xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/cipher/e_aesccm.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    [email protected].
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/aead.h>
50 
51 #include <assert.h>
52 
53 #include <openssl/cipher.h>
54 #include <openssl/err.h>
55 #include <openssl/mem.h>
56 
57 #include "../delocate.h"
58 #include "../modes/internal.h"
59 #include "../service_indicator/internal.h"
60 #include "internal.h"
61 
62 
63 struct ccm128_context {
64   block128_f block;
65   ctr128_f ctr;
66   unsigned M, L;
67 };
68 
69 struct ccm128_state {
70   alignas(16) uint8_t nonce[16];
71   alignas(16) uint8_t cmac[16];
72 };
73 
CRYPTO_ccm128_init(struct ccm128_context * ctx,const AES_KEY * key,block128_f block,ctr128_f ctr,unsigned M,unsigned L)74 static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key,
75                               block128_f block, ctr128_f ctr, unsigned M,
76                               unsigned L) {
77   if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) {
78     return 0;
79   }
80   ctx->block = block;
81   ctx->ctr = ctr;
82   ctx->M = M;
83   ctx->L = L;
84   return 1;
85 }
86 
CRYPTO_ccm128_max_input(const struct ccm128_context * ctx)87 static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) {
88   return ctx->L >= sizeof(size_t) ? SIZE_MAX
89                                   : (((size_t)1) << (ctx->L * 8)) - 1;
90 }
91 
ccm128_init_state(const struct ccm128_context * ctx,struct ccm128_state * state,const AES_KEY * key,const uint8_t * nonce,size_t nonce_len,const uint8_t * aad,size_t aad_len,size_t plaintext_len)92 static int ccm128_init_state(const struct ccm128_context *ctx,
93                              struct ccm128_state *state, const AES_KEY *key,
94                              const uint8_t *nonce, size_t nonce_len,
95                              const uint8_t *aad, size_t aad_len,
96                              size_t plaintext_len) {
97   const block128_f block = ctx->block;
98   const unsigned M = ctx->M;
99   const unsigned L = ctx->L;
100 
101   // |L| determines the expected |nonce_len| and the limit for |plaintext_len|.
102   if (plaintext_len > CRYPTO_ccm128_max_input(ctx) ||
103       nonce_len != 15 - L) {
104     return 0;
105   }
106 
107   // Assemble the first block for computing the MAC.
108   OPENSSL_memset(state, 0, sizeof(*state));
109   state->nonce[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3);
110   if (aad_len != 0) {
111     state->nonce[0] |= 0x40;  // Set AAD Flag
112   }
113   OPENSSL_memcpy(&state->nonce[1], nonce, nonce_len);
114   for (unsigned i = 0; i < L; i++) {
115     state->nonce[15 - i] = (uint8_t)(plaintext_len >> (8 * i));
116   }
117 
118   (*block)(state->nonce, state->cmac, key);
119   size_t blocks = 1;
120 
121   if (aad_len != 0) {
122     unsigned i;
123     // Cast to u64 to avoid the compiler complaining about invalid shifts.
124     uint64_t aad_len_u64 = aad_len;
125     if (aad_len_u64 < 0x10000 - 0x100) {
126       state->cmac[0] ^= (uint8_t)(aad_len_u64 >> 8);
127       state->cmac[1] ^= (uint8_t)aad_len_u64;
128       i = 2;
129     } else if (aad_len_u64 <= 0xffffffff) {
130       state->cmac[0] ^= 0xff;
131       state->cmac[1] ^= 0xfe;
132       state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 24);
133       state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 16);
134       state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 8);
135       state->cmac[5] ^= (uint8_t)aad_len_u64;
136       i = 6;
137     } else {
138       state->cmac[0] ^= 0xff;
139       state->cmac[1] ^= 0xff;
140       state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 56);
141       state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 48);
142       state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 40);
143       state->cmac[5] ^= (uint8_t)(aad_len_u64 >> 32);
144       state->cmac[6] ^= (uint8_t)(aad_len_u64 >> 24);
145       state->cmac[7] ^= (uint8_t)(aad_len_u64 >> 16);
146       state->cmac[8] ^= (uint8_t)(aad_len_u64 >> 8);
147       state->cmac[9] ^= (uint8_t)aad_len_u64;
148       i = 10;
149     }
150 
151     do {
152       for (; i < 16 && aad_len != 0; i++) {
153         state->cmac[i] ^= *aad;
154         aad++;
155         aad_len--;
156       }
157       (*block)(state->cmac, state->cmac, key);
158       blocks++;
159       i = 0;
160     } while (aad_len != 0);
161   }
162 
163   // Per RFC 3610, section 2.6, the total number of block cipher operations done
164   // must not exceed 2^61. There are two block cipher operations remaining per
165   // message block, plus one block at the end to encrypt the MAC.
166   size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1;
167   if (plaintext_len + 15 < plaintext_len ||
168       remaining_blocks + blocks < blocks ||
169       (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) {
170     return 0;
171   }
172 
173   // Assemble the first block for encrypting and decrypting. The bottom |L|
174   // bytes are replaced with a counter and all bit the encoding of |L| is
175   // cleared in the first byte.
176   state->nonce[0] &= 7;
177   return 1;
178 }
179 
ccm128_encrypt(const struct ccm128_context * ctx,struct ccm128_state * state,const AES_KEY * key,uint8_t * out,const uint8_t * in,size_t len)180 static int ccm128_encrypt(const struct ccm128_context *ctx,
181                           struct ccm128_state *state, const AES_KEY *key,
182                           uint8_t *out, const uint8_t *in, size_t len) {
183   // The counter for encryption begins at one.
184   for (unsigned i = 0; i < ctx->L; i++) {
185     state->nonce[15 - i] = 0;
186   }
187   state->nonce[15] = 1;
188 
189   uint8_t partial_buf[16];
190   unsigned num = 0;
191   if (ctx->ctr != NULL) {
192     CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce, partial_buf,
193                                 &num, ctx->ctr);
194   } else {
195     CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce, partial_buf, &num,
196                           ctx->block);
197   }
198   return 1;
199 }
200 
ccm128_compute_mac(const struct ccm128_context * ctx,struct ccm128_state * state,const AES_KEY * key,uint8_t * out_tag,size_t tag_len,const uint8_t * in,size_t len)201 static int ccm128_compute_mac(const struct ccm128_context *ctx,
202                               struct ccm128_state *state, const AES_KEY *key,
203                               uint8_t *out_tag, size_t tag_len,
204                               const uint8_t *in, size_t len) {
205   block128_f block = ctx->block;
206   if (tag_len != ctx->M) {
207     return 0;
208   }
209 
210   // Incorporate |in| into the MAC.
211   while (len >= 16) {
212     CRYPTO_xor16(state->cmac, state->cmac, in);
213     (*block)(state->cmac, state->cmac, key);
214     in += 16;
215     len -= 16;
216   }
217   if (len > 0) {
218     for (size_t i = 0; i < len; i++) {
219       state->cmac[i] ^= in[i];
220     }
221     (*block)(state->cmac, state->cmac, key);
222   }
223 
224   // Encrypt the MAC with counter zero.
225   for (unsigned i = 0; i < ctx->L; i++) {
226     state->nonce[15 - i] = 0;
227   }
228   alignas(16) uint8_t tmp[16];
229   (*block)(state->nonce, tmp, key);
230   CRYPTO_xor16(state->cmac, state->cmac, tmp);
231 
232   OPENSSL_memcpy(out_tag, state->cmac, tag_len);
233   return 1;
234 }
235 
CRYPTO_ccm128_encrypt(const struct ccm128_context * ctx,const AES_KEY * key,uint8_t * out,uint8_t * out_tag,size_t tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t len,const uint8_t * aad,size_t aad_len)236 static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx,
237                                  const AES_KEY *key, uint8_t *out,
238                                  uint8_t *out_tag, size_t tag_len,
239                                  const uint8_t *nonce, size_t nonce_len,
240                                  const uint8_t *in, size_t len,
241                                  const uint8_t *aad, size_t aad_len) {
242   struct ccm128_state state;
243   return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
244                            len) &&
245          ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) &&
246          ccm128_encrypt(ctx, &state, key, out, in, len);
247 }
248 
CRYPTO_ccm128_decrypt(const struct ccm128_context * ctx,const AES_KEY * key,uint8_t * out,uint8_t * out_tag,size_t tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t len,const uint8_t * aad,size_t aad_len)249 static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx,
250                                  const AES_KEY *key, uint8_t *out,
251                                  uint8_t *out_tag, size_t tag_len,
252                                  const uint8_t *nonce, size_t nonce_len,
253                                  const uint8_t *in, size_t len,
254                                  const uint8_t *aad, size_t aad_len) {
255   struct ccm128_state state;
256   return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
257                            len) &&
258          ccm128_encrypt(ctx, &state, key, out, in, len) &&
259          ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len);
260 }
261 
262 #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16
263 
264 struct aead_aes_ccm_ctx {
265   union {
266     double align;
267     AES_KEY ks;
268   } ks;
269   struct ccm128_context ccm;
270 };
271 
272 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
273                   sizeof(struct aead_aes_ccm_ctx),
274               "AEAD state is too small");
275 static_assert(alignof(union evp_aead_ctx_st_state) >=
276                   alignof(struct aead_aes_ccm_ctx),
277               "AEAD state has insufficient alignment");
278 
aead_aes_ccm_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len,unsigned M,unsigned L)279 static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
280                              size_t key_len, size_t tag_len, unsigned M,
281                              unsigned L) {
282   assert(M == EVP_AEAD_max_overhead(ctx->aead));
283   assert(M == EVP_AEAD_max_tag_len(ctx->aead));
284   assert(15 - L == EVP_AEAD_nonce_length(ctx->aead));
285 
286   if (key_len != EVP_AEAD_key_length(ctx->aead)) {
287     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
288     return 0;  // EVP_AEAD_CTX_init should catch this.
289   }
290 
291   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
292     tag_len = M;
293   }
294 
295   if (tag_len != M) {
296     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
297     return 0;
298   }
299 
300   struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state;
301 
302   block128_f block;
303   ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len);
304   ctx->tag_len = tag_len;
305   if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) {
306     OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR);
307     return 0;
308   }
309 
310   return 1;
311 }
312 
aead_aes_ccm_cleanup(EVP_AEAD_CTX * ctx)313 static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {}
314 
aead_aes_ccm_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)315 static int aead_aes_ccm_seal_scatter(
316     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
317     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
318     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
319     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
320   const struct aead_aes_ccm_ctx *ccm_ctx =
321       (struct aead_aes_ccm_ctx *)&ctx->state;
322 
323   if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
324     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
325     return 0;
326   }
327 
328   if (max_out_tag_len < ctx->tag_len) {
329     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
330     return 0;
331   }
332 
333   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
334     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
335     return 0;
336   }
337 
338   if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag,
339                              ctx->tag_len, nonce, nonce_len, in, in_len, ad,
340                              ad_len)) {
341     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
342     return 0;
343   }
344 
345   *out_tag_len = ctx->tag_len;
346   AEAD_CCM_verify_service_indicator(ctx);
347   return 1;
348 }
349 
aead_aes_ccm_open_gather(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)350 static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
351                                     const uint8_t *nonce, size_t nonce_len,
352                                     const uint8_t *in, size_t in_len,
353                                     const uint8_t *in_tag, size_t in_tag_len,
354                                     const uint8_t *ad, size_t ad_len) {
355   const struct aead_aes_ccm_ctx *ccm_ctx =
356       (struct aead_aes_ccm_ctx *)&ctx->state;
357 
358   if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
359     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
360     return 0;
361   }
362 
363   if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
364     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
365     return 0;
366   }
367 
368   if (in_tag_len != ctx->tag_len) {
369     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
370     return 0;
371   }
372 
373   uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN];
374   assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN);
375   if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag,
376                              ctx->tag_len, nonce, nonce_len, in, in_len, ad,
377                              ad_len)) {
378     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
379     return 0;
380   }
381 
382   if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
383     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
384     return 0;
385   }
386 
387   AEAD_CCM_verify_service_indicator(ctx);
388   return 1;
389 }
390 
aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len)391 static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
392                                        size_t key_len, size_t tag_len) {
393   return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2);
394 }
395 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_ccm_bluetooth)396 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) {
397   memset(out, 0, sizeof(EVP_AEAD));
398 
399   out->key_len = 16;
400   out->nonce_len = 13;
401   out->overhead = 4;
402   out->max_tag_len = 4;
403 
404   out->init = aead_aes_ccm_bluetooth_init;
405   out->cleanup = aead_aes_ccm_cleanup;
406   out->seal_scatter = aead_aes_ccm_seal_scatter;
407   out->open_gather = aead_aes_ccm_open_gather;
408 }
409 
aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len)410 static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
411                                          size_t key_len, size_t tag_len) {
412   return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2);
413 }
414 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_ccm_bluetooth_8)415 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) {
416   memset(out, 0, sizeof(EVP_AEAD));
417 
418   out->key_len = 16;
419   out->nonce_len = 13;
420   out->overhead = 8;
421   out->max_tag_len = 8;
422 
423   out->init = aead_aes_ccm_bluetooth_8_init;
424   out->cleanup = aead_aes_ccm_cleanup;
425   out->seal_scatter = aead_aes_ccm_seal_scatter;
426   out->open_gather = aead_aes_ccm_open_gather;
427 }
428 
aead_aes_ccm_matter_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len)429 static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
430                                     size_t key_len, size_t tag_len) {
431   return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2);
432 }
433 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_ccm_matter)434 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) {
435   memset(out, 0, sizeof(EVP_AEAD));
436 
437   out->key_len = 16;
438   out->nonce_len = 13;
439   out->overhead = 16;
440   out->max_tag_len = 16;
441 
442   out->init = aead_aes_ccm_matter_init;
443   out->cleanup = aead_aes_ccm_cleanup;
444   out->seal_scatter = aead_aes_ccm_seal_scatter;
445   out->open_gather = aead_aes_ccm_open_gather;
446 }
447