xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/cipher/e_aes.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* ====================================================================
2  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    [email protected].
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <assert.h>
50 #include <limits.h>
51 #include <string.h>
52 
53 #include <openssl/aead.h>
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/err.h>
57 #include <openssl/mem.h>
58 #include <openssl/nid.h>
59 #include <openssl/rand.h>
60 
61 #include "internal.h"
62 #include "../../internal.h"
63 #include "../aes/internal.h"
64 #include "../modes/internal.h"
65 #include "../service_indicator/internal.h"
66 #include "../delocate.h"
67 
68 
69 OPENSSL_MSVC_PRAGMA(warning(push))
70 OPENSSL_MSVC_PRAGMA(warning(disable: 4702))  // Unreachable code.
71 
72 #define AES_GCM_NONCE_LENGTH 12
73 
74 #if defined(BSAES)
vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t * in,uint8_t * out,size_t blocks,const AES_KEY * key,const uint8_t ivec[16])75 static void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in,
76                                                   uint8_t *out, size_t blocks,
77                                                   const AES_KEY *key,
78                                                   const uint8_t ivec[16]) {
79   // |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|,
80   // but it takes at least one full 8-block batch to amortize the conversion.
81   if (blocks < 8) {
82     vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec);
83     return;
84   }
85 
86   size_t bsaes_blocks = blocks;
87   if (bsaes_blocks % 8 < 6) {
88     // |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the
89     // final batch is too small (under six blocks), it is faster to loop over
90     // |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8.
91     bsaes_blocks -= bsaes_blocks % 8;
92   }
93 
94   AES_KEY bsaes;
95   vpaes_encrypt_key_to_bsaes(&bsaes, key);
96   bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec);
97   OPENSSL_cleanse(&bsaes, sizeof(bsaes));
98 
99   in += 16 * bsaes_blocks;
100   out += 16 * bsaes_blocks;
101   blocks -= bsaes_blocks;
102 
103   uint8_t new_ivec[16];
104   memcpy(new_ivec, ivec, 12);
105   uint32_t ctr = CRYPTO_load_u32_be(ivec + 12) + bsaes_blocks;
106   CRYPTO_store_u32_be(new_ivec + 12, ctr);
107 
108   // Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|.
109   vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec);
110 }
111 #endif  // BSAES
112 
113 typedef struct {
114   union {
115     double align;
116     AES_KEY ks;
117   } ks;
118   block128_f block;
119   union {
120     cbc128_f cbc;
121     ctr128_f ctr;
122   } stream;
123 } EVP_AES_KEY;
124 
125 typedef struct {
126   GCM128_CONTEXT gcm;
127   union {
128     double align;
129     AES_KEY ks;
130   } ks;         // AES key schedule to use
131   int key_set;  // Set if key initialised
132   int iv_set;   // Set if an iv is set
133   uint8_t *iv;  // Temporary IV store
134   int ivlen;         // IV length
135   int taglen;
136   int iv_gen;      // It is OK to generate IVs
137   ctr128_f ctr;
138 } EVP_AES_GCM_CTX;
139 
aes_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)140 static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
141                         const uint8_t *iv, int enc) {
142   int ret;
143   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
144   const int mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
145 
146   if (mode == EVP_CIPH_CTR_MODE) {
147     switch (ctx->key_len) {
148       case 16:
149         boringssl_fips_inc_counter(fips_counter_evp_aes_128_ctr);
150         break;
151 
152       case 32:
153         boringssl_fips_inc_counter(fips_counter_evp_aes_256_ctr);
154         break;
155     }
156   }
157 
158   if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
159     if (hwaes_capable()) {
160       ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
161       dat->block = aes_hw_decrypt;
162       dat->stream.cbc = NULL;
163       if (mode == EVP_CIPH_CBC_MODE) {
164         dat->stream.cbc = aes_hw_cbc_encrypt;
165       }
166     } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
167       assert(vpaes_capable());
168       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
169       if (ret == 0) {
170         vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks);
171       }
172       // If |dat->stream.cbc| is provided, |dat->block| is never used.
173       dat->block = NULL;
174       dat->stream.cbc = bsaes_cbc_encrypt;
175     } else if (vpaes_capable()) {
176       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
177       dat->block = vpaes_decrypt;
178       dat->stream.cbc = NULL;
179 #if defined(VPAES_CBC)
180       if (mode == EVP_CIPH_CBC_MODE) {
181         dat->stream.cbc = vpaes_cbc_encrypt;
182       }
183 #endif
184     } else {
185       ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
186       dat->block = aes_nohw_decrypt;
187       dat->stream.cbc = NULL;
188       if (mode == EVP_CIPH_CBC_MODE) {
189         dat->stream.cbc = aes_nohw_cbc_encrypt;
190       }
191     }
192   } else if (hwaes_capable()) {
193     ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
194     dat->block = aes_hw_encrypt;
195     dat->stream.cbc = NULL;
196     if (mode == EVP_CIPH_CBC_MODE) {
197       dat->stream.cbc = aes_hw_cbc_encrypt;
198     } else if (mode == EVP_CIPH_CTR_MODE) {
199       dat->stream.ctr = aes_hw_ctr32_encrypt_blocks;
200     }
201   } else if (vpaes_capable()) {
202     ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
203     dat->block = vpaes_encrypt;
204     dat->stream.cbc = NULL;
205 #if defined(VPAES_CBC)
206     if (mode == EVP_CIPH_CBC_MODE) {
207       dat->stream.cbc = vpaes_cbc_encrypt;
208     }
209 #endif
210     if (mode == EVP_CIPH_CTR_MODE) {
211 #if defined(BSAES)
212       assert(bsaes_capable());
213       dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes;
214 #elif defined(VPAES_CTR32)
215       dat->stream.ctr = vpaes_ctr32_encrypt_blocks;
216 #endif
217     }
218   } else {
219     ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
220     dat->block = aes_nohw_encrypt;
221     dat->stream.cbc = NULL;
222     if (mode == EVP_CIPH_CBC_MODE) {
223       dat->stream.cbc = aes_nohw_cbc_encrypt;
224     }
225   }
226 
227   if (ret < 0) {
228     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
229     return 0;
230   }
231 
232   return 1;
233 }
234 
aes_cbc_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)235 static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
236                           size_t len) {
237   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
238 
239   if (dat->stream.cbc) {
240     (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt);
241   } else if (ctx->encrypt) {
242     CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
243   } else {
244     CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
245   }
246 
247   return 1;
248 }
249 
aes_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)250 static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
251                           size_t len) {
252   size_t bl = ctx->cipher->block_size;
253   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
254 
255   if (len < bl) {
256     return 1;
257   }
258 
259   len -= bl;
260   for (size_t i = 0; i <= len; i += bl) {
261     (*dat->block)(in + i, out + i, &dat->ks.ks);
262   }
263 
264   return 1;
265 }
266 
aes_ctr_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)267 static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
268                           size_t len) {
269   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
270 
271   if (dat->stream.ctr) {
272     CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
273                                 &ctx->num, dat->stream.ctr);
274   } else {
275     CRYPTO_ctr128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
276                           &ctx->num, dat->block);
277   }
278   return 1;
279 }
280 
aes_ofb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)281 static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
282                           size_t len) {
283   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
284 
285   CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num,
286                         dat->block);
287   return 1;
288 }
289 
aes_ctr_set_key(AES_KEY * aes_key,GCM128_KEY * gcm_key,block128_f * out_block,const uint8_t * key,size_t key_bytes)290 ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key,
291                          block128_f *out_block, const uint8_t *key,
292                          size_t key_bytes) {
293   // This function assumes the key length was previously validated.
294   assert(key_bytes == 128 / 8 || key_bytes == 192 / 8 || key_bytes == 256 / 8);
295   if (hwaes_capable()) {
296     aes_hw_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
297     if (gcm_key != NULL) {
298       CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_hw_encrypt, 1);
299     }
300     if (out_block) {
301       *out_block = aes_hw_encrypt;
302     }
303     return aes_hw_ctr32_encrypt_blocks;
304   }
305 
306   if (vpaes_capable()) {
307     vpaes_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
308     if (out_block) {
309       *out_block = vpaes_encrypt;
310     }
311     if (gcm_key != NULL) {
312       CRYPTO_gcm128_init_key(gcm_key, aes_key, vpaes_encrypt, 0);
313     }
314 #if defined(BSAES)
315     assert(bsaes_capable());
316     return vpaes_ctr32_encrypt_blocks_with_bsaes;
317 #elif defined(VPAES_CTR32)
318     return vpaes_ctr32_encrypt_blocks;
319 #else
320     return NULL;
321 #endif
322   }
323 
324   aes_nohw_set_encrypt_key(key, (int)key_bytes * 8, aes_key);
325   if (gcm_key != NULL) {
326     CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0);
327   }
328   if (out_block) {
329     *out_block = aes_nohw_encrypt;
330   }
331   return aes_nohw_ctr32_encrypt_blocks;
332 }
333 
334 #if defined(OPENSSL_32_BIT)
335 #define EVP_AES_GCM_CTX_PADDING (4+8)
336 #else
337 #define EVP_AES_GCM_CTX_PADDING 8
338 #endif
339 
aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX * ctx)340 static EVP_AES_GCM_CTX *aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) {
341   static_assert(
342       alignof(EVP_AES_GCM_CTX) <= 16,
343       "EVP_AES_GCM_CTX needs more alignment than this function provides");
344 
345   // |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment
346   // on 64-bit systems, so we need to adjust to reach 16-byte alignment.
347   assert(ctx->cipher->ctx_size ==
348          sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING);
349 
350   char *ptr = ctx->cipher_data;
351 #if defined(OPENSSL_32_BIT)
352   assert((uintptr_t)ptr % 4 == 0);
353   ptr += (uintptr_t)ptr & 4;
354 #endif
355   assert((uintptr_t)ptr % 8 == 0);
356   ptr += (uintptr_t)ptr & 8;
357   return (EVP_AES_GCM_CTX *)ptr;
358 }
359 
aes_gcm_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)360 static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
361                             const uint8_t *iv, int enc) {
362   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
363   if (!iv && !key) {
364     return 1;
365   }
366 
367   switch (ctx->key_len) {
368     case 16:
369       boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm);
370       break;
371 
372     case 32:
373       boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm);
374       break;
375   }
376 
377   if (key) {
378     OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm));
379     gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm.gcm_key, NULL, key,
380                                 ctx->key_len);
381     // If we have an iv can set it directly, otherwise use saved IV.
382     if (iv == NULL && gctx->iv_set) {
383       iv = gctx->iv;
384     }
385     if (iv) {
386       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
387       gctx->iv_set = 1;
388     }
389     gctx->key_set = 1;
390   } else {
391     // If key set use IV, otherwise copy
392     if (gctx->key_set) {
393       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
394     } else {
395       OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
396     }
397     gctx->iv_set = 1;
398     gctx->iv_gen = 0;
399   }
400   return 1;
401 }
402 
aes_gcm_cleanup(EVP_CIPHER_CTX * c)403 static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
404   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
405   OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
406   if (gctx->iv != c->iv) {
407     OPENSSL_free(gctx->iv);
408   }
409 }
410 
aes_gcm_ctrl(EVP_CIPHER_CTX * c,int type,int arg,void * ptr)411 static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
412   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
413   switch (type) {
414     case EVP_CTRL_INIT:
415       gctx->key_set = 0;
416       gctx->iv_set = 0;
417       gctx->ivlen = c->cipher->iv_len;
418       gctx->iv = c->iv;
419       gctx->taglen = -1;
420       gctx->iv_gen = 0;
421       return 1;
422 
423     case EVP_CTRL_AEAD_SET_IVLEN:
424       if (arg <= 0) {
425         return 0;
426       }
427 
428       // Allocate memory for IV if needed
429       if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
430         if (gctx->iv != c->iv) {
431           OPENSSL_free(gctx->iv);
432         }
433         gctx->iv = OPENSSL_malloc(arg);
434         if (!gctx->iv) {
435           return 0;
436         }
437       }
438       gctx->ivlen = arg;
439       return 1;
440 
441     case EVP_CTRL_GET_IVLEN:
442       *(int *)ptr = gctx->ivlen;
443       return 1;
444 
445     case EVP_CTRL_AEAD_SET_TAG:
446       if (arg <= 0 || arg > 16 || c->encrypt) {
447         return 0;
448       }
449       OPENSSL_memcpy(c->buf, ptr, arg);
450       gctx->taglen = arg;
451       return 1;
452 
453     case EVP_CTRL_AEAD_GET_TAG:
454       if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
455         return 0;
456       }
457       OPENSSL_memcpy(ptr, c->buf, arg);
458       return 1;
459 
460     case EVP_CTRL_AEAD_SET_IV_FIXED:
461       // Special case: -1 length restores whole IV
462       if (arg == -1) {
463         OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen);
464         gctx->iv_gen = 1;
465         return 1;
466       }
467       // Fixed field must be at least 4 bytes and invocation field
468       // at least 8.
469       if (arg < 4 || (gctx->ivlen - arg) < 8) {
470         return 0;
471       }
472       OPENSSL_memcpy(gctx->iv, ptr, arg);
473       if (c->encrypt) {
474         // |RAND_bytes| calls within the fipsmodule should be wrapped with state
475         // lock functions to avoid updating the service indicator with the DRBG
476         // functions.
477         FIPS_service_indicator_lock_state();
478         RAND_bytes(gctx->iv + arg, gctx->ivlen - arg);
479         FIPS_service_indicator_unlock_state();
480       }
481       gctx->iv_gen = 1;
482       return 1;
483 
484     case EVP_CTRL_GCM_IV_GEN: {
485       if (gctx->iv_gen == 0 || gctx->key_set == 0) {
486         return 0;
487       }
488       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
489       if (arg <= 0 || arg > gctx->ivlen) {
490         arg = gctx->ivlen;
491       }
492       OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
493       // Invocation field will be at least 8 bytes in size, so no need to check
494       // wrap around or increment more than last 8 bytes.
495       uint8_t *ctr = gctx->iv + gctx->ivlen - 8;
496       CRYPTO_store_u64_be(ctr, CRYPTO_load_u64_be(ctr) + 1);
497       gctx->iv_set = 1;
498       return 1;
499     }
500 
501     case EVP_CTRL_GCM_SET_IV_INV:
502       if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
503         return 0;
504       }
505       OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
506       CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
507       gctx->iv_set = 1;
508       return 1;
509 
510     case EVP_CTRL_COPY: {
511       EVP_CIPHER_CTX *out = ptr;
512       EVP_AES_GCM_CTX *gctx_out = aes_gcm_from_cipher_ctx(out);
513       // |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in
514       // case |out->cipher_data| and |in->cipher_data| are differently aligned.
515       OPENSSL_memcpy(gctx_out, gctx, sizeof(EVP_AES_GCM_CTX));
516       if (gctx->iv == c->iv) {
517         gctx_out->iv = out->iv;
518       } else {
519         gctx_out->iv = OPENSSL_memdup(gctx->iv, gctx->ivlen);
520         if (!gctx_out->iv) {
521           return 0;
522         }
523       }
524       return 1;
525     }
526 
527     default:
528       return -1;
529   }
530 }
531 
aes_gcm_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)532 static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
533                           size_t len) {
534   EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
535 
536   // If not set up, return error
537   if (!gctx->key_set) {
538     return -1;
539   }
540   if (!gctx->iv_set) {
541     return -1;
542   }
543 
544   if (len > INT_MAX) {
545     // This function signature can only express up to |INT_MAX| bytes encrypted.
546     //
547     // TODO(https://crbug.com/boringssl/494): Make the internal |EVP_CIPHER|
548     // calling convention |size_t|-clean.
549     return -1;
550   }
551 
552   if (in) {
553     if (out == NULL) {
554       if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
555         return -1;
556       }
557     } else if (ctx->encrypt) {
558       if (gctx->ctr) {
559         if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
560                                          gctx->ctr)) {
561           return -1;
562         }
563       } else {
564         if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
565           return -1;
566         }
567       }
568     } else {
569       if (gctx->ctr) {
570         if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
571                                          gctx->ctr)) {
572           return -1;
573         }
574       } else {
575         if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
576           return -1;
577         }
578       }
579     }
580     return (int)len;
581   } else {
582     if (!ctx->encrypt) {
583       if (gctx->taglen < 0 ||
584           !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) {
585         return -1;
586       }
587       gctx->iv_set = 0;
588       return 0;
589     }
590     CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
591     gctx->taglen = 16;
592     // Don't reuse the IV
593     gctx->iv_set = 0;
594     return 0;
595   }
596 }
597 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_cbc)598 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_cbc) {
599   memset(out, 0, sizeof(EVP_CIPHER));
600 
601   out->nid = NID_aes_128_cbc;
602   out->block_size = 16;
603   out->key_len = 16;
604   out->iv_len = 16;
605   out->ctx_size = sizeof(EVP_AES_KEY);
606   out->flags = EVP_CIPH_CBC_MODE;
607   out->init = aes_init_key;
608   out->cipher = aes_cbc_cipher;
609 }
610 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_ctr)611 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ctr) {
612   memset(out, 0, sizeof(EVP_CIPHER));
613 
614   out->nid = NID_aes_128_ctr;
615   out->block_size = 1;
616   out->key_len = 16;
617   out->iv_len = 16;
618   out->ctx_size = sizeof(EVP_AES_KEY);
619   out->flags = EVP_CIPH_CTR_MODE;
620   out->init = aes_init_key;
621   out->cipher = aes_ctr_cipher;
622 }
623 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_128_ecb_generic)624 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) {
625   memset(out, 0, sizeof(EVP_CIPHER));
626 
627   out->nid = NID_aes_128_ecb;
628   out->block_size = 16;
629   out->key_len = 16;
630   out->ctx_size = sizeof(EVP_AES_KEY);
631   out->flags = EVP_CIPH_ECB_MODE;
632   out->init = aes_init_key;
633   out->cipher = aes_ecb_cipher;
634 }
635 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_ofb)636 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ofb) {
637   memset(out, 0, sizeof(EVP_CIPHER));
638 
639   out->nid = NID_aes_128_ofb128;
640   out->block_size = 1;
641   out->key_len = 16;
642   out->iv_len = 16;
643   out->ctx_size = sizeof(EVP_AES_KEY);
644   out->flags = EVP_CIPH_OFB_MODE;
645   out->init = aes_init_key;
646   out->cipher = aes_ofb_cipher;
647 }
648 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_128_gcm)649 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_gcm) {
650   memset(out, 0, sizeof(EVP_CIPHER));
651 
652   out->nid = NID_aes_128_gcm;
653   out->block_size = 1;
654   out->key_len = 16;
655   out->iv_len = AES_GCM_NONCE_LENGTH;
656   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
657   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
658                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
659                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
660   out->init = aes_gcm_init_key;
661   out->cipher = aes_gcm_cipher;
662   out->cleanup = aes_gcm_cleanup;
663   out->ctrl = aes_gcm_ctrl;
664 }
665 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_cbc)666 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_cbc) {
667   memset(out, 0, sizeof(EVP_CIPHER));
668 
669   out->nid = NID_aes_192_cbc;
670   out->block_size = 16;
671   out->key_len = 24;
672   out->iv_len = 16;
673   out->ctx_size = sizeof(EVP_AES_KEY);
674   out->flags = EVP_CIPH_CBC_MODE;
675   out->init = aes_init_key;
676   out->cipher = aes_cbc_cipher;
677 }
678 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_ctr)679 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ctr) {
680   memset(out, 0, sizeof(EVP_CIPHER));
681 
682   out->nid = NID_aes_192_ctr;
683   out->block_size = 1;
684   out->key_len = 24;
685   out->iv_len = 16;
686   out->ctx_size = sizeof(EVP_AES_KEY);
687   out->flags = EVP_CIPH_CTR_MODE;
688   out->init = aes_init_key;
689   out->cipher = aes_ctr_cipher;
690 }
691 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_192_ecb_generic)692 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) {
693   memset(out, 0, sizeof(EVP_CIPHER));
694 
695   out->nid = NID_aes_192_ecb;
696   out->block_size = 16;
697   out->key_len = 24;
698   out->ctx_size = sizeof(EVP_AES_KEY);
699   out->flags = EVP_CIPH_ECB_MODE;
700   out->init = aes_init_key;
701   out->cipher = aes_ecb_cipher;
702 }
703 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_ofb)704 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ofb) {
705   memset(out, 0, sizeof(EVP_CIPHER));
706 
707   out->nid = NID_aes_192_ofb128;
708   out->block_size = 1;
709   out->key_len = 24;
710   out->iv_len = 16;
711   out->ctx_size = sizeof(EVP_AES_KEY);
712   out->flags = EVP_CIPH_OFB_MODE;
713   out->init = aes_init_key;
714   out->cipher = aes_ofb_cipher;
715 }
716 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_192_gcm)717 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_gcm) {
718   memset(out, 0, sizeof(EVP_CIPHER));
719 
720   out->nid = NID_aes_192_gcm;
721   out->block_size = 1;
722   out->key_len = 24;
723   out->iv_len = AES_GCM_NONCE_LENGTH;
724   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
725   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
726                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
727                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
728   out->init = aes_gcm_init_key;
729   out->cipher = aes_gcm_cipher;
730   out->cleanup = aes_gcm_cleanup;
731   out->ctrl = aes_gcm_ctrl;
732 }
733 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_cbc)734 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_cbc) {
735   memset(out, 0, sizeof(EVP_CIPHER));
736 
737   out->nid = NID_aes_256_cbc;
738   out->block_size = 16;
739   out->key_len = 32;
740   out->iv_len = 16;
741   out->ctx_size = sizeof(EVP_AES_KEY);
742   out->flags = EVP_CIPH_CBC_MODE;
743   out->init = aes_init_key;
744   out->cipher = aes_cbc_cipher;
745 }
746 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_ctr)747 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ctr) {
748   memset(out, 0, sizeof(EVP_CIPHER));
749 
750   out->nid = NID_aes_256_ctr;
751   out->block_size = 1;
752   out->key_len = 32;
753   out->iv_len = 16;
754   out->ctx_size = sizeof(EVP_AES_KEY);
755   out->flags = EVP_CIPH_CTR_MODE;
756   out->init = aes_init_key;
757   out->cipher = aes_ctr_cipher;
758 }
759 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_256_ecb_generic)760 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) {
761   memset(out, 0, sizeof(EVP_CIPHER));
762 
763   out->nid = NID_aes_256_ecb;
764   out->block_size = 16;
765   out->key_len = 32;
766   out->ctx_size = sizeof(EVP_AES_KEY);
767   out->flags = EVP_CIPH_ECB_MODE;
768   out->init = aes_init_key;
769   out->cipher = aes_ecb_cipher;
770 }
771 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_ofb)772 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ofb) {
773   memset(out, 0, sizeof(EVP_CIPHER));
774 
775   out->nid = NID_aes_256_ofb128;
776   out->block_size = 1;
777   out->key_len = 32;
778   out->iv_len = 16;
779   out->ctx_size = sizeof(EVP_AES_KEY);
780   out->flags = EVP_CIPH_OFB_MODE;
781   out->init = aes_init_key;
782   out->cipher = aes_ofb_cipher;
783 }
784 
DEFINE_METHOD_FUNCTION(EVP_CIPHER,EVP_aes_256_gcm)785 DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_gcm) {
786   memset(out, 0, sizeof(EVP_CIPHER));
787 
788   out->nid = NID_aes_256_gcm;
789   out->block_size = 1;
790   out->key_len = 32;
791   out->iv_len = AES_GCM_NONCE_LENGTH;
792   out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
793   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
794                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
795                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
796   out->init = aes_gcm_init_key;
797   out->cipher = aes_gcm_cipher;
798   out->cleanup = aes_gcm_cleanup;
799   out->ctrl = aes_gcm_ctrl;
800 }
801 
802 #if defined(HWAES_ECB)
803 
aes_hw_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)804 static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
805                              const uint8_t *in, size_t len) {
806   size_t bl = ctx->cipher->block_size;
807 
808   if (len < bl) {
809     return 1;
810   }
811 
812   aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
813 
814   return 1;
815 }
816 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_128_ecb)817 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) {
818   memset(out, 0, sizeof(EVP_CIPHER));
819 
820   out->nid = NID_aes_128_ecb;
821   out->block_size = 16;
822   out->key_len = 16;
823   out->ctx_size = sizeof(EVP_AES_KEY);
824   out->flags = EVP_CIPH_ECB_MODE;
825   out->init = aes_init_key;
826   out->cipher = aes_hw_ecb_cipher;
827 }
828 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_192_ecb)829 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) {
830   memset(out, 0, sizeof(EVP_CIPHER));
831 
832   out->nid = NID_aes_192_ecb;
833   out->block_size = 16;
834   out->key_len = 24;
835   out->ctx_size = sizeof(EVP_AES_KEY);
836   out->flags = EVP_CIPH_ECB_MODE;
837   out->init = aes_init_key;
838   out->cipher = aes_hw_ecb_cipher;
839 }
840 
DEFINE_LOCAL_DATA(EVP_CIPHER,aes_hw_256_ecb)841 DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) {
842   memset(out, 0, sizeof(EVP_CIPHER));
843 
844   out->nid = NID_aes_256_ecb;
845   out->block_size = 16;
846   out->key_len = 32;
847   out->ctx_size = sizeof(EVP_AES_KEY);
848   out->flags = EVP_CIPH_ECB_MODE;
849   out->init = aes_init_key;
850   out->cipher = aes_hw_ecb_cipher;
851 }
852 
853 #define EVP_ECB_CIPHER_FUNCTION(keybits)            \
854   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
855     if (hwaes_capable()) {                          \
856       return aes_hw_##keybits##_ecb();              \
857     }                                               \
858     return aes_##keybits##_ecb_generic();           \
859   }
860 
861 #else
862 
863 #define EVP_ECB_CIPHER_FUNCTION(keybits)            \
864   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
865     return aes_##keybits##_ecb_generic();           \
866   }
867 
868 #endif  // HWAES_ECB
869 
870 EVP_ECB_CIPHER_FUNCTION(128)
871 EVP_ECB_CIPHER_FUNCTION(192)
872 EVP_ECB_CIPHER_FUNCTION(256)
873 
874 
875 #define EVP_AEAD_AES_GCM_TAG_LEN 16
876 
877 struct aead_aes_gcm_ctx {
878   union {
879     double align;
880     AES_KEY ks;
881   } ks;
882   GCM128_KEY gcm_key;
883   ctr128_f ctr;
884 };
885 
aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx * gcm_ctx,size_t * out_tag_len,const uint8_t * key,size_t key_len,size_t tag_len)886 static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx,
887                                   size_t *out_tag_len, const uint8_t *key,
888                                   size_t key_len, size_t tag_len) {
889   const size_t key_bits = key_len * 8;
890 
891   switch (key_bits) {
892     case 128:
893       boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm);
894       break;
895 
896     case 256:
897       boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm);
898       break;
899   }
900 
901   if (key_bits != 128 && key_bits != 192 && key_bits != 256) {
902     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
903     return 0;  // EVP_AEAD_CTX_init should catch this.
904   }
905 
906   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
907     tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
908   }
909 
910   if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
911     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
912     return 0;
913   }
914 
915   gcm_ctx->ctr =
916       aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm_key, NULL, key, key_len);
917   *out_tag_len = tag_len;
918   return 1;
919 }
920 
921 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
922                   sizeof(struct aead_aes_gcm_ctx),
923               "AEAD state is too small");
924 static_assert(alignof(union evp_aead_ctx_st_state) >=
925                   alignof(struct aead_aes_gcm_ctx),
926               "AEAD state has insufficient alignment");
927 
aead_aes_gcm_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)928 static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
929                              size_t key_len, size_t requested_tag_len) {
930   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state;
931 
932   size_t actual_tag_len;
933   if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len,
934                               requested_tag_len)) {
935     return 0;
936   }
937 
938   ctx->tag_len = actual_tag_len;
939   return 1;
940 }
941 
aead_aes_gcm_cleanup(EVP_AEAD_CTX * ctx)942 static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {}
943 
aead_aes_gcm_seal_scatter_impl(const struct aead_aes_gcm_ctx * gcm_ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len,size_t tag_len)944 static int aead_aes_gcm_seal_scatter_impl(
945     const struct aead_aes_gcm_ctx *gcm_ctx,
946     uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
947     const uint8_t *nonce, size_t nonce_len,
948     const uint8_t *in, size_t in_len,
949     const uint8_t *extra_in, size_t extra_in_len,
950     const uint8_t *ad, size_t ad_len,
951     size_t tag_len) {
952   if (extra_in_len + tag_len < tag_len) {
953     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
954     return 0;
955   }
956   if (max_out_tag_len < extra_in_len + tag_len) {
957     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
958     return 0;
959   }
960   if (nonce_len == 0) {
961     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
962     return 0;
963   }
964 
965   const AES_KEY *key = &gcm_ctx->ks.ks;
966 
967   GCM128_CONTEXT gcm;
968   OPENSSL_memset(&gcm, 0, sizeof(gcm));
969   OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
970   CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
971 
972   if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
973     return 0;
974   }
975 
976   if (gcm_ctx->ctr) {
977     if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len,
978                                      gcm_ctx->ctr)) {
979       return 0;
980     }
981   } else {
982     if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) {
983       return 0;
984     }
985   }
986 
987   if (extra_in_len) {
988     if (gcm_ctx->ctr) {
989       if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag,
990                                        extra_in_len, gcm_ctx->ctr)) {
991         return 0;
992       }
993     } else {
994       if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) {
995         return 0;
996       }
997     }
998   }
999 
1000   CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, tag_len);
1001   *out_tag_len = tag_len + extra_in_len;
1002 
1003   return 1;
1004 }
1005 
aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1006 static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
1007                                      uint8_t *out_tag, size_t *out_tag_len,
1008                                      size_t max_out_tag_len,
1009                                      const uint8_t *nonce, size_t nonce_len,
1010                                      const uint8_t *in, size_t in_len,
1011                                      const uint8_t *extra_in,
1012                                      size_t extra_in_len,
1013                                      const uint8_t *ad, size_t ad_len) {
1014   const struct aead_aes_gcm_ctx *gcm_ctx =
1015       (const struct aead_aes_gcm_ctx *)&ctx->state;
1016   return aead_aes_gcm_seal_scatter_impl(
1017       gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in,
1018       in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len);
1019 }
1020 
aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx * gcm_ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len,size_t tag_len)1021 static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx,
1022                                          uint8_t *out,
1023                                          const uint8_t *nonce, size_t nonce_len,
1024                                          const uint8_t *in, size_t in_len,
1025                                          const uint8_t *in_tag,
1026                                          size_t in_tag_len,
1027                                          const uint8_t *ad, size_t ad_len,
1028                                          size_t tag_len) {
1029   uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
1030 
1031   if (nonce_len == 0) {
1032     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1033     return 0;
1034   }
1035 
1036   if (in_tag_len != tag_len) {
1037     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1038     return 0;
1039   }
1040 
1041   const AES_KEY *key = &gcm_ctx->ks.ks;
1042 
1043   GCM128_CONTEXT gcm;
1044   OPENSSL_memset(&gcm, 0, sizeof(gcm));
1045   OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
1046   CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
1047 
1048   if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
1049     return 0;
1050   }
1051 
1052   if (gcm_ctx->ctr) {
1053     if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len,
1054                                      gcm_ctx->ctr)) {
1055       return 0;
1056     }
1057   } else {
1058     if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) {
1059       return 0;
1060     }
1061   }
1062 
1063   CRYPTO_gcm128_tag(&gcm, tag, tag_len);
1064   if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) {
1065     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1066     return 0;
1067   }
1068 
1069   return 1;
1070 }
1071 
aead_aes_gcm_open_gather(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)1072 static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
1073                                     const uint8_t *nonce, size_t nonce_len,
1074                                     const uint8_t *in, size_t in_len,
1075                                     const uint8_t *in_tag, size_t in_tag_len,
1076                                     const uint8_t *ad, size_t ad_len) {
1077   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state;
1078   if (!aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, in_len,
1079                                      in_tag, in_tag_len, ad, ad_len,
1080                                      ctx->tag_len)) {
1081     return 0;
1082   }
1083 
1084   AEAD_GCM_verify_service_indicator(ctx);
1085   return 1;
1086 }
1087 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm)1088 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) {
1089   memset(out, 0, sizeof(EVP_AEAD));
1090 
1091   out->key_len = 16;
1092   out->nonce_len = AES_GCM_NONCE_LENGTH;
1093   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1094   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1095   out->seal_scatter_supports_extra_in = 1;
1096 
1097   out->init = aead_aes_gcm_init;
1098   out->cleanup = aead_aes_gcm_cleanup;
1099   out->seal_scatter = aead_aes_gcm_seal_scatter;
1100   out->open_gather = aead_aes_gcm_open_gather;
1101 }
1102 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_192_gcm)1103 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) {
1104   memset(out, 0, sizeof(EVP_AEAD));
1105 
1106   out->key_len = 24;
1107   out->nonce_len = AES_GCM_NONCE_LENGTH;
1108   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1109   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1110   out->seal_scatter_supports_extra_in = 1;
1111 
1112   out->init = aead_aes_gcm_init;
1113   out->cleanup = aead_aes_gcm_cleanup;
1114   out->seal_scatter = aead_aes_gcm_seal_scatter;
1115   out->open_gather = aead_aes_gcm_open_gather;
1116 }
1117 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm)1118 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) {
1119   memset(out, 0, sizeof(EVP_AEAD));
1120 
1121   out->key_len = 32;
1122   out->nonce_len = AES_GCM_NONCE_LENGTH;
1123   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1124   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1125   out->seal_scatter_supports_extra_in = 1;
1126 
1127   out->init = aead_aes_gcm_init;
1128   out->cleanup = aead_aes_gcm_cleanup;
1129   out->seal_scatter = aead_aes_gcm_seal_scatter;
1130   out->open_gather = aead_aes_gcm_open_gather;
1131 }
1132 
aead_aes_gcm_init_randnonce(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1133 static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key,
1134                                        size_t key_len,
1135                                        size_t requested_tag_len) {
1136   if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) {
1137     if (requested_tag_len < AES_GCM_NONCE_LENGTH) {
1138       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
1139       return 0;
1140     }
1141     requested_tag_len -= AES_GCM_NONCE_LENGTH;
1142   }
1143 
1144   if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) {
1145     return 0;
1146   }
1147 
1148   ctx->tag_len += AES_GCM_NONCE_LENGTH;
1149   return 1;
1150 }
1151 
aead_aes_gcm_seal_scatter_randnonce(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * external_nonce,size_t external_nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1152 static int aead_aes_gcm_seal_scatter_randnonce(
1153     const EVP_AEAD_CTX *ctx,
1154     uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
1155     const uint8_t *external_nonce, size_t external_nonce_len,
1156     const uint8_t *in, size_t in_len,
1157     const uint8_t *extra_in, size_t extra_in_len,
1158     const uint8_t *ad, size_t ad_len) {
1159   if (external_nonce_len != 0) {
1160     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1161     return 0;
1162   }
1163 
1164   uint8_t nonce[AES_GCM_NONCE_LENGTH];
1165   if (max_out_tag_len < sizeof(nonce)) {
1166     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
1167     return 0;
1168   }
1169 
1170   // |RAND_bytes| calls within the fipsmodule should be wrapped with state lock
1171   // functions to avoid updating the service indicator with the DRBG functions.
1172   FIPS_service_indicator_lock_state();
1173   RAND_bytes(nonce, sizeof(nonce));
1174   FIPS_service_indicator_unlock_state();
1175 
1176   const struct aead_aes_gcm_ctx *gcm_ctx =
1177       (const struct aead_aes_gcm_ctx *)&ctx->state;
1178   if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len,
1179                                       max_out_tag_len - AES_GCM_NONCE_LENGTH,
1180                                       nonce, sizeof(nonce), in, in_len,
1181                                       extra_in, extra_in_len, ad, ad_len,
1182                                       ctx->tag_len - AES_GCM_NONCE_LENGTH)) {
1183     return 0;
1184   }
1185 
1186   assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len);
1187   memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce));
1188   *out_tag_len += sizeof(nonce);
1189 
1190   AEAD_GCM_verify_service_indicator(ctx);
1191   return 1;
1192 }
1193 
aead_aes_gcm_open_gather_randnonce(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * external_nonce,size_t external_nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)1194 static int aead_aes_gcm_open_gather_randnonce(
1195     const EVP_AEAD_CTX *ctx, uint8_t *out,
1196     const uint8_t *external_nonce, size_t external_nonce_len,
1197     const uint8_t *in, size_t in_len,
1198     const uint8_t *in_tag, size_t in_tag_len,
1199     const uint8_t *ad, size_t ad_len) {
1200   if (external_nonce_len != 0) {
1201     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
1202     return 0;
1203   }
1204 
1205   if (in_tag_len < AES_GCM_NONCE_LENGTH) {
1206     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
1207     return 0;
1208   }
1209   const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH;
1210 
1211   const struct aead_aes_gcm_ctx *gcm_ctx =
1212       (const struct aead_aes_gcm_ctx *)&ctx->state;
1213   if (!aead_aes_gcm_open_gather_impl(
1214       gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag,
1215       in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len,
1216       ctx->tag_len - AES_GCM_NONCE_LENGTH)) {
1217     return 0;
1218   }
1219 
1220   AEAD_GCM_verify_service_indicator(ctx);
1221   return 1;
1222 }
1223 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_randnonce)1224 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) {
1225   memset(out, 0, sizeof(EVP_AEAD));
1226 
1227   out->key_len = 16;
1228   out->nonce_len = 0;
1229   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1230   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1231   out->seal_scatter_supports_extra_in = 1;
1232 
1233   out->init = aead_aes_gcm_init_randnonce;
1234   out->cleanup = aead_aes_gcm_cleanup;
1235   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce;
1236   out->open_gather = aead_aes_gcm_open_gather_randnonce;
1237 }
1238 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_randnonce)1239 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) {
1240   memset(out, 0, sizeof(EVP_AEAD));
1241 
1242   out->key_len = 32;
1243   out->nonce_len = 0;
1244   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1245   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH;
1246   out->seal_scatter_supports_extra_in = 1;
1247 
1248   out->init = aead_aes_gcm_init_randnonce;
1249   out->cleanup = aead_aes_gcm_cleanup;
1250   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce;
1251   out->open_gather = aead_aes_gcm_open_gather_randnonce;
1252 }
1253 
1254 struct aead_aes_gcm_tls12_ctx {
1255   struct aead_aes_gcm_ctx gcm_ctx;
1256   uint64_t min_next_nonce;
1257 };
1258 
1259 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
1260                   sizeof(struct aead_aes_gcm_tls12_ctx),
1261               "AEAD state is too small");
1262 static_assert(alignof(union evp_aead_ctx_st_state) >=
1263                   alignof(struct aead_aes_gcm_tls12_ctx),
1264               "AEAD state has insufficient alignment");
1265 
aead_aes_gcm_tls12_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1266 static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
1267                                    size_t key_len, size_t requested_tag_len) {
1268   struct aead_aes_gcm_tls12_ctx *gcm_ctx =
1269       (struct aead_aes_gcm_tls12_ctx *) &ctx->state;
1270 
1271   gcm_ctx->min_next_nonce = 0;
1272 
1273   size_t actual_tag_len;
1274   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
1275                               requested_tag_len)) {
1276     return 0;
1277   }
1278 
1279   ctx->tag_len = actual_tag_len;
1280   return 1;
1281 }
1282 
aead_aes_gcm_tls12_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1283 static int aead_aes_gcm_tls12_seal_scatter(
1284     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
1285     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
1286     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
1287     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
1288   struct aead_aes_gcm_tls12_ctx *gcm_ctx =
1289       (struct aead_aes_gcm_tls12_ctx *) &ctx->state;
1290 
1291   if (nonce_len != AES_GCM_NONCE_LENGTH) {
1292     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
1293     return 0;
1294   }
1295 
1296   // The given nonces must be strictly monotonically increasing.
1297   uint64_t given_counter =
1298       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t));
1299   if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) {
1300     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
1301     return 0;
1302   }
1303 
1304   gcm_ctx->min_next_nonce = given_counter + 1;
1305 
1306   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
1307                                  max_out_tag_len, nonce, nonce_len, in, in_len,
1308                                  extra_in, extra_in_len, ad, ad_len)) {
1309     return 0;
1310   }
1311 
1312   AEAD_GCM_verify_service_indicator(ctx);
1313   return 1;
1314 }
1315 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_tls12)1316 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) {
1317   memset(out, 0, sizeof(EVP_AEAD));
1318 
1319   out->key_len = 16;
1320   out->nonce_len = AES_GCM_NONCE_LENGTH;
1321   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1322   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1323   out->seal_scatter_supports_extra_in = 1;
1324 
1325   out->init = aead_aes_gcm_tls12_init;
1326   out->cleanup = aead_aes_gcm_cleanup;
1327   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
1328   out->open_gather = aead_aes_gcm_open_gather;
1329 }
1330 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_tls12)1331 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) {
1332   memset(out, 0, sizeof(EVP_AEAD));
1333 
1334   out->key_len = 32;
1335   out->nonce_len = AES_GCM_NONCE_LENGTH;
1336   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1337   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1338   out->seal_scatter_supports_extra_in = 1;
1339 
1340   out->init = aead_aes_gcm_tls12_init;
1341   out->cleanup = aead_aes_gcm_cleanup;
1342   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
1343   out->open_gather = aead_aes_gcm_open_gather;
1344 }
1345 
1346 struct aead_aes_gcm_tls13_ctx {
1347   struct aead_aes_gcm_ctx gcm_ctx;
1348   uint64_t min_next_nonce;
1349   uint64_t mask;
1350   uint8_t first;
1351 };
1352 
1353 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
1354                   sizeof(struct aead_aes_gcm_tls13_ctx),
1355               "AEAD state is too small");
1356 static_assert(alignof(union evp_aead_ctx_st_state) >=
1357                   alignof(struct aead_aes_gcm_tls13_ctx),
1358               "AEAD state has insufficient alignment");
1359 
aead_aes_gcm_tls13_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t requested_tag_len)1360 static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
1361                                    size_t key_len, size_t requested_tag_len) {
1362   struct aead_aes_gcm_tls13_ctx *gcm_ctx =
1363       (struct aead_aes_gcm_tls13_ctx *) &ctx->state;
1364 
1365   gcm_ctx->min_next_nonce = 0;
1366   gcm_ctx->first = 1;
1367 
1368   size_t actual_tag_len;
1369   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
1370                               requested_tag_len)) {
1371     return 0;
1372   }
1373 
1374   ctx->tag_len = actual_tag_len;
1375   return 1;
1376 }
1377 
aead_aes_gcm_tls13_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)1378 static int aead_aes_gcm_tls13_seal_scatter(
1379     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
1380     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
1381     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
1382     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
1383   struct aead_aes_gcm_tls13_ctx *gcm_ctx =
1384       (struct aead_aes_gcm_tls13_ctx *) &ctx->state;
1385 
1386   if (nonce_len != AES_GCM_NONCE_LENGTH) {
1387     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
1388     return 0;
1389   }
1390 
1391   // The given nonces must be strictly monotonically increasing. See
1392   // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3
1393   // nonce construction.
1394   uint64_t given_counter =
1395       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t));
1396 
1397   if (gcm_ctx->first) {
1398     // In the first call the sequence number will be zero and therefore the
1399     // given nonce will be 0 ^ mask = mask.
1400     gcm_ctx->mask = given_counter;
1401     gcm_ctx->first = 0;
1402   }
1403   given_counter ^= gcm_ctx->mask;
1404 
1405   if (given_counter == UINT64_MAX ||
1406       given_counter < gcm_ctx->min_next_nonce) {
1407     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
1408     return 0;
1409   }
1410 
1411   gcm_ctx->min_next_nonce = given_counter + 1;
1412 
1413   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
1414                                  max_out_tag_len, nonce, nonce_len, in, in_len,
1415                                  extra_in, extra_in_len, ad, ad_len)) {
1416     return 0;
1417   }
1418 
1419   AEAD_GCM_verify_service_indicator(ctx);
1420   return 1;
1421 }
1422 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_128_gcm_tls13)1423 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) {
1424   memset(out, 0, sizeof(EVP_AEAD));
1425 
1426   out->key_len = 16;
1427   out->nonce_len = AES_GCM_NONCE_LENGTH;
1428   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1429   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1430   out->seal_scatter_supports_extra_in = 1;
1431 
1432   out->init = aead_aes_gcm_tls13_init;
1433   out->cleanup = aead_aes_gcm_cleanup;
1434   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
1435   out->open_gather = aead_aes_gcm_open_gather;
1436 }
1437 
DEFINE_METHOD_FUNCTION(EVP_AEAD,EVP_aead_aes_256_gcm_tls13)1438 DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) {
1439   memset(out, 0, sizeof(EVP_AEAD));
1440 
1441   out->key_len = 32;
1442   out->nonce_len = AES_GCM_NONCE_LENGTH;
1443   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
1444   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1445   out->seal_scatter_supports_extra_in = 1;
1446 
1447   out->init = aead_aes_gcm_tls13_init;
1448   out->cleanup = aead_aes_gcm_cleanup;
1449   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
1450   out->open_gather = aead_aes_gcm_open_gather;
1451 }
1452 
EVP_has_aes_hardware(void)1453 int EVP_has_aes_hardware(void) {
1454 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
1455   return hwaes_capable() && crypto_gcm_clmul_enabled();
1456 #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
1457   return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable();
1458 #else
1459   return 0;
1460 #endif
1461 }
1462 
1463 OPENSSL_MSVC_PRAGMA(warning(pop))
1464