1 /* ====================================================================
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * [email protected].
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51
52 #include <openssl/base.h>
53
54 #include <openssl/aes.h>
55
56 #include <assert.h>
57 #include <stdlib.h>
58 #include <string.h>
59
60 #include "../../internal.h"
61
62 #if defined(__cplusplus)
63 extern "C" {
64 #endif
65
66
67 // block128_f is the type of an AES block cipher implementation.
68 //
69 // Unlike upstream OpenSSL, it and the other functions in this file hard-code
70 // |AES_KEY|. It is undefined in C to call a function pointer with anything
71 // other than the original type. Thus we either must match |block128_f| to the
72 // type signature of |AES_encrypt| and friends or pass in |void*| wrapper
73 // functions.
74 //
75 // These functions are called exclusively with AES, so we use the former.
76 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
77 const AES_KEY *key);
78
CRYPTO_xor16(uint8_t out[16],const uint8_t a[16],const uint8_t b[16])79 OPENSSL_INLINE void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16],
80 const uint8_t b[16]) {
81 // TODO(davidben): Ideally we'd leave this to the compiler, which could use
82 // vector registers, etc. But the compiler doesn't know that |in| and |out|
83 // cannot partially alias. |restrict| is slightly two strict (we allow exact
84 // aliasing), but perhaps in-place could be a separate function?
85 static_assert(16 % sizeof(crypto_word_t) == 0,
86 "block cannot be evenly divided into words");
87 for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) {
88 CRYPTO_store_word_le(
89 out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i));
90 }
91 }
92
93
94 // CTR.
95
96 // ctr128_f is the type of a function that performs CTR-mode encryption.
97 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
98 const AES_KEY *key, const uint8_t ivec[16]);
99
100 // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
101 // |len| bytes from |in| to |out| using |block| in counter mode. There's no
102 // requirement that |len| be a multiple of any value and any partial blocks are
103 // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
104 // call. The counter is a 128-bit, big-endian value in |ivec| and is
105 // incremented by this function.
106 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
107 const AES_KEY *key, uint8_t ivec[16],
108 uint8_t ecount_buf[16], unsigned *num,
109 block128_f block);
110
111 // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
112 // |ctr|, a function that performs CTR mode but only deals with the lower 32
113 // bits of the counter. This is useful when |ctr| can be an optimised
114 // function.
115 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
116 const AES_KEY *key, uint8_t ivec[16],
117 uint8_t ecount_buf[16], unsigned *num,
118 ctr128_f ctr);
119
120
121 // GCM.
122 //
123 // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
124 // not have a |key| pointer that points to the key as upstream's version does.
125 // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
126 // can be safely copied. Additionally, |gcm_key| is split into a separate
127 // struct.
128
129 typedef struct { uint64_t hi,lo; } u128;
130
131 // gmult_func multiplies |Xi| by the GCM key and writes the result back to
132 // |Xi|.
133 typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]);
134
135 // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
136 // |inp|. The result is written back to |Xi| and the |len| argument must be a
137 // multiple of 16.
138 typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16],
139 const uint8_t *inp, size_t len);
140
141 typedef struct gcm128_key_st {
142 // |gcm_*_ssse3| require a 16-byte-aligned |Htable| when hashing data, but not
143 // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in
144 // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16.
145 // TODO(crbug.com/boringssl/604): Revisit this.
146 u128 Htable[16];
147 gmult_func gmult;
148 ghash_func ghash;
149
150 block128_f block;
151
152 // use_hw_gcm_crypt is true if this context should use platform-specific
153 // assembly to process GCM data.
154 unsigned use_hw_gcm_crypt:1;
155 } GCM128_KEY;
156
157 // GCM128_CONTEXT contains state for a single GCM operation. The structure
158 // should be zero-initialized before use.
159 typedef struct {
160 // The following 5 names follow names in GCM specification
161 uint8_t Yi[16];
162 uint8_t EKi[16];
163 uint8_t EK0[16];
164 struct {
165 uint64_t aad;
166 uint64_t msg;
167 } len;
168 uint8_t Xi[16];
169
170 // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
171 // TODO(crbug.com/boringssl/604): Revisit this.
172 alignas(16) GCM128_KEY gcm_key;
173
174 unsigned mres, ares;
175 } GCM128_CONTEXT;
176
177 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
178 // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
179 // used.
180 int crypto_gcm_clmul_enabled(void);
181 #endif
182
183 // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
184 // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
185 // accelerated) functions for performing operations in the GHASH field. If the
186 // AVX implementation was used |*out_is_avx| will be true.
187 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
188 u128 out_table[16], int *out_is_avx,
189 const uint8_t gcm_key[16]);
190
191 // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES)
192 // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|.
193 OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key,
194 const AES_KEY *key, block128_f block,
195 int block_is_hwaes);
196
197 // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
198 // same key that was passed to |CRYPTO_gcm128_init|.
199 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key,
200 const uint8_t *iv, size_t iv_len);
201
202 // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
203 // This must be called before and data is encrypted. It returns one on success
204 // and zero otherwise.
205 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
206 size_t len);
207
208 // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
209 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
210 // on success and zero otherwise.
211 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
212 const AES_KEY *key, const uint8_t *in,
213 uint8_t *out, size_t len);
214
215 // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
216 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
217 // on success and zero otherwise.
218 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
219 const AES_KEY *key, const uint8_t *in,
220 uint8_t *out, size_t len);
221
222 // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
223 // a CTR function that only handles the bottom 32 bits of the nonce, like
224 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
225 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
226 // otherwise.
227 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
228 const AES_KEY *key,
229 const uint8_t *in, uint8_t *out,
230 size_t len, ctr128_f stream);
231
232 // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
233 // a CTR function that only handles the bottom 32 bits of the nonce, like
234 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
235 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
236 // otherwise.
237 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
238 const AES_KEY *key,
239 const uint8_t *in, uint8_t *out,
240 size_t len, ctr128_f stream);
241
242 // CRYPTO_gcm128_finish calculates the authenticator and compares it against
243 // |len| bytes of |tag|. It returns one on success and zero otherwise.
244 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
245 size_t len);
246
247 // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
248 // The minimum of |len| and 16 bytes are copied into |tag|.
249 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
250 size_t len);
251
252
253 // GCM assembly.
254
255 void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]);
256 void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]);
257 void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
258 size_t len);
259
260 #if !defined(OPENSSL_NO_ASM)
261
262 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
263 #define GCM_FUNCREF
264 void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
265 void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]);
266 void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
267 size_t len);
268
269 // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be
270 // 16-byte-aligned, but |gcm_init_ssse3| does not.
271 void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
272 void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]);
273 void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
274 size_t len);
275
276 #if defined(OPENSSL_X86_64)
277 #define GHASH_ASM_X86_64
278 void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
279 void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]);
280 void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
281 size_t len);
282
283 #define HW_GCM
284 size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
285 const AES_KEY *key, uint8_t ivec[16],
286 const u128 Htable[16], uint8_t Xi[16]);
287 size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
288 const AES_KEY *key, uint8_t ivec[16],
289 const u128 Htable[16], uint8_t Xi[16]);
290 #endif // OPENSSL_X86_64
291
292 #if defined(OPENSSL_X86)
293 #define GHASH_ASM_X86
294 #endif // OPENSSL_X86
295
296 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
297
298 #define GHASH_ASM_ARM
299 #define GCM_FUNCREF
300
gcm_pmull_capable(void)301 OPENSSL_INLINE int gcm_pmull_capable(void) {
302 return CRYPTO_is_ARMv8_PMULL_capable();
303 }
304
305 void gcm_init_v8(u128 Htable[16], const uint64_t H[2]);
306 void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]);
307 void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
308 size_t len);
309
gcm_neon_capable(void)310 OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }
311
312 void gcm_init_neon(u128 Htable[16], const uint64_t H[2]);
313 void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]);
314 void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
315 size_t len);
316
317 #if defined(OPENSSL_AARCH64)
318 #define HW_GCM
319 // These functions are defined in aesv8-gcm-armv8.pl.
320 void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out,
321 void *Xi, uint8_t *ivec, const AES_KEY *key,
322 const u128 Htable[16]);
323 void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out,
324 void *Xi, uint8_t *ivec, const AES_KEY *key,
325 const u128 Htable[16]);
326 #endif
327
328 #endif
329 #endif // OPENSSL_NO_ASM
330
331
332 // CBC.
333
334 // cbc128_f is the type of a function that performs CBC-mode encryption.
335 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
336 const AES_KEY *key, uint8_t ivec[16], int enc);
337
338 // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
339 // given IV and block cipher in CBC mode. The input need not be a multiple of
340 // 128 bits long, but the output will round up to the nearest 128 bit multiple,
341 // zero padding the input if needed. The IV will be updated on return.
342 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
343 const AES_KEY *key, uint8_t ivec[16],
344 block128_f block);
345
346 // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
347 // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
348 // bits then only that many bytes will be written, but a multiple of 128 bits
349 // is always read from |in|. The IV will be updated on return.
350 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
351 const AES_KEY *key, uint8_t ivec[16],
352 block128_f block);
353
354
355 // OFB.
356
357 // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
358 // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
359 // requirement that |len| be a multiple of any value and any partial blocks are
360 // stored in |ivec| and |*num|, the latter must be zero before the initial
361 // call.
362 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
363 const AES_KEY *key, uint8_t ivec[16], unsigned *num,
364 block128_f block);
365
366
367 // CFB.
368
369 // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
370 // from |in| to |out| using |block| in CFB mode. There's no requirement that
371 // |len| be a multiple of any value and any partial blocks are stored in |ivec|
372 // and |*num|, the latter must be zero before the initial call.
373 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
374 const AES_KEY *key, uint8_t ivec[16], unsigned *num,
375 int enc, block128_f block);
376
377 // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
378 // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
379 // |num| should be set to zero.
380 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
381 const AES_KEY *key, uint8_t ivec[16],
382 unsigned *num, int enc, block128_f block);
383
384 // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
385 // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
386 // |num| should be set to zero.
387 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
388 const AES_KEY *key, uint8_t ivec[16],
389 unsigned *num, int enc, block128_f block);
390
391 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
392 const AES_KEY *key, uint8_t ivec[16],
393 block128_f block);
394
395
396 // POLYVAL.
397 //
398 // POLYVAL is a polynomial authenticator that operates over a field very
399 // similar to the one that GHASH uses. See
400 // https://www.rfc-editor.org/rfc/rfc8452.html#section-3.
401
402 struct polyval_ctx {
403 uint8_t S[16];
404 // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
405 // TODO(crbug.com/boringssl/604): Revisit this.
406 alignas(16) u128 Htable[16];
407 gmult_func gmult;
408 ghash_func ghash;
409 };
410
411 // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
412 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
413
414 // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
415 // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
416 // must be a multiple of 16.
417 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
418 size_t in_len);
419
420 // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
421 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
422
423
424 #if defined(__cplusplus)
425 } // extern C
426 #endif
427
428 #endif // OPENSSL_HEADER_MODES_INTERNAL_H
429