DWP(0,$tmp1));	# E is last "A"...
370	&add($T,&DWP(4,$tmp1));
371	&add($A,&DWP(8,$tmp1));
372	&add($B,&DWP(12,$tmp1));
373	&add($C,&DWP(16,$tmp1));
374
375	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
376	 &add($D,64);		# advance input pointer
377	&mov(&DWP(4,$tmp1),$T);
378	 &cmp($D,&wparam(2));	# have we reached the end yet?
379	&mov(&DWP(8,$tmp1),$A);
380	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
381	&mov(&DWP(12,$tmp1),$B);
382	 &mov($T,$D);		# input pointer
383	&mov(&DWP(16,$tmp1),$C);
384	&jb(&label("loop"));
385
386	&stack_pop(16+3);
387&function_end("sha1_block_data_order_nohw");
388
389if ($xmm) {
390if ($shaext) {
391######################################################################
392# Intel SHA Extensions implementation of SHA1 update function.
393#
394my ($ctx,$inp,$num)=("edi","esi","ecx");
395my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
396my @MSG=map("xmm$_",(4..7));
397
398sub sha1rnds4 {
399 my ($dst,$src,$imm)=@_;
400    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
401    {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
402}
403sub sha1op38 {
404 my ($opcodelet,$dst,$src)=@_;
405    if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
406    {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
407}
408sub sha1nexte	{ sha1op38(0xc8,@_); }
409sub sha1msg1	{ sha1op38(0xc9,@_); }
410sub sha1msg2	{ sha1op38(0xca,@_); }
411
412&function_begin("sha1_block_data_order_shaext");
413	&call	(&label("pic_point"));	# make it PIC!
414	&set_label("pic_point");
415	&blindpop($tmp1);
416	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
417	&mov	($ctx,&wparam(0));
418	&mov	("ebx","esp");
419	&mov	($inp,&wparam(1));
420	&mov	($num,&wparam(2));
421	&sub	("esp",32);
422
423	&movdqu	($ABCD,&QWP(0,$ctx));
424	&movd	($E,&DWP(16,$ctx));
425	&and	("esp",-32);
426	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
427
428	&movdqu	(@MSG[0],&QWP(0,$inp));
429	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
430	&movdqu	(@MSG[1],&QWP(0x10,$inp));
431	&pshufd	($E,$E,0b00011011);		# flip word order
432	&movdqu	(@MSG[2],&QWP(0x20,$inp));
433	&pshufb	(@MSG[0],$BSWAP);
434	&movdqu	(@MSG[3],&QWP(0x30,$inp));
435	&pshufb	(@MSG[1],$BSWAP);
436	&pshufb	(@MSG[2],$BSWAP);
437	&pshufb	(@MSG[3],$BSWAP);
438	&jmp	(&label("loop_shaext"));
439
440&set_label("loop_shaext",16);
441	&dec		($num);
442	&lea		("eax",&DWP(0x40,$inp));
443	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
444	&paddd		($E,@MSG[0]);
445	&cmovne		($inp,"eax");
446	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
447
448for($i=0;$i<20-4;$i+=2) {
449	&sha1msg1	(@MSG[0],@MSG[1]);
450	&movdqa		($E_,$ABCD);
451	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
452	&sha1nexte	($E_,@MSG[1]);
453	&pxor		(@MSG[0],@MSG[2]);
454	&sha1msg1	(@MSG[1],@MSG[2]);
455	&sha1msg2	(@MSG[0],@MSG[3]);
456
457	&movdqa		($E,$ABCD);
458	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
459	&sha1nexte	($E,@MSG[2]);
460	&pxor		(@MSG[1],@MSG[3]);
461	&sha1msg2	(@MSG[1],@MSG[0]);
462
463	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
464}
465	&movdqu		(@MSG[0],&QWP(0,$inp));
466	&movdqa		($E_,$ABCD);
467	&sha1rnds4	($ABCD,$E,3);		# 64-67
468	&sha1nexte	($E_,@MSG[1]);
469	&movdqu		(@MSG[1],&QWP(0x10,$inp));
470	&pshufb		(@MSG[0],$BSWAP);
471
472	&movdqa		($E,$ABCD);
473	&sha1rnds4	($ABCD,$E_,3);		# 68-71
474	&sha1nexte	($E,@MSG[2]);
475	&movdqu		(@MSG[2],&QWP(0x20,$inp));
476	&pshufb		(@MSG[1],$BSWAP);
477
478	&movdqa		($E_,$ABCD);
479	&sha1rnds4	($ABCD,$E,3);		# 72-75
480	&sha1nexte	($E_,@MSG[3]);
481	&movdqu		(@MSG[3],&QWP(0x30,$inp));
482	&pshufb		(@MSG[2],$BSWAP);
483
484	&movdqa		($E,$ABCD);
485	&sha1rnds4	($ABCD,$E_,3);		# 76-79
486	&movdqa		($E_,&QWP(0,"esp"));
487	&pshufb		(@MSG[3],$BSWAP);
488	&sha1nexte	($E,$E_);
489	&paddd		($ABCD,&QWP(16,"esp"));
490
491	&jnz		(&label("loop_shaext"));
492
493	&pshufd	($ABCD,$ABCD,0b00011011);
494	&pshufd	($E,$E,0b00011011);
495	&movdqu	(&QWP(0,$ctx),$ABCD)
496	&movd	(&DWP(16,$ctx),$E);
497	&mov	("esp","ebx");
498&function_end("sha1_block_data_order_shaext");
499}
500######################################################################
501# The SSSE3 implementation.
502#
503# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
504# 32 elements of the message schedule or Xupdate outputs. First 4
505# quadruples are simply byte-swapped input, next 4 are calculated
506# according to method originally suggested by Dean Gaudet (modulo
507# being implemented in SSSE3). Once 8 quadruples or 32 elements are
508# collected, it switches to routine proposed by Max Locktyukhin.
509#
510# Calculations inevitably require temporary registers, and there are
511# no %xmm registers left to spare. For this reason part of the ring
512# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
513# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
514# X[-5], and X[4] - X[-4]...
515#
516# Another notable optimization is aggressive stack frame compression
517# aiming to minimize amount of 9-byte instructions...
518#
519# Yet another notable optimization is "jumping" $B variable. It means
520# that there is no register permanently allocated for $B value. This
521# allowed to eliminate one instruction from body_20_39...
522#
523my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
524my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
525my @V=($A,$B,$C,$D,$E);
526my $j=0;			# hash round
527my $rx=0;
528my @T=($T,$tmp1);
529my $inp;
530
531my $_rol=sub { &rol(@_) };
532my $_ror=sub { &ror(@_) };
533
534&function_begin("sha1_block_data_order_ssse3");
535	&call	(&label("pic_point"));	# make it PIC!
536	&set_label("pic_point");
537	&blindpop($tmp1);
538	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
539
540	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
541	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
542	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
543	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
544	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
545
546	&mov	($E,&wparam(0));		# load argument block
547	&mov	($inp=@T[1],&wparam(1));
548	&mov	($D,&wparam(2));
549	&mov	(@T[0],"esp");
550
551	# stack frame layout
552	#
553	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
554	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
555	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
556	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
557	#
558	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
559	#	X[4]	X[5]	X[6]	X[7]
560	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
561	#
562	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
563	#	K_40_59	K_40_59	K_40_59	K_40_59
564	#	K_60_79	K_60_79	K_60_79	K_60_79
565	#	K_00_19	K_00_19	K_00_19	K_00_19
566	#	pbswap mask
567	#
568	# +192	ctx				# argument block
569	# +196	inp
570	# +200	end
571	# +204	esp
572	&sub	("esp",208);
573	&and	("esp",-64);
574
575	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
576	&movdqa	(&QWP(112+16,"esp"),@X[5]);
577	&movdqa	(&QWP(112+32,"esp"),@X[6]);
578	&shl	($D,6);				# len*64
579	&movdqa	(&QWP(112+48,"esp"),@X[3]);
580	&add	($D,$inp);			# end of input
581	&movdqa	(&QWP(112+64,"esp"),@X[2]);
582	&add	($inp,64);
583	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
584	&mov	(&DWP(192+4,"esp"),$inp);
585	&mov	(&DWP(192+8,"esp"),$D);
586	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
587
588	&mov	($A,&DWP(0,$E));		# load context
589	&mov	($B,&DWP(4,$E));
590	&mov	($C,&DWP(8,$E));
591	&mov	($D,&DWP(12,$E));
592	&mov	($E,&DWP(16,$E));
593	&mov	(@T[0],$B);			# magic seed
594
595	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
596	&movdqu	(@X[-3&7],&QWP(-48,$inp));
597	&movdqu	(@X[-2&7],&QWP(-32,$inp));
598	&movdqu	(@X[-1&7],&QWP(-16,$inp));
599	&pshufb	(@X[-4&7],@X[2]);		# byte swap
600	&pshufb	(@X[-3&7],@X[2]);
601	&pshufb	(@X[-2&7],@X[2]);
602	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
603	&pshufb	(@X[-1&7],@X[2]);
604	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
605	&paddd	(@X[-3&7],@X[3]);
606	&paddd	(@X[-2&7],@X[3]);
607	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
608	&psubd	(@X[-4&7],@X[3]);		# restore X[]
609	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
610	&psubd	(@X[-3&7],@X[3]);
611	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
612	&mov	(@T[1],$C);
613	&psubd	(@X[-2&7],@X[3]);
614	&xor	(@T[1],$D);
615	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
616	&and	(@T[0],@T[1]);
617	&jmp	(&label("loop"));
618
619######################################################################
620# SSE instruction sequence is first broken to groups of independent
621# instructions, independent in respect to their inputs and shifter
622# (not all architectures have more than one). Then IALU instructions
623# are "knitted in" between the SSE groups. Distance is maintained for
624# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
625# [which allegedly also implements SSSE3]...
626#
627# Temporary registers usage. X[2] is volatile at the entry and at the
628# end is restored from backtrace ring buffer. X[3] is expected to
629# contain current K_XX_XX constant and is used to calculate X[-1]+K
630# from previous round, it becomes volatile the moment the value is
631# saved to stack for transfer to IALU. X[4] becomes volatile whenever
632# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
633# end it is loaded with next K_XX_XX [which becomes X[3] in next
634# round]...
635#
636sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
637{ use integer;
638  my $body = shift;
639  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
640  my ($a,$b,$c,$d,$e);
641
642	 eval(shift(@insns));		# ror
643	 eval(shift(@insns));
644	 eval(shift(@insns));
645	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
646	&movdqa	(@X[2],@X[-1&7]);
647	 eval(shift(@insns));
648	 eval(shift(@insns));
649
650	  &paddd	(@X[3],@X[-1&7]);
651	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
652	 eval(shift(@insns));		# rol
653	 eval(shift(@insns));
654	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
655	 eval(shift(@insns));
656	 eval(shift(@insns));
657	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
658	 eval(shift(@insns));
659	 eval(shift(@insns));		# ror
660
661	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
662	 eval(shift(@insns));
663	 eval(shift(@insns));
664	 eval(shift(@insns));
665
666	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
667	 eval(shift(@insns));
668	 eval(shift(@insns));		# rol
669	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
670	 eval(shift(@insns));
671	 eval(shift(@insns));
672
673	&movdqa	(@X[4],@X[0]);
674	 eval(shift(@insns));
675	 eval(shift(@insns));
676	 eval(shift(@insns));		# ror
677	&movdqa (@X[2],@X[0]);
678	 eval(shift(@insns));
679
680	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
681	&paddd	(@X[0],@X[0]);
682	 eval(shift(@insns));
683	 eval(shift(@insns));
684
685	&psrld	(@X[2],31);
686	 eval(shift(@insns));
687	 eval(shift(@insns));		# rol
688	&movdqa	(@X[3],@X[4]);
689	 eval(shift(@insns));
690	 eval(shift(@insns));
691	 eval(shift(@insns));
692
693	&psrld	(@X[4],30);
694	 eval(shift(@insns));
695	 eval(shift(@insns));		# ror
696	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
697	 eval(shift(@insns));
698	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
699	 eval(shift(@insns));
700	 eval(shift(@insns));
701
702	&pslld	(@X[3],2);
703	 eval(shift(@insns));
704	 eval(shift(@insns));		# rol
705	&pxor   (@X[0],@X[4]);
706	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
707	 eval(shift(@insns));
708	 eval(shift(@insns));
709
710	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
711	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
712	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
713	 eval(shift(@insns));
714	 eval(shift(@insns));
715
716	 foreach (@insns) { eval; }	# remaining instructions [if any]
717
718  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
719}
720
721sub Xupdate_ssse3_32_79()
722{ use integer;
723  my $body = shift;
724  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
725  my ($a,$b,$c,$d,$e);
726
727	 eval(shift(@insns));		# body_20_39
728	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
729	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
730	 eval(shift(@insns));
731	 eval(shift(@insns));
732	 eval(shift(@insns));		# rol
733
734	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
735	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
736	 eval(shift(@insns));
737	 eval(shift(@insns));
738	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
739	 if ($Xi%5) {
740	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
741	 } else {			# ... or load next one
742	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
743	 }
744	 eval(shift(@insns));		# ror
745	  &paddd	(@X[3],@X[-1&7]);
746	 eval(shift(@insns));
747
748	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
749	 eval(shift(@insns));		# body_20_39
750	 eval(shift(@insns));
751	 eval(shift(@insns));
752	 eval(shift(@insns));		# rol
753
754	&movdqa	(@X[2],@X[0]);
755	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
756	 eval(shift(@insns));
757	 eval(shift(@insns));
758	 eval(shift(@insns));		# ror
759	 eval(shift(@insns));
760	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
761
762	&pslld	(@X[0],2);
763	 eval(shift(@insns));		# body_20_39
764	 eval(shift(@insns));
765	&psrld	(@X[2],30);
766	 eval(shift(@insns));
767	 eval(shift(@insns));		# rol
768	 eval(shift(@insns));
769	 eval(shift(@insns));
770	 eval(shift(@insns));		# ror
771	 eval(shift(@insns));
772	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
773	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
774
775	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
776	 eval(shift(@insns));		# body_20_39
777	 eval(shift(@insns));
778	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
779	 eval(shift(@insns));
780	 eval(shift(@insns));		# rol
781	 eval(shift(@insns));
782	 eval(shift(@insns));
783	 eval(shift(@insns));		# ror
784	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
785	 eval(shift(@insns));
786
787	 foreach (@insns) { eval; }	# remaining instructions
788
789  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
790}
791
792sub Xuplast_ssse3_80()
793{ use integer;
794  my $body = shift;
795  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
796  my ($a,$b,$c,$d,$e);
797
798	 eval(shift(@insns));
799	 eval(shift(@insns));
800	 eval(shift(@insns));
801	 eval(shift(@insns));
802	 eval(shift(@insns));
803	 eval(shift(@insns));
804	 eval(shift(@insns));
805	  &paddd	(@X[3],@X[-1&7]);
806	 eval(shift(@insns));
807	 eval(shift(@insns));
808	 eval(shift(@insns));
809	 eval(shift(@insns));
810
811	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
812
813	 foreach (@insns) { eval; }		# remaining instructions
814
815	&mov	($inp=@T[1],&DWP(192+4,"esp"));
816	&cmp	($inp,&DWP(192+8,"esp"));
817	&je	(&label("done"));
818
819	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
820	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
821	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
822	&movdqu	(@X[-3&7],&QWP(16,$inp));
823	&movdqu	(@X[-2&7],&QWP(32,$inp));
824	&movdqu	(@X[-1&7],&QWP(48,$inp));
825	&add	($inp,64);
826	&pshufb	(@X[-4&7],@X[2]);		# byte swap
827	&mov	(&DWP(192+4,"esp"),$inp);
828	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
829
830  $Xi=0;
831}
832
833sub Xloop_ssse3()
834{ use integer;
835  my $body = shift;
836  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
837  my ($a,$b,$c,$d,$e);
838
839	 eval(shift(@insns));
840	 eval(shift(@insns));
841	 eval(shift(@insns));
842	 eval(shift(@insns));
843	 eval(shift(@insns));
844	 eval(shift(@insns));
845	 eval(shift(@insns));
846	&pshufb	(@X[($Xi-3)&7],@X[2]);
847	 eval(shift(@insns));
848	 eval(shift(@insns));
849	 eval(shift(@insns));
850	 eval(shift(@insns));
851	&paddd	(@X[($Xi-4)&7],@X[3]);
852	 eval(shift(@insns));
853	 eval(shift(@insns));
854	 eval(shift(@insns));
855	 eval(shift(@insns));
856	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
857	 eval(shift(@insns));
858	 eval(shift(@insns));
859	 eval(shift(@insns));
860	 eval(shift(@insns));
861	&psubd	(@X[($Xi-4)&7],@X[3]);
862
863	foreach (@insns) { eval; }
864  $Xi++;
865}
866
867sub Xtail_ssse3()
868{ use integer;
869  my $body = shift;
870  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
871  my ($a,$b,$c,$d,$e);
872
873	foreach (@insns) { eval; }
874}
875
876sub body_00_19 () {	# ((c^d)&b)^d
877	# on start @T[0]=(c^d)&b
878	return &body_20_39()	if ($rx==19);	$rx++;
879	(
880	'($a,$b,$c,$d,$e)=@V;'.
881	'&$_ror	($b,$j?7:2);',	# $b>>>2
882	'&xor	(@T[0],$d);',
883	'&mov	(@T[1],$a);',	# $b in next round
884
885	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
886	'&xor	($b,$c);',	# $c^$d for next round
887
888	'&$_rol	($a,5);',
889	'&add	($e,@T[0]);',
890	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
891
892	'&xor	($b,$c);',	# restore $b
893	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
894	);
895}
896
897sub body_20_39 () {	# b^d^c
898	# on entry @T[0]=b^d
899	return &body_40_59()	if ($rx==39);	$rx++;
900	(
901	'($a,$b,$c,$d,$e)=@V;'.
902	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
903	'&xor	(@T[0],$d)	if($j==19);'.
904	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
905	'&mov	(@T[1],$a);',	# $b in next round
906
907	'&$_rol	($a,5);',
908	'&add	($e,@T[0]);',
909	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
910
911	'&$_ror	($b,7);',	# $b>>>2
912	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
913	);
914}
915
916sub body_40_59 () {	# ((b^c)&(c^d))^c
917	# on entry @T[0]=(b^c), (c^=d)
918	$rx++;
919	(
920	'($a,$b,$c,$d,$e)=@V;'.
921	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
922	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
923	'&xor	($c,$d)		if ($j>=40);',	# restore $c
924
925	'&$_ror	($b,7);',	# $b>>>2
926	'&mov	(@T[1],$a);',	# $b for next round
927	'&xor	(@T[0],$c);',
928
929	'&$_rol	($a,5);',
930	'&add	($e,@T[0]);',
931	'&xor	(@T[1],$c)	if ($j==59);'.
932	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
933
934	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
935	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
936	);
937}
938######
939sub bodyx_00_19 () {	# ((c^d)&b)^d
940	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
941	return &bodyx_20_39()	if ($rx==19);	$rx++;
942	(
943	'($a,$b,$c,$d,$e)=@V;'.
944
945	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
946	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
947	'&lea	($e,&DWP(0,$e,@T[0]));',
948	'&rorx	(@T[0],$a,5);',
949
950	'&andn	(@T[1],$a,$c);',
951	'&and	($a,$b)',
952	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
953
954	'&xor	(@T[1],$a)',
955	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
956	);
957}
958
959sub bodyx_20_39 () {	# b^d^c
960	# on start $b=b^c^d
961	return &bodyx_40_59()	if ($rx==39);	$rx++;
962	(
963	'($a,$b,$c,$d,$e)=@V;'.
964
965	'&add	($e,($j==19?@T[0]:$b))',
966	'&rorx	($b,@T[1],7);',	# $b>>>2
967	'&rorx	(@T[0],$a,5);',
968
969	'&xor	($a,$b)				if ($j<79);',
970	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
971	'&xor	($a,$c)				if ($j<79);',
972	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
973	);
974}
975
976sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
977	# on start $b=((b^c)&(c^d))^c
978	return &bodyx_20_39()	if ($rx==59);	$rx++;
979	(
980	'($a,$b,$c,$d,$e)=@V;'.
981
982	'&rorx	(@T[0],$a,5)',
983	'&lea	($e,&DWP(0,$e,$b))',
984	'&rorx	($b,@T[1],7)',	# $b>>>2
985	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
986
987	'&mov	(@T[1],$c)',
988	'&xor	($a,$b)',	# b^c for next round
989	'&xor	(@T[1],$b)',	# c^d for next round
990
991	'&and	($a,@T[1])',
992	'&add	($e,@T[0])',
993	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
994	);
995}
996
997&set_label("loop",16);
998	&Xupdate_ssse3_16_31(\&body_00_19);
999	&Xupdate_ssse3_16_31(\&body_00_19);
1000	&Xupdate_ssse3_16_31(\&body_00_19);
1001	&Xupdate_ssse3_16_31(\&body_00_19);
1002	&Xupdate_ssse3_32_79(\&body_00_19);
1003	&Xupdate_ssse3_32_79(\&body_20_39);
1004	&Xupdate_ssse3_32_79(\&body_20_39);
1005	&Xupdate_ssse3_32_79(\&body_20_39);
1006	&Xupdate_ssse3_32_79(\&body_20_39);
1007	&Xupdate_ssse3_32_79(\&body_20_39);
1008	&Xupdate_ssse3_32_79(\&body_40_59);
1009	&Xupdate_ssse3_32_79(\&body_40_59);
1010	&Xupdate_ssse3_32_79(\&body_40_59);
1011	&Xupdate_ssse3_32_79(\&body_40_59);
1012	&Xupdate_ssse3_32_79(\&body_40_59);
1013	&Xupdate_ssse3_32_79(\&body_20_39);
1014	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
1015
1016				$saved_j=$j; @saved_V=@V;
1017
1018	&Xloop_ssse3(\&body_20_39);
1019	&Xloop_ssse3(\&body_20_39);
1020	&Xloop_ssse3(\&body_20_39);
1021
1022	&mov	(@T[1],&DWP(192,"esp"));	# update context
1023	&add	($A,&DWP(0,@T[1]));
1024	&add	(@T[0],&DWP(4,@T[1]));		# $b
1025	&add	($C,&DWP(8,@T[1]));
1026	&mov	(&DWP(0,@T[1]),$A);
1027	&add	($D,&DWP(12,@T[1]));
1028	&mov	(&DWP(4,@T[1]),@T[0]);
1029	&add	($E,&DWP(16,@T[1]));
1030	&mov	(&DWP(8,@T[1]),$C);
1031	&mov	($B,$C);
1032	&mov	(&DWP(12,@T[1]),$D);
1033	&xor	($B,$D);
1034	&mov	(&DWP(16,@T[1]),$E);
1035	&mov	(@T[1],@T[0]);
1036	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
1037	&and	(@T[0],$B);
1038	&mov	($B,$T[1]);
1039
1040	&jmp	(&label("loop"));
1041
1042&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1043
1044	&Xtail_ssse3(\&body_20_39);
1045	&Xtail_ssse3(\&body_20_39);
1046	&Xtail_ssse3(\&body_20_39);
1047
1048	&mov	(@T[1],&DWP(192,"esp"));	# update context
1049	&add	($A,&DWP(0,@T[1]));
1050	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1051	&add	(@T[0],&DWP(4,@T[1]));		# $b
1052	&add	($C,&DWP(8,@T[1]));
1053	&mov	(&DWP(0,@T[1]),$A);
1054	&add	($D,&DWP(12,@T[1]));
1055	&mov	(&DWP(4,@T[1]),@T[0]);
1056	&add	($E,&DWP(16,@T[1]));
1057	&mov	(&DWP(8,@T[1]),$C);
1058	&mov	(&DWP(12,@T[1]),$D);
1059	&mov	(&DWP(16,@T[1]),$E);
1060
1061&function_end("sha1_block_data_order_ssse3");
1062
1063$rx=0;	# reset
1064
1065if ($ymm) {
1066my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
1067my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
1068my @V=($A,$B,$C,$D,$E);
1069my $j=0;			# hash round
1070my @T=($T,$tmp1);
1071my $inp;
1072
1073my $_rol=sub { &shld(@_[0],@_) };
1074my $_ror=sub { &shrd(@_[0],@_) };
1075
1076&function_begin("sha1_block_data_order_avx");
1077	&call	(&label("pic_point"));	# make it PIC!
1078	&set_label("pic_point");
1079	&blindpop($tmp1);
1080	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
1081	&vzeroall();
1082
1083	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
1084	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
1085	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
1086	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
1087	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
1088
1089	&mov	($E,&wparam(0));		# load argument block
1090	&mov	($inp=@T[1],&wparam(1));
1091	&mov	($D,&wparam(2));
1092	&mov	(@T[0],"esp");
1093
1094	# stack frame layout
1095	#
1096	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
1097	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
1098	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
1099	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
1100	#
1101	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
1102	#	X[4]	X[5]	X[6]	X[7]
1103	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
1104	#
1105	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
1106	#	K_40_59	K_40_59	K_40_59	K_40_59
1107	#	K_60_79	K_60_79	K_60_79	K_60_79
1108	#	K_00_19	K_00_19	K_00_19	K_00_19
1109	#	pbswap mask
1110	#
1111	# +192	ctx				# argument block
1112	# +196	inp
1113	# +200	end
1114	# +204	esp
1115	&sub	("esp",208);
1116	&and	("esp",-64);
1117
1118	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
1119	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
1120	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
1121	&shl	($D,6);				# len*64
1122	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
1123	&add	($D,$inp);			# end of input
1124	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
1125	&add	($inp,64);
1126	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
1127	&mov	(&DWP(192+4,"esp"),$inp);
1128	&mov	(&DWP(192+8,"esp"),$D);
1129	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
1130
1131	&mov	($A,&DWP(0,$E));		# load context
1132	&mov	($B,&DWP(4,$E));
1133	&mov	($C,&DWP(8,$E));
1134	&mov	($D,&DWP(12,$E));
1135	&mov	($E,&DWP(16,$E));
1136	&mov	(@T[0],$B);			# magic seed
1137
1138	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
1139	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
1140	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
1141	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
1142	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
1143	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
1144	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
1145	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1146	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
1147	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
1148	&vpaddd	(@X[1],@X[-3&7],@X[3]);
1149	&vpaddd	(@X[2],@X[-2&7],@X[3]);
1150	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
1151	&mov	(@T[1],$C);
1152	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
1153	&xor	(@T[1],$D);
1154	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
1155	&and	(@T[0],@T[1]);
1156	&jmp	(&label("loop"));
1157
1158sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
1159{ use integer;
1160  my $body = shift;
1161  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
1162  my ($a,$b,$c,$d,$e);
1163
1164	 eval(shift(@insns));
1165	 eval(shift(@insns));
1166	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
1167	 eval(shift(@insns));
1168	 eval(shift(@insns));
1169
1170	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1171	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
1172	 eval(shift(@insns));
1173	 eval(shift(@insns));
1174	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
1175	 eval(shift(@insns));
1176	 eval(shift(@insns));
1177	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
1178	 eval(shift(@insns));
1179	 eval(shift(@insns));
1180
1181	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
1182	 eval(shift(@insns));
1183	 eval(shift(@insns));
1184	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1185	 eval(shift(@insns));
1186	 eval(shift(@insns));
1187
1188	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
1189	 eval(shift(@insns));
1190	 eval(shift(@insns));
1191	 eval(shift(@insns));
1192	 eval(shift(@insns));
1193
1194	&vpsrld	(@X[2],@X[0],31);
1195	 eval(shift(@insns));
1196	 eval(shift(@insns));
1197	 eval(shift(@insns));
1198	 eval(shift(@insns));
1199
1200	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
1201	&vpaddd	(@X[0],@X[0],@X[0]);
1202	 eval(shift(@insns));
1203	 eval(shift(@insns));
1204	 eval(shift(@insns));
1205	 eval(shift(@insns));
1206
1207	&vpsrld	(@X[3],@X[4],30);
1208	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
1209	 eval(shift(@insns));
1210	 eval(shift(@insns));
1211	 eval(shift(@insns));
1212	 eval(shift(@insns));
1213
1214	&vpslld	(@X[4],@X[4],2);
1215	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
1216	 eval(shift(@insns));
1217	 eval(shift(@insns));
1218	&vpxor	(@X[0],@X[0],@X[3]);
1219	 eval(shift(@insns));
1220	 eval(shift(@insns));
1221	 eval(shift(@insns));
1222	 eval(shift(@insns));
1223
1224	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
1225	 eval(shift(@insns));
1226	 eval(shift(@insns));
1227	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
1228	 eval(shift(@insns));
1229	 eval(shift(@insns));
1230
1231	 foreach (@insns) { eval; }	# remaining instructions [if any]
1232
1233  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1234}
1235
1236sub Xupdate_avx_32_79()
1237{ use integer;
1238  my $body = shift;
1239  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
1240  my ($a,$b,$c,$d,$e);
1241
1242	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
1243	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
1244	 eval(shift(@insns));		# body_20_39
1245	 eval(shift(@insns));
1246	 eval(shift(@insns));
1247	 eval(shift(@insns));		# rol
1248
1249	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
1250	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
1251	 eval(shift(@insns));
1252	 eval(shift(@insns));
1253	 if ($Xi%5) {
1254	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
1255	 } else {			# ... or load next one
1256	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1257	 }
1258	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1259	 eval(shift(@insns));		# ror
1260	 eval(shift(@insns));
1261
1262	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
1263	 eval(shift(@insns));		# body_20_39
1264	 eval(shift(@insns));
1265	 eval(shift(@insns));
1266	 eval(shift(@insns));		# rol
1267
1268	&vpsrld	(@X[2],@X[0],30);
1269	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
1270	 eval(shift(@insns));
1271	 eval(shift(@insns));
1272	 eval(shift(@insns));		# ror
1273	 eval(shift(@insns));
1274
1275	&vpslld	(@X[0],@X[0],2);
1276	 eval(shift(@insns));		# body_20_39
1277	 eval(shift(@insns));
1278	 eval(shift(@insns));
1279	 eval(shift(@insns));		# rol
1280	 eval(shift(@insns));
1281	 eval(shift(@insns));
1282	 eval(shift(@insns));		# ror
1283	 eval(shift(@insns));
1284
1285	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
1286	 eval(shift(@insns));		# body_20_39
1287	 eval(shift(@insns));
1288	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
1289	 eval(shift(@insns));
1290	 eval(shift(@insns));		# rol
1291	 eval(shift(@insns));
1292	 eval(shift(@insns));
1293	 eval(shift(@insns));		# ror
1294	 eval(shift(@insns));
1295
1296	 foreach (@insns) { eval; }	# remaining instructions
1297
1298  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
1299}
1300
1301sub Xuplast_avx_80()
1302{ use integer;
1303  my $body = shift;
1304  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1305  my ($a,$b,$c,$d,$e);
1306
1307	 eval(shift(@insns));
1308	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
1309	 eval(shift(@insns));
1310	 eval(shift(@insns));
1311	 eval(shift(@insns));
1312	 eval(shift(@insns));
1313
1314	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
1315
1316	 foreach (@insns) { eval; }		# remaining instructions
1317
1318	&mov	($inp=@T[1],&DWP(192+4,"esp"));
1319	&cmp	($inp,&DWP(192+8,"esp"));
1320	&je	(&label("done"));
1321
1322	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
1323	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
1324	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
1325	&vmovdqu(@X[-3&7],&QWP(16,$inp));
1326	&vmovdqu(@X[-2&7],&QWP(32,$inp));
1327	&vmovdqu(@X[-1&7],&QWP(48,$inp));
1328	&add	($inp,64);
1329	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
1330	&mov	(&DWP(192+4,"esp"),$inp);
1331	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
1332
1333  $Xi=0;
1334}
1335
1336sub Xloop_avx()
1337{ use integer;
1338  my $body = shift;
1339  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1340  my ($a,$b,$c,$d,$e);
1341
1342	 eval(shift(@insns));
1343	 eval(shift(@insns));
1344	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1345	 eval(shift(@insns));
1346	 eval(shift(@insns));
1347	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1348	 eval(shift(@insns));
1349	 eval(shift(@insns));
1350	 eval(shift(@insns));
1351	 eval(shift(@insns));
1352	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
1353	 eval(shift(@insns));
1354	 eval(shift(@insns));
1355
1356	foreach (@insns) { eval; }
1357  $Xi++;
1358}
1359
1360sub Xtail_avx()
1361{ use integer;
1362  my $body = shift;
1363  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
1364  my ($a,$b,$c,$d,$e);
1365
1366	foreach (@insns) { eval; }
1367}
1368
1369&set_label("loop",16);
1370	&Xupdate_avx_16_31(\&body_00_19);
1371	&Xupdate_avx_16_31(\&body_00_19);
1372	&Xupdate_avx_16_31(\&body_00_19);
1373	&Xupdate_avx_16_31(\&body_00_19);
1374	&Xupdate_avx_32_79(\&body_00_19);
1375	&Xupdate_avx_32_79(\&body_20_39);
1376	&Xupdate_avx_32_79(\&body_20_39);
1377	&Xupdate_avx_32_79(\&body_20_39);
1378	&Xupdate_avx_32_79(\&body_20_39);
1379	&Xupdate_avx_32_79(\&body_20_39);
1380	&Xupdate_avx_32_79(\&body_40_59);
1381	&Xupdate_avx_32_79(\&body_40_59);
1382	&Xupdate_avx_32_79(\&body_40_59);
1383	&Xupdate_avx_32_79(\&body_40_59);
1384	&Xupdate_avx_32_79(\&body_40_59);
1385	&Xupdate_avx_32_79(\&body_20_39);
1386	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
1387
1388				$saved_j=$j; @saved_V=@V;
1389
1390	&Xloop_avx(\&body_20_39);
1391	&Xloop_avx(\&body_20_39);
1392	&Xloop_avx(\&body_20_39);
1393
1394	&mov	(@T[1],&DWP(192,"esp"));	# update context
1395	&add	($A,&DWP(0,@T[1]));
1396	&add	(@T[0],&DWP(4,@T[1]));		# $b
1397	&add	($C,&DWP(8,@T[1]));
1398	&mov	(&DWP(0,@T[1]),$A);
1399	&add	($D,&DWP(12,@T[1]));
1400	&mov	(&DWP(4,@T[1]),@T[0]);
1401	&add	($E,&DWP(16,@T[1]));
1402	&mov	($B,$C);
1403	&mov	(&DWP(8,@T[1]),$C);
1404	&xor	($B,$D);
1405	&mov	(&DWP(12,@T[1]),$D);
1406	&mov	(&DWP(16,@T[1]),$E);
1407	&mov	(@T[1],@T[0]);
1408	&and	(@T[0],$B);
1409	&mov	($B,@T[1]);
1410
1411	&jmp	(&label("loop"));
1412
1413&set_label("done",16);		$j=$saved_j; @V=@saved_V;
1414
1415	&Xtail_avx(\&body_20_39);
1416	&Xtail_avx(\&body_20_39);
1417	&Xtail_avx(\&body_20_39);
1418
1419	&vzeroall();
1420
1421	&mov	(@T[1],&DWP(192,"esp"));	# update context
1422	&add	($A,&DWP(0,@T[1]));
1423	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
1424	&add	(@T[0],&DWP(4,@T[1]));		# $b
1425	&add	($C,&DWP(8,@T[1]));
1426	&mov	(&DWP(0,@T[1]),$A);
1427	&add	($D,&DWP(12,@T[1]));
1428	&mov	(&DWP(4,@T[1]),@T[0]);
1429	&add	($E,&DWP(16,@T[1]));
1430	&mov	(&DWP(8,@T[1]),$C);
1431	&mov	(&DWP(12,@T[1]),$D);
1432	&mov	(&DWP(16,@T[1]),$E);
1433&function_end("sha1_block_data_order_avx");
1434}
1435&set_label("K_XX_XX",64);
1436&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
1437&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
1438&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
1439&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
1440&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
1441&data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
1442}
1443&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1444
1445&asm_finish();
1446
1447close STDOUT or die "error closing STDOUT: $!";
1448