1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * [email protected].
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * ([email protected]). This product includes software written by Tim
52 * Hudson ([email protected]).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77
78
ec_GFp_mont_felem_to_montgomery(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * in)79 static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
80 EC_FELEM *out, const EC_FELEM *in) {
81 bn_to_montgomery_small(out->words, in->words, group->field.N.width,
82 &group->field);
83 }
84
ec_GFp_mont_felem_from_montgomery(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * in)85 static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
86 EC_FELEM *out,
87 const EC_FELEM *in) {
88 bn_from_montgomery_small(out->words, group->field.N.width, in->words,
89 group->field.N.width, &group->field);
90 }
91
ec_GFp_mont_felem_inv0(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * a)92 static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out,
93 const EC_FELEM *a) {
94 bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.N.width,
95 &group->field);
96 }
97
ec_GFp_mont_felem_mul(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a,const EC_FELEM * b)98 void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
99 const EC_FELEM *a, const EC_FELEM *b) {
100 bn_mod_mul_montgomery_small(r->words, a->words, b->words,
101 group->field.N.width, &group->field);
102 }
103
ec_GFp_mont_felem_sqr(const EC_GROUP * group,EC_FELEM * r,const EC_FELEM * a)104 void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
105 const EC_FELEM *a) {
106 bn_mod_mul_montgomery_small(r->words, a->words, a->words,
107 group->field.N.width, &group->field);
108 }
109
ec_GFp_mont_felem_to_bytes(const EC_GROUP * group,uint8_t * out,size_t * out_len,const EC_FELEM * in)110 void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
111 size_t *out_len, const EC_FELEM *in) {
112 EC_FELEM tmp;
113 ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
114 ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp);
115 }
116
ec_GFp_mont_felem_from_bytes(const EC_GROUP * group,EC_FELEM * out,const uint8_t * in,size_t len)117 int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
118 const uint8_t *in, size_t len) {
119 if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) {
120 return 0;
121 }
122
123 ec_GFp_mont_felem_to_montgomery(group, out, out);
124 return 1;
125 }
126
ec_GFp_mont_felem_reduce(const EC_GROUP * group,EC_FELEM * out,const BN_ULONG * words,size_t num)127 void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out,
128 const BN_ULONG *words, size_t num) {
129 // Convert "from" Montgomery form so the value is reduced mod p.
130 bn_from_montgomery_small(out->words, group->field.N.width, words, num,
131 &group->field);
132 // Convert "to" Montgomery form to remove the R^-1 factor added.
133 ec_GFp_mont_felem_to_montgomery(group, out, out);
134 // Convert to Montgomery form to match this implementation's representation.
135 ec_GFp_mont_felem_to_montgomery(group, out, out);
136 }
137
ec_GFp_mont_felem_exp(const EC_GROUP * group,EC_FELEM * out,const EC_FELEM * a,const BN_ULONG * exp,size_t num_exp)138 void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out,
139 const EC_FELEM *a, const BN_ULONG *exp,
140 size_t num_exp) {
141 bn_mod_exp_mont_small(out->words, a->words, group->field.N.width, exp,
142 num_exp, &group->field);
143 }
144
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_JACOBIAN * point,EC_FELEM * x,EC_FELEM * y)145 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
146 const EC_JACOBIAN *point,
147 EC_FELEM *x, EC_FELEM *y) {
148 if (constant_time_declassify_int(
149 ec_GFp_simple_is_at_infinity(group, point))) {
150 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
151 return 0;
152 }
153
154 // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above
155 // ensures |point->Z| is non-zero, so the inverse always exists.
156 EC_FELEM z1, z2;
157 ec_GFp_mont_felem_inv0(group, &z2, &point->Z);
158 ec_GFp_mont_felem_sqr(group, &z1, &z2);
159
160 if (x != NULL) {
161 ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
162 }
163
164 if (y != NULL) {
165 ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
166 ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
167 }
168
169 return 1;
170 }
171
ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP * group,EC_AFFINE * out,const EC_JACOBIAN * in,size_t num)172 static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group,
173 EC_AFFINE *out,
174 const EC_JACOBIAN *in,
175 size_t num) {
176 if (num == 0) {
177 return 1;
178 }
179
180 // Compute prefix products of all Zs. Use |out[i].X| as scratch space
181 // to store these values.
182 out[0].X = in[0].Z;
183 for (size_t i = 1; i < num; i++) {
184 ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z);
185 }
186
187 // Some input was infinity iff the product of all Zs is zero.
188 if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) {
189 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
190 return 0;
191 }
192
193 // Invert the product of all Zs.
194 EC_FELEM zinvprod;
195 ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X);
196 for (size_t i = num - 1; i < num; i--) {
197 // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1.
198 // Recover Zi^-1 by multiplying by the previous product.
199 EC_FELEM zinv, zinv2;
200 if (i == 0) {
201 zinv = zinvprod;
202 } else {
203 ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X);
204 // Maintain the loop invariant for the next iteration.
205 ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z);
206 }
207
208 // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3.
209 ec_GFp_mont_felem_sqr(group, &zinv2, &zinv);
210 ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2);
211 ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2);
212 ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv);
213 }
214
215 return 1;
216 }
217
ec_GFp_mont_add(const EC_GROUP * group,EC_JACOBIAN * out,const EC_JACOBIAN * a,const EC_JACOBIAN * b)218 void ec_GFp_mont_add(const EC_GROUP *group, EC_JACOBIAN *out,
219 const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
220 if (a == b) {
221 ec_GFp_mont_dbl(group, out, a);
222 return;
223 }
224
225 // The method is taken from:
226 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
227 //
228 // Coq transcription and correctness proof:
229 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
230 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
231 EC_FELEM x_out, y_out, z_out;
232 BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
233 BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
234
235 // z1z1 = z1z1 = z1**2
236 EC_FELEM z1z1;
237 ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
238
239 // z2z2 = z2**2
240 EC_FELEM z2z2;
241 ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
242
243 // u1 = x1*z2z2
244 EC_FELEM u1;
245 ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
246
247 // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
248 EC_FELEM two_z1z2;
249 ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
250 ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
251 ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
252 ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
253
254 // s1 = y1 * z2**3
255 EC_FELEM s1;
256 ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
257 ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
258
259 // u2 = x2*z1z1
260 EC_FELEM u2;
261 ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
262
263 // h = u2 - u1
264 EC_FELEM h;
265 ec_felem_sub(group, &h, &u2, &u1);
266
267 BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
268
269 // z_out = two_z1z2 * h
270 ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
271
272 // z1z1z1 = z1 * z1z1
273 EC_FELEM z1z1z1;
274 ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
275
276 // s2 = y2 * z1**3
277 EC_FELEM s2;
278 ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
279
280 // r = (s2 - s1)*2
281 EC_FELEM r;
282 ec_felem_sub(group, &r, &s2, &s1);
283 ec_felem_add(group, &r, &r, &r);
284
285 BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
286
287 // This case will never occur in the constant-time |ec_GFp_mont_mul|.
288 BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz;
289 if (constant_time_declassify_w(is_nontrivial_double)) {
290 ec_GFp_mont_dbl(group, out, a);
291 return;
292 }
293
294 // I = (2h)**2
295 EC_FELEM i;
296 ec_felem_add(group, &i, &h, &h);
297 ec_GFp_mont_felem_sqr(group, &i, &i);
298
299 // J = h * I
300 EC_FELEM j;
301 ec_GFp_mont_felem_mul(group, &j, &h, &i);
302
303 // V = U1 * I
304 EC_FELEM v;
305 ec_GFp_mont_felem_mul(group, &v, &u1, &i);
306
307 // x_out = r**2 - J - 2V
308 ec_GFp_mont_felem_sqr(group, &x_out, &r);
309 ec_felem_sub(group, &x_out, &x_out, &j);
310 ec_felem_sub(group, &x_out, &x_out, &v);
311 ec_felem_sub(group, &x_out, &x_out, &v);
312
313 // y_out = r(V-x_out) - 2 * s1 * J
314 ec_felem_sub(group, &y_out, &v, &x_out);
315 ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
316 EC_FELEM s1j;
317 ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
318 ec_felem_sub(group, &y_out, &y_out, &s1j);
319 ec_felem_sub(group, &y_out, &y_out, &s1j);
320
321 ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
322 ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
323 ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
324 ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
325 ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
326 ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
327 }
328
ec_GFp_mont_dbl(const EC_GROUP * group,EC_JACOBIAN * r,const EC_JACOBIAN * a)329 void ec_GFp_mont_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
330 const EC_JACOBIAN *a) {
331 if (group->a_is_minus3) {
332 // The method is taken from:
333 // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
334 //
335 // Coq transcription and correctness proof:
336 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
337 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
338 EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
339 // delta = z^2
340 ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
341 // gamma = y^2
342 ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
343 // beta = x*gamma
344 ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
345
346 // alpha = 3*(x-delta)*(x+delta)
347 ec_felem_sub(group, &ftmp, &a->X, &delta);
348 ec_felem_add(group, &ftmp2, &a->X, &delta);
349
350 ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
351 ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
352 ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
353
354 // x' = alpha^2 - 8*beta
355 ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
356 ec_felem_add(group, &fourbeta, &beta, &beta);
357 ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
358 ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
359 ec_felem_sub(group, &r->X, &r->X, &tmptmp);
360
361 // z' = (y + z)^2 - gamma - delta
362 ec_felem_add(group, &delta, &gamma, &delta);
363 ec_felem_add(group, &ftmp, &a->Y, &a->Z);
364 ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
365 ec_felem_sub(group, &r->Z, &r->Z, &delta);
366
367 // y' = alpha*(4*beta - x') - 8*gamma^2
368 ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
369 ec_felem_add(group, &gamma, &gamma, &gamma);
370 ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
371 ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
372 ec_felem_add(group, &gamma, &gamma, &gamma);
373 ec_felem_sub(group, &r->Y, &r->Y, &gamma);
374 } else {
375 // The method is taken from:
376 // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
377 //
378 // Coq transcription and correctness proof:
379 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
380 // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
381 EC_FELEM xx, yy, yyyy, zz;
382 ec_GFp_mont_felem_sqr(group, &xx, &a->X);
383 ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
384 ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
385 ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
386
387 // s = 2*((x_in + yy)^2 - xx - yyyy)
388 EC_FELEM s;
389 ec_felem_add(group, &s, &a->X, &yy);
390 ec_GFp_mont_felem_sqr(group, &s, &s);
391 ec_felem_sub(group, &s, &s, &xx);
392 ec_felem_sub(group, &s, &s, &yyyy);
393 ec_felem_add(group, &s, &s, &s);
394
395 // m = 3*xx + a*zz^2
396 EC_FELEM m;
397 ec_GFp_mont_felem_sqr(group, &m, &zz);
398 ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
399 ec_felem_add(group, &m, &m, &xx);
400 ec_felem_add(group, &m, &m, &xx);
401 ec_felem_add(group, &m, &m, &xx);
402
403 // x_out = m^2 - 2*s
404 ec_GFp_mont_felem_sqr(group, &r->X, &m);
405 ec_felem_sub(group, &r->X, &r->X, &s);
406 ec_felem_sub(group, &r->X, &r->X, &s);
407
408 // z_out = (y_in + z_in)^2 - yy - zz
409 ec_felem_add(group, &r->Z, &a->Y, &a->Z);
410 ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
411 ec_felem_sub(group, &r->Z, &r->Z, &yy);
412 ec_felem_sub(group, &r->Z, &r->Z, &zz);
413
414 // y_out = m*(s-x_out) - 8*yyyy
415 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
416 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
417 ec_felem_add(group, &yyyy, &yyyy, &yyyy);
418 ec_felem_sub(group, &r->Y, &s, &r->X);
419 ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
420 ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
421 }
422 }
423
ec_GFp_mont_cmp_x_coordinate(const EC_GROUP * group,const EC_JACOBIAN * p,const EC_SCALAR * r)424 static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group,
425 const EC_JACOBIAN *p,
426 const EC_SCALAR *r) {
427 if (!group->field_greater_than_order ||
428 group->field.N.width != group->order.N.width) {
429 // Do not bother optimizing this case. p > order in all commonly-used
430 // curves.
431 return ec_GFp_simple_cmp_x_coordinate(group, p, r);
432 }
433
434 if (ec_GFp_simple_is_at_infinity(group, p)) {
435 return 0;
436 }
437
438 // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
439 // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
440 // not.
441 EC_FELEM r_Z2, Z2_mont, X;
442 ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
443 // r < order < p, so this is valid.
444 OPENSSL_memcpy(r_Z2.words, r->words, group->field.N.width * sizeof(BN_ULONG));
445 ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
446 ec_GFp_mont_felem_from_montgomery(group, &X, &p->X);
447
448 if (ec_felem_equal(group, &r_Z2, &X)) {
449 return 1;
450 }
451
452 // During signing the x coefficient is reduced modulo the group order.
453 // Therefore there is a small possibility, less than 1/2^128, that group_order
454 // < p.x < P. in that case we need not only to compare against |r| but also to
455 // compare against r+group_order.
456 BN_ULONG carry = bn_add_words(r_Z2.words, r->words, group->order.N.d,
457 group->field.N.width);
458 if (carry == 0 &&
459 bn_less_than_words(r_Z2.words, group->field.N.d, group->field.N.width)) {
460 // r + group_order < p, so compare (r + group_order) * Z^2 against X.
461 ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
462 if (ec_felem_equal(group, &r_Z2, &X)) {
463 return 1;
464 }
465 }
466
467 return 0;
468 }
469
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_mont_method)470 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
471 out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
472 out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch;
473 out->add = ec_GFp_mont_add;
474 out->dbl = ec_GFp_mont_dbl;
475 out->mul = ec_GFp_mont_mul;
476 out->mul_base = ec_GFp_mont_mul_base;
477 out->mul_batch = ec_GFp_mont_mul_batch;
478 out->mul_public_batch = ec_GFp_mont_mul_public_batch;
479 out->init_precomp = ec_GFp_mont_init_precomp;
480 out->mul_precomp = ec_GFp_mont_mul_precomp;
481 out->felem_mul = ec_GFp_mont_felem_mul;
482 out->felem_sqr = ec_GFp_mont_felem_sqr;
483 out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
484 out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
485 out->felem_reduce = ec_GFp_mont_felem_reduce;
486 out->felem_exp = ec_GFp_mont_felem_exp;
487 out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
488 out->scalar_to_montgomery_inv_vartime =
489 ec_simple_scalar_to_montgomery_inv_vartime;
490 out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
491 }
492