xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/modes/internal.h (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    [email protected].
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51 
52 #include <openssl/base.h>
53 
54 #include <openssl/aes.h>
55 
56 #include <assert.h>
57 #include <stdlib.h>
58 #include <string.h>
59 
60 #include "../../internal.h"
61 
62 #if defined(__cplusplus)
63 extern "C" {
64 #endif
65 
66 
67 // block128_f is the type of an AES block cipher implementation.
68 //
69 // Unlike upstream OpenSSL, it and the other functions in this file hard-code
70 // |AES_KEY|. It is undefined in C to call a function pointer with anything
71 // other than the original type. Thus we either must match |block128_f| to the
72 // type signature of |AES_encrypt| and friends or pass in |void*| wrapper
73 // functions.
74 //
75 // These functions are called exclusively with AES, so we use the former.
76 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
77                            const AES_KEY *key);
78 
CRYPTO_xor16(uint8_t out[16],const uint8_t a[16],const uint8_t b[16])79 OPENSSL_INLINE void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16],
80                                  const uint8_t b[16]) {
81   // TODO(davidben): Ideally we'd leave this to the compiler, which could use
82   // vector registers, etc. But the compiler doesn't know that |in| and |out|
83   // cannot partially alias. |restrict| is slightly two strict (we allow exact
84   // aliasing), but perhaps in-place could be a separate function?
85   static_assert(16 % sizeof(crypto_word_t) == 0,
86                 "block cannot be evenly divided into words");
87   for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) {
88     CRYPTO_store_word_le(
89         out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i));
90   }
91 }
92 
93 
94 // CTR.
95 
96 // ctr128_f is the type of a function that performs CTR-mode encryption.
97 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
98                          const AES_KEY *key, const uint8_t ivec[16]);
99 
100 // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
101 // |len| bytes from |in| to |out| using |block| in counter mode. There's no
102 // requirement that |len| be a multiple of any value and any partial blocks are
103 // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
104 // call. The counter is a 128-bit, big-endian value in |ivec| and is
105 // incremented by this function.
106 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
107                            const AES_KEY *key, uint8_t ivec[16],
108                            uint8_t ecount_buf[16], unsigned *num,
109                            block128_f block);
110 
111 // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
112 // |ctr|, a function that performs CTR mode but only deals with the lower 32
113 // bits of the counter. This is useful when |ctr| can be an optimised
114 // function.
115 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
116                                  const AES_KEY *key, uint8_t ivec[16],
117                                  uint8_t ecount_buf[16], unsigned *num,
118                                  ctr128_f ctr);
119 
120 
121 // GCM.
122 //
123 // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
124 // not have a |key| pointer that points to the key as upstream's version does.
125 // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
126 // can be safely copied. Additionally, |gcm_key| is split into a separate
127 // struct.
128 
129 typedef struct { uint64_t hi,lo; } u128;
130 
131 // gmult_func multiplies |Xi| by the GCM key and writes the result back to
132 // |Xi|.
133 typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]);
134 
135 // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
136 // |inp|. The result is written back to |Xi| and the |len| argument must be a
137 // multiple of 16.
138 typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16],
139                            const uint8_t *inp, size_t len);
140 
141 typedef struct gcm128_key_st {
142   // |gcm_*_ssse3| require a 16-byte-aligned |Htable| when hashing data, but not
143   // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in
144   // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16.
145   // TODO(crbug.com/boringssl/604): Revisit this.
146   u128 Htable[16];
147   gmult_func gmult;
148   ghash_func ghash;
149 
150   block128_f block;
151 
152   // use_hw_gcm_crypt is true if this context should use platform-specific
153   // assembly to process GCM data.
154   unsigned use_hw_gcm_crypt:1;
155 } GCM128_KEY;
156 
157 // GCM128_CONTEXT contains state for a single GCM operation. The structure
158 // should be zero-initialized before use.
159 typedef struct {
160   // The following 5 names follow names in GCM specification
161   uint8_t Yi[16];
162   uint8_t EKi[16];
163   uint8_t EK0[16];
164   struct {
165     uint64_t aad;
166     uint64_t msg;
167   } len;
168   uint8_t Xi[16];
169 
170   // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
171   // TODO(crbug.com/boringssl/604): Revisit this.
172   alignas(16) GCM128_KEY gcm_key;
173 
174   unsigned mres, ares;
175 } GCM128_CONTEXT;
176 
177 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
178 // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
179 // used.
180 int crypto_gcm_clmul_enabled(void);
181 #endif
182 
183 // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
184 // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
185 // accelerated) functions for performing operations in the GHASH field. If the
186 // AVX implementation was used |*out_is_avx| will be true.
187 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
188                        u128 out_table[16], int *out_is_avx,
189                        const uint8_t gcm_key[16]);
190 
191 // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES)
192 // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|.
193 OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key,
194                                            const AES_KEY *key, block128_f block,
195                                            int block_is_hwaes);
196 
197 // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
198 // same key that was passed to |CRYPTO_gcm128_init|.
199 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key,
200                                         const uint8_t *iv, size_t iv_len);
201 
202 // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
203 // This must be called before and data is encrypted. It returns one on success
204 // and zero otherwise.
205 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
206                                      size_t len);
207 
208 // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
209 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
210 // on success and zero otherwise.
211 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
212                                          const AES_KEY *key, const uint8_t *in,
213                                          uint8_t *out, size_t len);
214 
215 // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
216 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
217 // on success and zero otherwise.
218 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
219                                          const AES_KEY *key, const uint8_t *in,
220                                          uint8_t *out, size_t len);
221 
222 // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
223 // a CTR function that only handles the bottom 32 bits of the nonce, like
224 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
225 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
226 // otherwise.
227 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
228                                                const AES_KEY *key,
229                                                const uint8_t *in, uint8_t *out,
230                                                size_t len, ctr128_f stream);
231 
232 // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
233 // a CTR function that only handles the bottom 32 bits of the nonce, like
234 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
235 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
236 // otherwise.
237 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
238                                                const AES_KEY *key,
239                                                const uint8_t *in, uint8_t *out,
240                                                size_t len, ctr128_f stream);
241 
242 // CRYPTO_gcm128_finish calculates the authenticator and compares it against
243 // |len| bytes of |tag|. It returns one on success and zero otherwise.
244 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
245                                         size_t len);
246 
247 // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
248 // The minimum of |len| and 16 bytes are copied into |tag|.
249 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
250                                       size_t len);
251 
252 
253 // GCM assembly.
254 
255 void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]);
256 void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]);
257 void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
258                     size_t len);
259 
260 #if !defined(OPENSSL_NO_ASM)
261 
262 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
263 #define GCM_FUNCREF
264 void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
265 void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]);
266 void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
267                      size_t len);
268 
269 // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be
270 // 16-byte-aligned, but |gcm_init_ssse3| does not.
271 void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
272 void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]);
273 void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
274                      size_t len);
275 
276 #if defined(OPENSSL_X86_64)
277 #define GHASH_ASM_X86_64
278 void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
279 void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]);
280 void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
281                    size_t len);
282 
283 #define HW_GCM
284 size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
285                          const AES_KEY *key, uint8_t ivec[16],
286                          const u128 Htable[16], uint8_t Xi[16]);
287 size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
288                          const AES_KEY *key, uint8_t ivec[16],
289                          const u128 Htable[16], uint8_t Xi[16]);
290 #endif  // OPENSSL_X86_64
291 
292 #if defined(OPENSSL_X86)
293 #define GHASH_ASM_X86
294 #endif  // OPENSSL_X86
295 
296 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
297 
298 #define GHASH_ASM_ARM
299 #define GCM_FUNCREF
300 
gcm_pmull_capable(void)301 OPENSSL_INLINE int gcm_pmull_capable(void) {
302   return CRYPTO_is_ARMv8_PMULL_capable();
303 }
304 
305 void gcm_init_v8(u128 Htable[16], const uint64_t H[2]);
306 void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]);
307 void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
308                   size_t len);
309 
gcm_neon_capable(void)310 OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }
311 
312 void gcm_init_neon(u128 Htable[16], const uint64_t H[2]);
313 void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]);
314 void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
315                     size_t len);
316 
317 #if defined(OPENSSL_AARCH64)
318 #define HW_GCM
319 // These functions are defined in aesv8-gcm-armv8.pl.
320 void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out,
321                         void *Xi, uint8_t *ivec, const AES_KEY *key,
322                         const u128 Htable[16]);
323 void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out,
324                         void *Xi, uint8_t *ivec, const AES_KEY *key,
325                         const u128 Htable[16]);
326 #endif
327 
328 #endif
329 #endif  // OPENSSL_NO_ASM
330 
331 
332 // CBC.
333 
334 // cbc128_f is the type of a function that performs CBC-mode encryption.
335 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
336                          const AES_KEY *key, uint8_t ivec[16], int enc);
337 
338 // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
339 // given IV and block cipher in CBC mode. The input need not be a multiple of
340 // 128 bits long, but the output will round up to the nearest 128 bit multiple,
341 // zero padding the input if needed. The IV will be updated on return.
342 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
343                            const AES_KEY *key, uint8_t ivec[16],
344                            block128_f block);
345 
346 // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
347 // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
348 // bits then only that many bytes will be written, but a multiple of 128 bits
349 // is always read from |in|. The IV will be updated on return.
350 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
351                            const AES_KEY *key, uint8_t ivec[16],
352                            block128_f block);
353 
354 
355 // OFB.
356 
357 // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
358 // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
359 // requirement that |len| be a multiple of any value and any partial blocks are
360 // stored in |ivec| and |*num|, the latter must be zero before the initial
361 // call.
362 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
363                            const AES_KEY *key, uint8_t ivec[16], unsigned *num,
364                            block128_f block);
365 
366 
367 // CFB.
368 
369 // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
370 // from |in| to |out| using |block| in CFB mode. There's no requirement that
371 // |len| be a multiple of any value and any partial blocks are stored in |ivec|
372 // and |*num|, the latter must be zero before the initial call.
373 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
374                            const AES_KEY *key, uint8_t ivec[16], unsigned *num,
375                            int enc, block128_f block);
376 
377 // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
378 // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
379 // |num| should be set to zero.
380 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
381                              const AES_KEY *key, uint8_t ivec[16],
382                              unsigned *num, int enc, block128_f block);
383 
384 // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
385 // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
386 // |num| should be set to zero.
387 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
388                              const AES_KEY *key, uint8_t ivec[16],
389                              unsigned *num, int enc, block128_f block);
390 
391 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
392                                    const AES_KEY *key, uint8_t ivec[16],
393                                    block128_f block);
394 
395 
396 // POLYVAL.
397 //
398 // POLYVAL is a polynomial authenticator that operates over a field very
399 // similar to the one that GHASH uses. See
400 // https://www.rfc-editor.org/rfc/rfc8452.html#section-3.
401 
402 struct polyval_ctx {
403   uint8_t S[16];
404   // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
405   // TODO(crbug.com/boringssl/604): Revisit this.
406   alignas(16) u128 Htable[16];
407   gmult_func gmult;
408   ghash_func ghash;
409 };
410 
411 // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
412 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
413 
414 // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
415 // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
416 // must be a multiple of 16.
417 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
418                                   size_t in_len);
419 
420 // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
421 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
422 
423 
424 #if defined(__cplusplus)
425 }  // extern C
426 #endif
427 
428 #endif  // OPENSSL_HEADER_MODES_INTERNAL_H
429