xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/rand/rand.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/rand.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20 
21 #if defined(BORINGSSL_FIPS)
22 #include <unistd.h>
23 #endif
24 
25 #include <openssl/chacha.h>
26 #include <openssl/ctrdrbg.h>
27 #include <openssl/mem.h>
28 
29 #include "internal.h"
30 #include "fork_detect.h"
31 #include "../../internal.h"
32 #include "../delocate.h"
33 
34 
35 // It's assumed that the operating system always has an unfailing source of
36 // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating
37 // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the
38 // process—we don't try to handle it.)
39 //
40 // In addition, the hardware may provide a low-latency RNG. Intel's rdrand
41 // instruction is the canonical example of this. When a hardware RNG is
42 // available we don't need to worry about an RNG failure arising from fork()ing
43 // the process or moving a VM, so we can keep thread-local RNG state and use it
44 // as an additional-data input to CTR-DRBG.
45 //
46 // (We assume that the OS entropy is safe from fork()ing and VM duplication.
47 // This might be a bit of a leap of faith, esp on Windows, but there's nothing
48 // that we can do about it.)
49 
50 // kReseedInterval is the number of generate calls made to CTR-DRBG before
51 // reseeding.
52 static const unsigned kReseedInterval = 4096;
53 
54 // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the
55 // continuous random number generator test in FIPS 140-2, section 4.9.2.
56 #define CRNGT_BLOCK_SIZE 16
57 
58 // rand_thread_state contains the per-thread state for the RNG.
59 struct rand_thread_state {
60   CTR_DRBG_STATE drbg;
61   uint64_t fork_generation;
62   // calls is the number of generate calls made on |drbg| since it was last
63   // (re)seeded. This is bound by |kReseedInterval|.
64   unsigned calls;
65   // last_block_valid is non-zero iff |last_block| contains data from
66   // |get_seed_entropy|.
67   int last_block_valid;
68   // fork_unsafe_buffering is non-zero iff, when |drbg| was last (re)seeded,
69   // fork-unsafe buffering was enabled.
70   int fork_unsafe_buffering;
71 
72 #if defined(BORINGSSL_FIPS)
73   // last_block contains the previous block from |get_seed_entropy|.
74   uint8_t last_block[CRNGT_BLOCK_SIZE];
75   // next and prev form a NULL-terminated, double-linked list of all states in
76   // a process.
77   struct rand_thread_state *next, *prev;
78   // clear_drbg_lock synchronizes between uses of |drbg| and
79   // |rand_thread_state_clear_all| clearing it. This lock should be uncontended
80   // in the common case, except on shutdown.
81   CRYPTO_MUTEX clear_drbg_lock;
82 #endif
83 };
84 
85 #if defined(BORINGSSL_FIPS)
86 // thread_states_list is the head of a linked-list of all |rand_thread_state|
87 // objects in the process, one per thread. This is needed because FIPS requires
88 // that they be zeroed on process exit, but thread-local destructors aren't
89 // called when the whole process is exiting.
90 DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list);
91 DEFINE_STATIC_MUTEX(thread_states_list_lock);
92 
93 static void rand_thread_state_clear_all(void) __attribute__((destructor));
rand_thread_state_clear_all(void)94 static void rand_thread_state_clear_all(void) {
95   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
96   for (struct rand_thread_state *cur = *thread_states_list_bss_get();
97        cur != NULL; cur = cur->next) {
98     CRYPTO_MUTEX_lock_write(&cur->clear_drbg_lock);
99     CTR_DRBG_clear(&cur->drbg);
100   }
101   // The locks are deliberately left locked so that any threads that are still
102   // running will hang if they try to call |RAND_bytes|. It also ensures
103   // |rand_thread_state_free| cannot free any thread state while we've taken the
104   // lock.
105 }
106 #endif
107 
108 // rand_thread_state_free frees a |rand_thread_state|. This is called when a
109 // thread exits.
rand_thread_state_free(void * state_in)110 static void rand_thread_state_free(void *state_in) {
111   struct rand_thread_state *state = state_in;
112 
113   if (state_in == NULL) {
114     return;
115   }
116 
117 #if defined(BORINGSSL_FIPS)
118   CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
119 
120   if (state->prev != NULL) {
121     state->prev->next = state->next;
122   } else if (*thread_states_list_bss_get() == state) {
123     // |state->prev| may be NULL either if it is the head of the list,
124     // or if |state| is freed before it was added to the list at all.
125     // Compare against the head of the list to distinguish these cases.
126     *thread_states_list_bss_get() = state->next;
127   }
128 
129   if (state->next != NULL) {
130     state->next->prev = state->prev;
131   }
132 
133   CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get());
134 
135   CTR_DRBG_clear(&state->drbg);
136 #endif
137 
138   OPENSSL_free(state);
139 }
140 
141 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
142     !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
143 // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand|
144 // returned true.
rdrand(uint8_t * buf,const size_t len)145 static int rdrand(uint8_t *buf, const size_t len) {
146   const size_t len_multiple8 = len & ~7;
147   if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
148     return 0;
149   }
150   const size_t remainder = len - len_multiple8;
151 
152   if (remainder != 0) {
153     assert(remainder < 8);
154 
155     uint8_t rand_buf[8];
156     if (!CRYPTO_rdrand(rand_buf)) {
157       return 0;
158     }
159     OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder);
160   }
161 
162   return 1;
163 }
164 
165 #else
166 
rdrand(uint8_t * buf,size_t len)167 static int rdrand(uint8_t *buf, size_t len) {
168   return 0;
169 }
170 
171 #endif
172 
173 #if defined(BORINGSSL_FIPS)
174 
CRYPTO_get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_want_additional_input)175 void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
176                              int *out_want_additional_input) {
177   *out_want_additional_input = 0;
178   if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) {
179     *out_want_additional_input = 1;
180   } else {
181     CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
182   }
183 }
184 
185 // In passive entropy mode, entropy is supplied from outside of the module via
186 // |RAND_load_entropy| and is stored in global instance of the following
187 // structure.
188 
189 struct entropy_buffer {
190   // bytes contains entropy suitable for seeding a DRBG.
191   uint8_t
192       bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
193   // bytes_valid indicates the number of bytes of |bytes| that contain valid
194   // data.
195   size_t bytes_valid;
196   // want_additional_input is true if any of the contents of |bytes| were
197   // obtained via a method other than from the kernel. In these cases entropy
198   // from the kernel is also provided via an additional input to the DRBG.
199   int want_additional_input;
200 };
201 
202 DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer);
203 DEFINE_STATIC_MUTEX(entropy_buffer_lock);
204 
RAND_load_entropy(const uint8_t * entropy,size_t entropy_len,int want_additional_input)205 void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
206                        int want_additional_input) {
207   struct entropy_buffer *const buffer = entropy_buffer_bss_get();
208 
209   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
210   const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid;
211   if (entropy_len > space) {
212     entropy_len = space;
213   }
214 
215   OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len);
216   buffer->bytes_valid += entropy_len;
217   buffer->want_additional_input |=
218       want_additional_input && (entropy_len != 0);
219   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
220 }
221 
222 // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the
223 // global |entropy_buffer|.
get_seed_entropy(uint8_t * out_entropy,size_t out_entropy_len,int * out_want_additional_input)224 static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
225                              int *out_want_additional_input) {
226   struct entropy_buffer *const buffer = entropy_buffer_bss_get();
227   if (out_entropy_len > sizeof(buffer->bytes)) {
228     abort();
229   }
230 
231   CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
232   while (buffer->bytes_valid < out_entropy_len) {
233     CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
234     RAND_need_entropy(out_entropy_len - buffer->bytes_valid);
235     CRYPTO_MUTEX_lock_write(entropy_buffer_lock_bss_get());
236   }
237 
238   *out_want_additional_input = buffer->want_additional_input;
239   OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len);
240   OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len],
241                   buffer->bytes_valid - out_entropy_len);
242   buffer->bytes_valid -= out_entropy_len;
243   if (buffer->bytes_valid == 0) {
244     buffer->want_additional_input = 0;
245   }
246 
247   CRYPTO_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
248 }
249 
250 // rand_get_seed fills |seed| with entropy. In some cases, it will additionally
251 // fill |additional_input| with entropy to supplement |seed|. It sets
252 // |*out_additional_input_len| to the number of extra bytes.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],size_t * out_additional_input_len)253 static void rand_get_seed(struct rand_thread_state *state,
254                           uint8_t seed[CTR_DRBG_ENTROPY_LEN],
255                           uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
256                           size_t *out_additional_input_len) {
257   uint8_t entropy_bytes[sizeof(state->last_block) +
258                         CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
259   uint8_t *entropy = entropy_bytes;
260   size_t entropy_len = sizeof(entropy_bytes);
261 
262   if (state->last_block_valid) {
263     // No need to fill |state->last_block| with entropy from the read.
264     entropy += sizeof(state->last_block);
265     entropy_len -= sizeof(state->last_block);
266   }
267 
268   int want_additional_input;
269   get_seed_entropy(entropy, entropy_len, &want_additional_input);
270 
271   if (!state->last_block_valid) {
272     OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block));
273     entropy += sizeof(state->last_block);
274     entropy_len -= sizeof(state->last_block);
275   }
276 
277   // See FIPS 140-2, section 4.9.2. This is the “continuous random number
278   // generator test” which causes the program to randomly abort. Hopefully the
279   // rate of failure is small enough not to be a problem in practice.
280   if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) ==
281       0) {
282     fprintf(stderr, "CRNGT failed.\n");
283     BORINGSSL_FIPS_abort();
284   }
285 
286   assert(entropy_len % CRNGT_BLOCK_SIZE == 0);
287   for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) {
288     if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i,
289                       CRNGT_BLOCK_SIZE) == 0) {
290       fprintf(stderr, "CRNGT failed.\n");
291       BORINGSSL_FIPS_abort();
292     }
293   }
294   OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE,
295                  CRNGT_BLOCK_SIZE);
296 
297   assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN);
298   OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN);
299 
300   for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) {
301     for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) {
302       seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j];
303     }
304   }
305 
306   // If we used something other than system entropy then also
307   // opportunistically read from the system. This avoids solely relying on the
308   // hardware once the entropy pool has been initialized.
309   *out_additional_input_len = 0;
310   if (want_additional_input &&
311       CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) {
312     *out_additional_input_len = CTR_DRBG_ENTROPY_LEN;
313   }
314 }
315 
316 #else
317 
318 // rand_get_seed fills |seed| with entropy. In some cases, it will additionally
319 // fill |additional_input| with entropy to supplement |seed|. It sets
320 // |*out_additional_input_len| to the number of extra bytes.
rand_get_seed(struct rand_thread_state * state,uint8_t seed[CTR_DRBG_ENTROPY_LEN],uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],size_t * out_additional_input_len)321 static void rand_get_seed(struct rand_thread_state *state,
322                           uint8_t seed[CTR_DRBG_ENTROPY_LEN],
323                           uint8_t additional_input[CTR_DRBG_ENTROPY_LEN],
324                           size_t *out_additional_input_len) {
325   // If not in FIPS mode, we don't overread from the system entropy source and
326   // we don't depend only on the hardware RDRAND.
327   CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN);
328   *out_additional_input_len = 0;
329 }
330 
331 #endif
332 
RAND_bytes_with_additional_data(uint8_t * out,size_t out_len,const uint8_t user_additional_data[32])333 void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
334                                      const uint8_t user_additional_data[32]) {
335   if (out_len == 0) {
336     return;
337   }
338 
339   const uint64_t fork_generation = CRYPTO_get_fork_generation();
340   const int fork_unsafe_buffering = rand_fork_unsafe_buffering_enabled();
341 
342   // Additional data is mixed into every CTR-DRBG call to protect, as best we
343   // can, against forks & VM clones. We do not over-read this information and
344   // don't reseed with it so, from the point of view of FIPS, this doesn't
345   // provide “prediction resistance”. But, in practice, it does.
346   uint8_t additional_data[32];
347   // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can
348   // be _slower_ than a system call.
349   if (!have_fast_rdrand() ||
350       !rdrand(additional_data, sizeof(additional_data))) {
351     // Without a hardware RNG to save us from address-space duplication, the OS
352     // entropy is used. This can be expensive (one read per |RAND_bytes| call)
353     // and so is disabled when we have fork detection, or if the application has
354     // promised not to fork.
355     if (fork_generation != 0 || fork_unsafe_buffering) {
356       OPENSSL_memset(additional_data, 0, sizeof(additional_data));
357     } else if (!have_rdrand()) {
358       // No alternative so block for OS entropy.
359       CRYPTO_sysrand(additional_data, sizeof(additional_data));
360     } else if (!CRYPTO_sysrand_if_available(additional_data,
361                                             sizeof(additional_data)) &&
362                !rdrand(additional_data, sizeof(additional_data))) {
363       // RDRAND failed: block for OS entropy.
364       CRYPTO_sysrand(additional_data, sizeof(additional_data));
365     }
366   }
367 
368   for (size_t i = 0; i < sizeof(additional_data); i++) {
369     additional_data[i] ^= user_additional_data[i];
370   }
371 
372   struct rand_thread_state stack_state;
373   struct rand_thread_state *state =
374       CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
375 
376   if (state == NULL) {
377     state = OPENSSL_zalloc(sizeof(struct rand_thread_state));
378     if (state == NULL ||
379         !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
380                                  rand_thread_state_free)) {
381       // If the system is out of memory, use an ephemeral state on the
382       // stack.
383       state = &stack_state;
384     }
385 
386     state->last_block_valid = 0;
387     uint8_t seed[CTR_DRBG_ENTROPY_LEN];
388     uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0};
389     size_t personalization_len = 0;
390     rand_get_seed(state, seed, personalization, &personalization_len);
391 
392     if (!CTR_DRBG_init(&state->drbg, seed, personalization,
393                        personalization_len)) {
394       abort();
395     }
396     state->calls = 0;
397     state->fork_generation = fork_generation;
398     state->fork_unsafe_buffering = fork_unsafe_buffering;
399 
400 #if defined(BORINGSSL_FIPS)
401     CRYPTO_MUTEX_init(&state->clear_drbg_lock);
402     if (state != &stack_state) {
403       CRYPTO_MUTEX_lock_write(thread_states_list_lock_bss_get());
404       struct rand_thread_state **states_list = thread_states_list_bss_get();
405       state->next = *states_list;
406       if (state->next != NULL) {
407         state->next->prev = state;
408       }
409       state->prev = NULL;
410       *states_list = state;
411       CRYPTO_MUTEX_unlock_write(thread_states_list_lock_bss_get());
412     }
413 #endif
414   }
415 
416   if (state->calls >= kReseedInterval ||
417       // If we've forked since |state| was last seeded, reseed.
418       state->fork_generation != fork_generation ||
419       // If |state| was seeded from a state with different fork-safety
420       // preferences, reseed. Suppose |state| was fork-safe, then forked into
421       // two children, but each of the children never fork and disable fork
422       // safety. The children must reseed to avoid working from the same PRNG
423       // state.
424       state->fork_unsafe_buffering != fork_unsafe_buffering) {
425     uint8_t seed[CTR_DRBG_ENTROPY_LEN];
426     uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0};
427     size_t reseed_additional_data_len = 0;
428     rand_get_seed(state, seed, reseed_additional_data,
429                   &reseed_additional_data_len);
430 #if defined(BORINGSSL_FIPS)
431     // Take a read lock around accesses to |state->drbg|. This is needed to
432     // avoid returning bad entropy if we race with
433     // |rand_thread_state_clear_all|.
434     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock);
435 #endif
436     if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data,
437                          reseed_additional_data_len)) {
438       abort();
439     }
440     state->calls = 0;
441     state->fork_generation = fork_generation;
442     state->fork_unsafe_buffering = fork_unsafe_buffering;
443   } else {
444 #if defined(BORINGSSL_FIPS)
445     CRYPTO_MUTEX_lock_read(&state->clear_drbg_lock);
446 #endif
447   }
448 
449   int first_call = 1;
450   while (out_len > 0) {
451     size_t todo = out_len;
452     if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) {
453       todo = CTR_DRBG_MAX_GENERATE_LENGTH;
454     }
455 
456     if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data,
457                            first_call ? sizeof(additional_data) : 0)) {
458       abort();
459     }
460 
461     out += todo;
462     out_len -= todo;
463     // Though we only check before entering the loop, this cannot add enough to
464     // overflow a |size_t|.
465     state->calls++;
466     first_call = 0;
467   }
468 
469   if (state == &stack_state) {
470     CTR_DRBG_clear(&state->drbg);
471   }
472 
473 #if defined(BORINGSSL_FIPS)
474   CRYPTO_MUTEX_unlock_read(&state->clear_drbg_lock);
475 #endif
476 }
477 
RAND_bytes(uint8_t * out,size_t out_len)478 int RAND_bytes(uint8_t *out, size_t out_len) {
479   static const uint8_t kZeroAdditionalData[32] = {0};
480   RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData);
481   return 1;
482 }
483 
RAND_pseudo_bytes(uint8_t * buf,size_t len)484 int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
485   return RAND_bytes(buf, len);
486 }
487 
RAND_get_system_entropy_for_custom_prng(uint8_t * buf,size_t len)488 void RAND_get_system_entropy_for_custom_prng(uint8_t *buf, size_t len) {
489   if (len > 256) {
490     abort();
491   }
492   CRYPTO_sysrand_for_seed(buf, len);
493 }
494