1 /* Copyright (c) 2020, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 // An implementation of the NIST P-256 elliptic curve point multiplication.
16 // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
17 // Fiat, which lives in //third_party/fiat.
18
19 #include <openssl/base.h>
20
21 #include <openssl/bn.h>
22 #include <openssl/ec.h>
23 #include <openssl/err.h>
24 #include <openssl/mem.h>
25
26 #include <assert.h>
27 #include <string.h>
28
29 #include "../../internal.h"
30 #include "../delocate.h"
31 #include "./internal.h"
32
33 #if defined(BORINGSSL_HAS_UINT128)
34 #include "../../../third_party/fiat/p256_64.h"
35 #elif defined(OPENSSL_64_BIT)
36 #include "../../../third_party/fiat/p256_64_msvc.h"
37 #else
38 #include "../../../third_party/fiat/p256_32.h"
39 #endif
40
41
42 // utility functions, handwritten
43
44 #if defined(OPENSSL_64_BIT)
45 #define FIAT_P256_NLIMBS 4
46 typedef uint64_t fiat_p256_limb_t;
47 typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
48 static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
49 0xffffffffffffffff, 0xfffffffe};
50 #else // 64BIT; else 32BIT
51 #define FIAT_P256_NLIMBS 8
52 typedef uint32_t fiat_p256_limb_t;
53 typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
54 static const fiat_p256_felem fiat_p256_one = {
55 0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
56 #endif // 64BIT
57
58
fiat_p256_nz(const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])59 static fiat_p256_limb_t fiat_p256_nz(
60 const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
61 fiat_p256_limb_t ret;
62 fiat_p256_nonzero(&ret, in1);
63 return ret;
64 }
65
fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])66 static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
67 const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
68 for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
69 out[i] = in1[i];
70 }
71 }
72
fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],fiat_p256_limb_t t,const fiat_p256_limb_t z[FIAT_P256_NLIMBS],const fiat_p256_limb_t nz[FIAT_P256_NLIMBS])73 static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
74 fiat_p256_limb_t t,
75 const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
76 const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
77 fiat_p256_selectznz(out, !!t, z, nz);
78 }
79
fiat_p256_from_words(fiat_p256_felem out,const BN_ULONG in[32/sizeof (BN_ULONG)])80 static void fiat_p256_from_words(fiat_p256_felem out,
81 const BN_ULONG in[32 / sizeof(BN_ULONG)]) {
82 // Typically, |BN_ULONG| and |fiat_p256_limb_t| will be the same type, but on
83 // 64-bit platforms without |uint128_t|, they are different. However, on
84 // little-endian systems, |uint64_t[4]| and |uint32_t[8]| have the same
85 // layout.
86 OPENSSL_memcpy(out, in, 32);
87 }
88
fiat_p256_from_generic(fiat_p256_felem out,const EC_FELEM * in)89 static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) {
90 fiat_p256_from_words(out, in->words);
91 }
92
fiat_p256_to_generic(EC_FELEM * out,const fiat_p256_felem in)93 static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) {
94 // See |fiat_p256_from_words|.
95 OPENSSL_memcpy(out->words, in, 32);
96 }
97
98 // fiat_p256_inv_square calculates |out| = |in|^{-2}
99 //
100 // Based on Fermat's Little Theorem:
101 // a^p = a (mod p)
102 // a^{p-1} = 1 (mod p)
103 // a^{p-3} = a^{-2} (mod p)
fiat_p256_inv_square(fiat_p256_felem out,const fiat_p256_felem in)104 static void fiat_p256_inv_square(fiat_p256_felem out,
105 const fiat_p256_felem in) {
106 // This implements the addition chain described in
107 // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
108 fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
109 fiat_p256_square(x2, in); // 2^2 - 2^1
110 fiat_p256_mul(x2, x2, in); // 2^2 - 2^0
111
112 fiat_p256_square(x3, x2); // 2^3 - 2^1
113 fiat_p256_mul(x3, x3, in); // 2^3 - 2^0
114
115 fiat_p256_square(x6, x3);
116 for (int i = 1; i < 3; i++) {
117 fiat_p256_square(x6, x6);
118 } // 2^6 - 2^3
119 fiat_p256_mul(x6, x6, x3); // 2^6 - 2^0
120
121 fiat_p256_square(x12, x6);
122 for (int i = 1; i < 6; i++) {
123 fiat_p256_square(x12, x12);
124 } // 2^12 - 2^6
125 fiat_p256_mul(x12, x12, x6); // 2^12 - 2^0
126
127 fiat_p256_square(x15, x12);
128 for (int i = 1; i < 3; i++) {
129 fiat_p256_square(x15, x15);
130 } // 2^15 - 2^3
131 fiat_p256_mul(x15, x15, x3); // 2^15 - 2^0
132
133 fiat_p256_square(x30, x15);
134 for (int i = 1; i < 15; i++) {
135 fiat_p256_square(x30, x30);
136 } // 2^30 - 2^15
137 fiat_p256_mul(x30, x30, x15); // 2^30 - 2^0
138
139 fiat_p256_square(x32, x30);
140 fiat_p256_square(x32, x32); // 2^32 - 2^2
141 fiat_p256_mul(x32, x32, x2); // 2^32 - 2^0
142
143 fiat_p256_felem ret;
144 fiat_p256_square(ret, x32);
145 for (int i = 1; i < 31 + 1; i++) {
146 fiat_p256_square(ret, ret);
147 } // 2^64 - 2^32
148 fiat_p256_mul(ret, ret, in); // 2^64 - 2^32 + 2^0
149
150 for (int i = 0; i < 96 + 32; i++) {
151 fiat_p256_square(ret, ret);
152 } // 2^192 - 2^160 + 2^128
153 fiat_p256_mul(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
154
155 for (int i = 0; i < 32; i++) {
156 fiat_p256_square(ret, ret);
157 } // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
158 fiat_p256_mul(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
159
160 for (int i = 0; i < 30; i++) {
161 fiat_p256_square(ret, ret);
162 } // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
163 fiat_p256_mul(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
164
165 fiat_p256_square(ret, ret);
166 fiat_p256_square(out, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
167 }
168
169 // Group operations
170 // ----------------
171 //
172 // Building on top of the field operations we have the operations on the
173 // elliptic curve group itself. Points on the curve are represented in Jacobian
174 // coordinates.
175 //
176 // Both operations were transcribed to Coq and proven to correspond to naive
177 // implementations using Affine coordinates, for all suitable fields. In the
178 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
179 // conventions were not considered. Specification of affine coordinates:
180 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
181 // As a sanity check, a proof that these points form a commutative group:
182 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
183
184 // fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
185 //
186 // The method is taken from:
187 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
188 //
189 // Coq transcription and correctness proof:
190 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
191 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
192 //
193 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
194 // while x_out == y_in is not (maybe this works, but it's not tested).
fiat_p256_point_double(fiat_p256_felem x_out,fiat_p256_felem y_out,fiat_p256_felem z_out,const fiat_p256_felem x_in,const fiat_p256_felem y_in,const fiat_p256_felem z_in)195 static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
196 fiat_p256_felem z_out,
197 const fiat_p256_felem x_in,
198 const fiat_p256_felem y_in,
199 const fiat_p256_felem z_in) {
200 fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
201 // delta = z^2
202 fiat_p256_square(delta, z_in);
203 // gamma = y^2
204 fiat_p256_square(gamma, y_in);
205 // beta = x*gamma
206 fiat_p256_mul(beta, x_in, gamma);
207
208 // alpha = 3*(x-delta)*(x+delta)
209 fiat_p256_sub(ftmp, x_in, delta);
210 fiat_p256_add(ftmp2, x_in, delta);
211
212 fiat_p256_add(tmptmp, ftmp2, ftmp2);
213 fiat_p256_add(ftmp2, ftmp2, tmptmp);
214 fiat_p256_mul(alpha, ftmp, ftmp2);
215
216 // x' = alpha^2 - 8*beta
217 fiat_p256_square(x_out, alpha);
218 fiat_p256_add(fourbeta, beta, beta);
219 fiat_p256_add(fourbeta, fourbeta, fourbeta);
220 fiat_p256_add(tmptmp, fourbeta, fourbeta);
221 fiat_p256_sub(x_out, x_out, tmptmp);
222
223 // z' = (y + z)^2 - gamma - delta
224 fiat_p256_add(delta, gamma, delta);
225 fiat_p256_add(ftmp, y_in, z_in);
226 fiat_p256_square(z_out, ftmp);
227 fiat_p256_sub(z_out, z_out, delta);
228
229 // y' = alpha*(4*beta - x') - 8*gamma^2
230 fiat_p256_sub(y_out, fourbeta, x_out);
231 fiat_p256_add(gamma, gamma, gamma);
232 fiat_p256_square(gamma, gamma);
233 fiat_p256_mul(y_out, alpha, y_out);
234 fiat_p256_add(gamma, gamma, gamma);
235 fiat_p256_sub(y_out, y_out, gamma);
236 }
237
238 // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
239 //
240 // The method is taken from:
241 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
242 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
243 //
244 // Coq transcription and correctness proof:
245 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
246 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
247 //
248 // This function includes a branch for checking whether the two input points
249 // are equal, (while not equal to the point at infinity). This case never
250 // happens during single point multiplication, so there is no timing leak for
251 // ECDH or ECDSA signing.
fiat_p256_point_add(fiat_p256_felem x3,fiat_p256_felem y3,fiat_p256_felem z3,const fiat_p256_felem x1,const fiat_p256_felem y1,const fiat_p256_felem z1,const int mixed,const fiat_p256_felem x2,const fiat_p256_felem y2,const fiat_p256_felem z2)252 static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
253 fiat_p256_felem z3, const fiat_p256_felem x1,
254 const fiat_p256_felem y1,
255 const fiat_p256_felem z1, const int mixed,
256 const fiat_p256_felem x2,
257 const fiat_p256_felem y2,
258 const fiat_p256_felem z2) {
259 fiat_p256_felem x_out, y_out, z_out;
260 fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
261 fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
262
263 // z1z1 = z1z1 = z1**2
264 fiat_p256_felem z1z1;
265 fiat_p256_square(z1z1, z1);
266
267 fiat_p256_felem u1, s1, two_z1z2;
268 if (!mixed) {
269 // z2z2 = z2**2
270 fiat_p256_felem z2z2;
271 fiat_p256_square(z2z2, z2);
272
273 // u1 = x1*z2z2
274 fiat_p256_mul(u1, x1, z2z2);
275
276 // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
277 fiat_p256_add(two_z1z2, z1, z2);
278 fiat_p256_square(two_z1z2, two_z1z2);
279 fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
280 fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
281
282 // s1 = y1 * z2**3
283 fiat_p256_mul(s1, z2, z2z2);
284 fiat_p256_mul(s1, s1, y1);
285 } else {
286 // We'll assume z2 = 1 (special case z2 = 0 is handled later).
287
288 // u1 = x1*z2z2
289 fiat_p256_copy(u1, x1);
290 // two_z1z2 = 2z1z2
291 fiat_p256_add(two_z1z2, z1, z1);
292 // s1 = y1 * z2**3
293 fiat_p256_copy(s1, y1);
294 }
295
296 // u2 = x2*z1z1
297 fiat_p256_felem u2;
298 fiat_p256_mul(u2, x2, z1z1);
299
300 // h = u2 - u1
301 fiat_p256_felem h;
302 fiat_p256_sub(h, u2, u1);
303
304 fiat_p256_limb_t xneq = fiat_p256_nz(h);
305
306 // z_out = two_z1z2 * h
307 fiat_p256_mul(z_out, h, two_z1z2);
308
309 // z1z1z1 = z1 * z1z1
310 fiat_p256_felem z1z1z1;
311 fiat_p256_mul(z1z1z1, z1, z1z1);
312
313 // s2 = y2 * z1**3
314 fiat_p256_felem s2;
315 fiat_p256_mul(s2, y2, z1z1z1);
316
317 // r = (s2 - s1)*2
318 fiat_p256_felem r;
319 fiat_p256_sub(r, s2, s1);
320 fiat_p256_add(r, r, r);
321
322 fiat_p256_limb_t yneq = fiat_p256_nz(r);
323
324 fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
325 ~constant_time_is_zero_w(z1nz) &
326 ~constant_time_is_zero_w(z2nz);
327 if (constant_time_declassify_w(is_nontrivial_double)) {
328 fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
329 return;
330 }
331
332 // I = (2h)**2
333 fiat_p256_felem i;
334 fiat_p256_add(i, h, h);
335 fiat_p256_square(i, i);
336
337 // J = h * I
338 fiat_p256_felem j;
339 fiat_p256_mul(j, h, i);
340
341 // V = U1 * I
342 fiat_p256_felem v;
343 fiat_p256_mul(v, u1, i);
344
345 // x_out = r**2 - J - 2V
346 fiat_p256_square(x_out, r);
347 fiat_p256_sub(x_out, x_out, j);
348 fiat_p256_sub(x_out, x_out, v);
349 fiat_p256_sub(x_out, x_out, v);
350
351 // y_out = r(V-x_out) - 2 * s1 * J
352 fiat_p256_sub(y_out, v, x_out);
353 fiat_p256_mul(y_out, y_out, r);
354 fiat_p256_felem s1j;
355 fiat_p256_mul(s1j, s1, j);
356 fiat_p256_sub(y_out, y_out, s1j);
357 fiat_p256_sub(y_out, y_out, s1j);
358
359 fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
360 fiat_p256_cmovznz(x3, z2nz, x1, x_out);
361 fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
362 fiat_p256_cmovznz(y3, z2nz, y1, y_out);
363 fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
364 fiat_p256_cmovznz(z3, z2nz, z1, z_out);
365 }
366
367 #include "./p256_table.h"
368
369 // fiat_p256_select_point_affine selects the |idx-1|th point from a
370 // precomputation table and copies it to out. If |idx| is zero, the output is
371 // the point at infinity.
fiat_p256_select_point_affine(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][2],fiat_p256_felem out[3])372 static void fiat_p256_select_point_affine(
373 const fiat_p256_limb_t idx, size_t size,
374 const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
375 OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
376 for (size_t i = 0; i < size; i++) {
377 fiat_p256_limb_t mismatch = i ^ (idx - 1);
378 fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
379 fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
380 }
381 fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one);
382 }
383
384 // fiat_p256_select_point selects the |idx|th point from a precomputation table
385 // and copies it to out.
fiat_p256_select_point(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][3],fiat_p256_felem out[3])386 static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
387 const fiat_p256_felem pre_comp[/*size*/][3],
388 fiat_p256_felem out[3]) {
389 OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
390 for (size_t i = 0; i < size; i++) {
391 fiat_p256_limb_t mismatch = i ^ idx;
392 fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
393 fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
394 fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
395 }
396 }
397
398 // fiat_p256_get_bit returns the |i|th bit in |in|.
fiat_p256_get_bit(const EC_SCALAR * in,int i)399 static crypto_word_t fiat_p256_get_bit(const EC_SCALAR *in, int i) {
400 if (i < 0 || i >= 256) {
401 return 0;
402 }
403 #if defined(OPENSSL_64_BIT)
404 static_assert(sizeof(BN_ULONG) == 8, "BN_ULONG was not 64-bit");
405 return (in->words[i >> 6] >> (i & 63)) & 1;
406 #else
407 static_assert(sizeof(BN_ULONG) == 4, "BN_ULONG was not 32-bit");
408 return (in->words[i >> 5] >> (i & 31)) & 1;
409 #endif
410 }
411
412 // OPENSSL EC_METHOD FUNCTIONS
413
414 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
415 // (X/Z^2, Y/Z^3).
ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group,const EC_JACOBIAN * point,EC_FELEM * x_out,EC_FELEM * y_out)416 static int ec_GFp_nistp256_point_get_affine_coordinates(
417 const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x_out,
418 EC_FELEM *y_out) {
419 if (constant_time_declassify_int(
420 ec_GFp_simple_is_at_infinity(group, point))) {
421 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
422 return 0;
423 }
424
425 fiat_p256_felem z1, z2;
426 fiat_p256_from_generic(z1, &point->Z);
427 fiat_p256_inv_square(z2, z1);
428
429 if (x_out != NULL) {
430 fiat_p256_felem x;
431 fiat_p256_from_generic(x, &point->X);
432 fiat_p256_mul(x, x, z2);
433 fiat_p256_to_generic(x_out, x);
434 }
435
436 if (y_out != NULL) {
437 fiat_p256_felem y;
438 fiat_p256_from_generic(y, &point->Y);
439 fiat_p256_square(z2, z2); // z^-4
440 fiat_p256_mul(y, y, z1); // y * z
441 fiat_p256_mul(y, y, z2); // y * z^-3
442 fiat_p256_to_generic(y_out, y);
443 }
444
445 return 1;
446 }
447
ec_GFp_nistp256_add(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a,const EC_JACOBIAN * b)448 static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_JACOBIAN *r,
449 const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
450 fiat_p256_felem x1, y1, z1, x2, y2, z2;
451 fiat_p256_from_generic(x1, &a->X);
452 fiat_p256_from_generic(y1, &a->Y);
453 fiat_p256_from_generic(z1, &a->Z);
454 fiat_p256_from_generic(x2, &b->X);
455 fiat_p256_from_generic(y2, &b->Y);
456 fiat_p256_from_generic(z2, &b->Z);
457 fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
458 z2);
459 fiat_p256_to_generic(&r->X, x1);
460 fiat_p256_to_generic(&r->Y, y1);
461 fiat_p256_to_generic(&r->Z, z1);
462 }
463
ec_GFp_nistp256_dbl(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a)464 static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
465 const EC_JACOBIAN *a) {
466 fiat_p256_felem x, y, z;
467 fiat_p256_from_generic(x, &a->X);
468 fiat_p256_from_generic(y, &a->Y);
469 fiat_p256_from_generic(z, &a->Z);
470 fiat_p256_point_double(x, y, z, x, y, z);
471 fiat_p256_to_generic(&r->X, x);
472 fiat_p256_to_generic(&r->Y, y);
473 fiat_p256_to_generic(&r->Z, z);
474 }
475
ec_GFp_nistp256_point_mul(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * p,const EC_SCALAR * scalar)476 static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
477 const EC_JACOBIAN *p,
478 const EC_SCALAR *scalar) {
479 fiat_p256_felem p_pre_comp[17][3];
480 OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
481 // Precompute multiples.
482 fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
483 fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
484 fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
485 for (size_t j = 2; j <= 16; ++j) {
486 if (j & 1) {
487 fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
488 p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
489 0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
490 p_pre_comp[j - 1][2]);
491 } else {
492 fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
493 p_pre_comp[j][2], p_pre_comp[j / 2][0],
494 p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
495 }
496 }
497
498 // Set nq to the point at infinity.
499 fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
500
501 // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
502 int skip = 1; // Save two point operations in the first round.
503 for (size_t i = 255; i < 256; i--) {
504 // double
505 if (!skip) {
506 fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
507 }
508
509 // do other additions every 5 doublings
510 if (i % 5 == 0) {
511 crypto_word_t bits = fiat_p256_get_bit(scalar, i + 4) << 5;
512 bits |= fiat_p256_get_bit(scalar, i + 3) << 4;
513 bits |= fiat_p256_get_bit(scalar, i + 2) << 3;
514 bits |= fiat_p256_get_bit(scalar, i + 1) << 2;
515 bits |= fiat_p256_get_bit(scalar, i) << 1;
516 bits |= fiat_p256_get_bit(scalar, i - 1);
517 crypto_word_t sign, digit;
518 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
519
520 // select the point to add or subtract, in constant time.
521 fiat_p256_select_point((fiat_p256_limb_t)digit, 17,
522 (const fiat_p256_felem(*)[3])p_pre_comp, tmp);
523 fiat_p256_opp(ftmp, tmp[1]); // (X, -Y, Z) is the negative point.
524 fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp);
525
526 if (!skip) {
527 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
528 0 /* mixed */, tmp[0], tmp[1], tmp[2]);
529 } else {
530 fiat_p256_copy(nq[0], tmp[0]);
531 fiat_p256_copy(nq[1], tmp[1]);
532 fiat_p256_copy(nq[2], tmp[2]);
533 skip = 0;
534 }
535 }
536 }
537
538 fiat_p256_to_generic(&r->X, nq[0]);
539 fiat_p256_to_generic(&r->Y, nq[1]);
540 fiat_p256_to_generic(&r->Z, nq[2]);
541 }
542
ec_GFp_nistp256_point_mul_base(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * scalar)543 static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group,
544 EC_JACOBIAN *r,
545 const EC_SCALAR *scalar) {
546 // Set nq to the point at infinity.
547 fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
548
549 int skip = 1; // Save two point operations in the first round.
550 for (size_t i = 31; i < 32; i--) {
551 if (!skip) {
552 fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
553 }
554
555 // First, look 32 bits upwards.
556 crypto_word_t bits = fiat_p256_get_bit(scalar, i + 224) << 3;
557 bits |= fiat_p256_get_bit(scalar, i + 160) << 2;
558 bits |= fiat_p256_get_bit(scalar, i + 96) << 1;
559 bits |= fiat_p256_get_bit(scalar, i + 32);
560 // Select the point to add, in constant time.
561 fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
562 fiat_p256_g_pre_comp[1], tmp);
563
564 if (!skip) {
565 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
566 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
567 } else {
568 fiat_p256_copy(nq[0], tmp[0]);
569 fiat_p256_copy(nq[1], tmp[1]);
570 fiat_p256_copy(nq[2], tmp[2]);
571 skip = 0;
572 }
573
574 // Second, look at the current position.
575 bits = fiat_p256_get_bit(scalar, i + 192) << 3;
576 bits |= fiat_p256_get_bit(scalar, i + 128) << 2;
577 bits |= fiat_p256_get_bit(scalar, i + 64) << 1;
578 bits |= fiat_p256_get_bit(scalar, i);
579 // Select the point to add, in constant time.
580 fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
581 fiat_p256_g_pre_comp[0], tmp);
582 fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
583 tmp[0], tmp[1], tmp[2]);
584 }
585
586 fiat_p256_to_generic(&r->X, nq[0]);
587 fiat_p256_to_generic(&r->Y, nq[1]);
588 fiat_p256_to_generic(&r->Z, nq[2]);
589 }
590
ec_GFp_nistp256_point_mul_public(const EC_GROUP * group,EC_JACOBIAN * r,const EC_SCALAR * g_scalar,const EC_JACOBIAN * p,const EC_SCALAR * p_scalar)591 static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
592 EC_JACOBIAN *r,
593 const EC_SCALAR *g_scalar,
594 const EC_JACOBIAN *p,
595 const EC_SCALAR *p_scalar) {
596 #define P256_WSIZE_PUBLIC 4
597 // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
598 fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
599 fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
600 fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
601 fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
602 fiat_p256_felem p2[3];
603 fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
604 p_pre_comp[0][1], p_pre_comp[0][2]);
605 for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
606 fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
607 p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
608 p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
609 p2[2]);
610 }
611
612 // Set up the coefficients for |p_scalar|.
613 int8_t p_wNAF[257];
614 ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
615
616 // Set |ret| to the point at infinity.
617 int skip = 1; // Save some point operations.
618 fiat_p256_felem ret[3] = {{0}, {0}, {0}};
619 for (int i = 256; i >= 0; i--) {
620 if (!skip) {
621 fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
622 }
623
624 // For the |g_scalar|, we use the precomputed table without the
625 // constant-time lookup.
626 if (i <= 31) {
627 // First, look 32 bits upwards.
628 crypto_word_t bits = fiat_p256_get_bit(g_scalar, i + 224) << 3;
629 bits |= fiat_p256_get_bit(g_scalar, i + 160) << 2;
630 bits |= fiat_p256_get_bit(g_scalar, i + 96) << 1;
631 bits |= fiat_p256_get_bit(g_scalar, i + 32);
632 if (bits != 0) {
633 size_t index = (size_t)(bits - 1);
634 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
635 1 /* mixed */, fiat_p256_g_pre_comp[1][index][0],
636 fiat_p256_g_pre_comp[1][index][1],
637 fiat_p256_one);
638 skip = 0;
639 }
640
641 // Second, look at the current position.
642 bits = fiat_p256_get_bit(g_scalar, i + 192) << 3;
643 bits |= fiat_p256_get_bit(g_scalar, i + 128) << 2;
644 bits |= fiat_p256_get_bit(g_scalar, i + 64) << 1;
645 bits |= fiat_p256_get_bit(g_scalar, i);
646 if (bits != 0) {
647 size_t index = (size_t)(bits - 1);
648 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
649 1 /* mixed */, fiat_p256_g_pre_comp[0][index][0],
650 fiat_p256_g_pre_comp[0][index][1],
651 fiat_p256_one);
652 skip = 0;
653 }
654 }
655
656 int digit = p_wNAF[i];
657 if (digit != 0) {
658 assert(digit & 1);
659 size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1);
660 fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
661 if (digit < 0) {
662 fiat_p256_opp(tmp, p_pre_comp[idx][1]);
663 y = &tmp;
664 }
665 if (!skip) {
666 fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
667 0 /* not mixed */, p_pre_comp[idx][0], *y,
668 p_pre_comp[idx][2]);
669 } else {
670 fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
671 fiat_p256_copy(ret[1], *y);
672 fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
673 skip = 0;
674 }
675 }
676 }
677
678 fiat_p256_to_generic(&r->X, ret[0]);
679 fiat_p256_to_generic(&r->Y, ret[1]);
680 fiat_p256_to_generic(&r->Z, ret[2]);
681 }
682
ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP * group,const EC_JACOBIAN * p,const EC_SCALAR * r)683 static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
684 const EC_JACOBIAN *p,
685 const EC_SCALAR *r) {
686 if (ec_GFp_simple_is_at_infinity(group, p)) {
687 return 0;
688 }
689
690 // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
691 // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
692 // not.
693 fiat_p256_felem Z2_mont;
694 fiat_p256_from_generic(Z2_mont, &p->Z);
695 fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);
696
697 fiat_p256_felem r_Z2;
698 fiat_p256_from_words(r_Z2, r->words); // r < order < p, so this is valid.
699 fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
700
701 fiat_p256_felem X;
702 fiat_p256_from_generic(X, &p->X);
703 fiat_p256_from_montgomery(X, X);
704
705 if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
706 return 1;
707 }
708
709 // During signing the x coefficient is reduced modulo the group order.
710 // Therefore there is a small possibility, less than 1/2^128, that group_order
711 // < p.x < P. in that case we need not only to compare against |r| but also to
712 // compare against r+group_order.
713 assert(group->field.N.width == group->order.N.width);
714 EC_FELEM tmp;
715 BN_ULONG carry =
716 bn_add_words(tmp.words, r->words, group->order.N.d, group->field.N.width);
717 if (carry == 0 &&
718 bn_less_than_words(tmp.words, group->field.N.d, group->field.N.width)) {
719 fiat_p256_from_generic(r_Z2, &tmp);
720 fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
721 if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
722 return 1;
723 }
724 }
725
726 return 0;
727 }
728
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistp256_method)729 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
730 out->point_get_affine_coordinates =
731 ec_GFp_nistp256_point_get_affine_coordinates;
732 out->add = ec_GFp_nistp256_add;
733 out->dbl = ec_GFp_nistp256_dbl;
734 out->mul = ec_GFp_nistp256_point_mul;
735 out->mul_base = ec_GFp_nistp256_point_mul_base;
736 out->mul_public = ec_GFp_nistp256_point_mul_public;
737 out->felem_mul = ec_GFp_mont_felem_mul;
738 out->felem_sqr = ec_GFp_mont_felem_sqr;
739 out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
740 out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
741 out->felem_reduce = ec_GFp_mont_felem_reduce;
742 // TODO(davidben): This should use the specialized field arithmetic
743 // implementation, rather than the generic one.
744 out->felem_exp = ec_GFp_mont_felem_exp;
745 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
746 out->scalar_to_montgomery_inv_vartime =
747 ec_simple_scalar_to_montgomery_inv_vartime;
748 out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
749 }
750