1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/cipher.h>
58
59 #include <assert.h>
60 #include <limits.h>
61 #include <string.h>
62
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 #include <openssl/nid.h>
66
67 #include "internal.h"
68 #include "../service_indicator/internal.h"
69 #include "../../internal.h"
70
71
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX * ctx)72 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
73 OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
74 }
75
EVP_CIPHER_CTX_new(void)76 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
77 EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
78 if (ctx) {
79 EVP_CIPHER_CTX_init(ctx);
80 }
81 return ctx;
82 }
83
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX * c)84 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
85 if (c->cipher != NULL && c->cipher->cleanup) {
86 c->cipher->cleanup(c);
87 }
88 OPENSSL_free(c->cipher_data);
89
90 OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX));
91 return 1;
92 }
93
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX * ctx)94 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
95 if (ctx) {
96 EVP_CIPHER_CTX_cleanup(ctx);
97 OPENSSL_free(ctx);
98 }
99 }
100
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX * out,const EVP_CIPHER_CTX * in)101 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
102 if (in == NULL || in->cipher == NULL) {
103 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED);
104 return 0;
105 }
106
107 if (in->poisoned) {
108 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
109 return 0;
110 }
111
112 EVP_CIPHER_CTX_cleanup(out);
113 OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX));
114
115 if (in->cipher_data && in->cipher->ctx_size) {
116 out->cipher_data = OPENSSL_memdup(in->cipher_data, in->cipher->ctx_size);
117 if (!out->cipher_data) {
118 out->cipher = NULL;
119 return 0;
120 }
121 }
122
123 if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
124 if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) {
125 out->cipher = NULL;
126 return 0;
127 }
128 }
129
130 return 1;
131 }
132
EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX * ctx)133 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) {
134 EVP_CIPHER_CTX_cleanup(ctx);
135 EVP_CIPHER_CTX_init(ctx);
136 return 1;
137 }
138
EVP_CipherInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * engine,const uint8_t * key,const uint8_t * iv,int enc)139 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
140 ENGINE *engine, const uint8_t *key, const uint8_t *iv,
141 int enc) {
142 if (enc == -1) {
143 enc = ctx->encrypt;
144 } else {
145 if (enc) {
146 enc = 1;
147 }
148 ctx->encrypt = enc;
149 }
150
151 if (cipher) {
152 // Ensure a context left from last time is cleared (the previous check
153 // attempted to avoid this if the same ENGINE and EVP_CIPHER could be
154 // used).
155 if (ctx->cipher) {
156 EVP_CIPHER_CTX_cleanup(ctx);
157 // Restore encrypt and flags
158 ctx->encrypt = enc;
159 }
160
161 ctx->cipher = cipher;
162 if (ctx->cipher->ctx_size) {
163 ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
164 if (!ctx->cipher_data) {
165 ctx->cipher = NULL;
166 return 0;
167 }
168 } else {
169 ctx->cipher_data = NULL;
170 }
171
172 ctx->key_len = cipher->key_len;
173 ctx->flags = 0;
174
175 if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
176 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
177 ctx->cipher = NULL;
178 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR);
179 return 0;
180 }
181 }
182 } else if (!ctx->cipher) {
183 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
184 return 0;
185 }
186
187 // we assume block size is a power of 2 in *cryptUpdate
188 assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
189 ctx->cipher->block_size == 16);
190
191 if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
192 switch (EVP_CIPHER_CTX_mode(ctx)) {
193 case EVP_CIPH_STREAM_CIPHER:
194 case EVP_CIPH_ECB_MODE:
195 break;
196
197 case EVP_CIPH_CFB_MODE:
198 ctx->num = 0;
199 OPENSSL_FALLTHROUGH;
200
201 case EVP_CIPH_CBC_MODE:
202 assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
203 if (iv) {
204 OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
205 }
206 OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
207 break;
208
209 case EVP_CIPH_CTR_MODE:
210 case EVP_CIPH_OFB_MODE:
211 ctx->num = 0;
212 // Don't reuse IV for CTR mode
213 if (iv) {
214 OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
215 }
216 break;
217
218 default:
219 return 0;
220 }
221 }
222
223 if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
224 if (!ctx->cipher->init(ctx, key, iv, enc)) {
225 return 0;
226 }
227 }
228
229 ctx->buf_len = 0;
230 ctx->final_used = 0;
231 // Clear the poisoned flag to permit re-use of a CTX that previously had a
232 // failed operation.
233 ctx->poisoned = 0;
234 return 1;
235 }
236
EVP_EncryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)237 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
238 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
239 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
240 }
241
EVP_DecryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)242 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
243 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
244 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
245 }
246
247 // block_remainder returns the number of bytes to remove from |len| to get a
248 // multiple of |ctx|'s block size.
block_remainder(const EVP_CIPHER_CTX * ctx,int len)249 static int block_remainder(const EVP_CIPHER_CTX *ctx, int len) {
250 // |block_size| must be a power of two.
251 assert(ctx->cipher->block_size != 0);
252 assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0);
253 return len & (ctx->cipher->block_size - 1);
254 }
255
EVP_EncryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)256 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
257 const uint8_t *in, int in_len) {
258 if (ctx->poisoned) {
259 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
260 return 0;
261 }
262 // If the first call to |cipher| succeeds and the second fails, |ctx| may be
263 // left in an indeterminate state. We set a poison flag on failure to ensure
264 // callers do not continue to use the object in that case.
265 ctx->poisoned = 1;
266
267 // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output
268 // does not overflow |*out_len|.
269 int bl = ctx->cipher->block_size;
270 if (bl > 1 && in_len > INT_MAX - bl) {
271 OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW);
272 return 0;
273 }
274
275 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
276 int ret = ctx->cipher->cipher(ctx, out, in, in_len);
277 if (ret < 0) {
278 return 0;
279 } else {
280 *out_len = ret;
281 }
282 ctx->poisoned = 0;
283 return 1;
284 }
285
286 if (in_len <= 0) {
287 *out_len = 0;
288 if (in_len == 0) {
289 ctx->poisoned = 0;
290 return 1;
291 }
292 return 0;
293 }
294
295 if (ctx->buf_len == 0 && block_remainder(ctx, in_len) == 0) {
296 if (ctx->cipher->cipher(ctx, out, in, in_len)) {
297 *out_len = in_len;
298 ctx->poisoned = 0;
299 return 1;
300 } else {
301 *out_len = 0;
302 return 0;
303 }
304 }
305
306 int i = ctx->buf_len;
307 assert(bl <= (int)sizeof(ctx->buf));
308 if (i != 0) {
309 if (bl - i > in_len) {
310 OPENSSL_memcpy(&ctx->buf[i], in, in_len);
311 ctx->buf_len += in_len;
312 *out_len = 0;
313 ctx->poisoned = 0;
314 return 1;
315 } else {
316 int j = bl - i;
317 OPENSSL_memcpy(&ctx->buf[i], in, j);
318 if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
319 return 0;
320 }
321 in_len -= j;
322 in += j;
323 out += bl;
324 *out_len = bl;
325 }
326 } else {
327 *out_len = 0;
328 }
329
330 i = block_remainder(ctx, in_len);
331 in_len -= i;
332 if (in_len > 0) {
333 if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
334 return 0;
335 }
336 *out_len += in_len;
337 }
338
339 if (i != 0) {
340 OPENSSL_memcpy(ctx->buf, &in[in_len], i);
341 }
342 ctx->buf_len = i;
343 ctx->poisoned = 0;
344 return 1;
345 }
346
EVP_EncryptFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)347 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
348 int n;
349 unsigned int i, b, bl;
350
351 if (ctx->poisoned) {
352 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
353 return 0;
354 }
355
356 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
357 // When EVP_CIPH_FLAG_CUSTOM_CIPHER is set, the return value of |cipher| is
358 // the number of bytes written, or -1 on error. Otherwise the return value
359 // is one on success and zero on error.
360 const int num_bytes = ctx->cipher->cipher(ctx, out, NULL, 0);
361 if (num_bytes < 0) {
362 return 0;
363 }
364 *out_len = num_bytes;
365 goto out;
366 }
367
368 b = ctx->cipher->block_size;
369 assert(b <= sizeof(ctx->buf));
370 if (b == 1) {
371 *out_len = 0;
372 goto out;
373 }
374
375 bl = ctx->buf_len;
376 if (ctx->flags & EVP_CIPH_NO_PADDING) {
377 if (bl) {
378 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
379 return 0;
380 }
381 *out_len = 0;
382 goto out;
383 }
384
385 n = b - bl;
386 for (i = bl; i < b; i++) {
387 ctx->buf[i] = n;
388 }
389 if (!ctx->cipher->cipher(ctx, out, ctx->buf, b)) {
390 return 0;
391 }
392 *out_len = b;
393
394 out:
395 EVP_Cipher_verify_service_indicator(ctx);
396 return 1;
397 }
398
EVP_DecryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)399 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
400 const uint8_t *in, int in_len) {
401 if (ctx->poisoned) {
402 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
403 return 0;
404 }
405
406 // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output
407 // does not overflow |*out_len|.
408 unsigned int b = ctx->cipher->block_size;
409 if (b > 1 && in_len > INT_MAX - (int)b) {
410 OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW);
411 return 0;
412 }
413
414 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
415 int r = ctx->cipher->cipher(ctx, out, in, in_len);
416 if (r < 0) {
417 *out_len = 0;
418 return 0;
419 } else {
420 *out_len = r;
421 }
422 return 1;
423 }
424
425 if (in_len <= 0) {
426 *out_len = 0;
427 return in_len == 0;
428 }
429
430 if (ctx->flags & EVP_CIPH_NO_PADDING) {
431 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
432 }
433
434 assert(b <= sizeof(ctx->final));
435 int fix_len = 0;
436 if (ctx->final_used) {
437 OPENSSL_memcpy(out, ctx->final, b);
438 out += b;
439 fix_len = 1;
440 }
441
442 if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
443 return 0;
444 }
445
446 // if we have 'decrypted' a multiple of block size, make sure
447 // we have a copy of this last block
448 if (b > 1 && !ctx->buf_len) {
449 *out_len -= b;
450 ctx->final_used = 1;
451 OPENSSL_memcpy(ctx->final, &out[*out_len], b);
452 } else {
453 ctx->final_used = 0;
454 }
455
456 if (fix_len) {
457 *out_len += b;
458 }
459
460 return 1;
461 }
462
EVP_DecryptFinal_ex(EVP_CIPHER_CTX * ctx,unsigned char * out,int * out_len)463 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
464 int i, n;
465 unsigned int b;
466 *out_len = 0;
467
468 if (ctx->poisoned) {
469 OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
470 return 0;
471 }
472
473 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
474 i = ctx->cipher->cipher(ctx, out, NULL, 0);
475 if (i < 0) {
476 return 0;
477 } else {
478 *out_len = i;
479 }
480 goto out;
481 }
482
483 b = ctx->cipher->block_size;
484 if (ctx->flags & EVP_CIPH_NO_PADDING) {
485 if (ctx->buf_len) {
486 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
487 return 0;
488 }
489 *out_len = 0;
490 goto out;
491 }
492
493 if (b > 1) {
494 if (ctx->buf_len || !ctx->final_used) {
495 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
496 return 0;
497 }
498 assert(b <= sizeof(ctx->final));
499
500 // The following assumes that the ciphertext has been authenticated.
501 // Otherwise it provides a padding oracle.
502 n = ctx->final[b - 1];
503 if (n == 0 || n > (int)b) {
504 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
505 return 0;
506 }
507
508 for (i = 0; i < n; i++) {
509 if (ctx->final[--b] != n) {
510 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
511 return 0;
512 }
513 }
514
515 n = ctx->cipher->block_size - n;
516 for (i = 0; i < n; i++) {
517 out[i] = ctx->final[i];
518 }
519 *out_len = n;
520 } else {
521 *out_len = 0;
522 }
523
524 out:
525 EVP_Cipher_verify_service_indicator(ctx);
526 return 1;
527 }
528
EVP_Cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t in_len)529 int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
530 size_t in_len) {
531 const int ret = ctx->cipher->cipher(ctx, out, in, in_len);
532
533 // |EVP_CIPH_FLAG_CUSTOM_CIPHER| never sets the FIPS indicator via
534 // |EVP_Cipher| because it's complicated whether the operation has completed
535 // or not. E.g. AES-GCM with a non-NULL |in| argument hasn't completed an
536 // operation. Callers should use the |EVP_AEAD| API or, at least,
537 // |EVP_CipherUpdate| etc.
538 //
539 // This call can't be pushed into |EVP_Cipher_verify_service_indicator|
540 // because whether |ret| indicates success or not depends on whether
541 // |EVP_CIPH_FLAG_CUSTOM_CIPHER| is set. (This unreasonable, but matches
542 // OpenSSL.)
543 if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && ret) {
544 EVP_Cipher_verify_service_indicator(ctx);
545 }
546
547 return ret;
548 }
549
EVP_CipherUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)550 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
551 const uint8_t *in, int in_len) {
552 if (ctx->encrypt) {
553 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
554 } else {
555 return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
556 }
557 }
558
EVP_CipherFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)559 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
560 if (ctx->encrypt) {
561 return EVP_EncryptFinal_ex(ctx, out, out_len);
562 } else {
563 return EVP_DecryptFinal_ex(ctx, out, out_len);
564 }
565 }
566
EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX * ctx)567 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
568 return ctx->cipher;
569 }
570
EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX * ctx)571 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
572 return ctx->cipher->nid;
573 }
574
EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX * ctx)575 int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) {
576 return ctx->encrypt;
577 }
578
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX * ctx)579 unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
580 return ctx->cipher->block_size;
581 }
582
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX * ctx)583 unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
584 return ctx->key_len;
585 }
586
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX * ctx)587 unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
588 if (EVP_CIPHER_mode(ctx->cipher) == EVP_CIPH_GCM_MODE) {
589 int length;
590 int res = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0,
591 &length);
592 // EVP_CIPHER_CTX_ctrl returning an error should be impossible under this
593 // circumstance. If it somehow did, fallback to the static cipher iv_len.
594 if (res == 1) {
595 return length;
596 }
597 }
598 return ctx->cipher->iv_len;
599 }
600
EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX * ctx)601 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
602 return ctx->app_data;
603 }
604
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX * ctx,void * data)605 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
606 ctx->app_data = data;
607 }
608
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX * ctx)609 uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
610 return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
611 }
612
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX * ctx)613 uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
614 return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
615 }
616
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * ctx,int command,int arg,void * ptr)617 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
618 int ret;
619 if (!ctx->cipher) {
620 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET);
621 return 0;
622 }
623
624 if (!ctx->cipher->ctrl) {
625 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
626 return 0;
627 }
628
629 ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
630 if (ret == -1) {
631 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
632 return 0;
633 }
634
635 return ret;
636 }
637
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX * ctx,int pad)638 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
639 if (pad) {
640 ctx->flags &= ~EVP_CIPH_NO_PADDING;
641 } else {
642 ctx->flags |= EVP_CIPH_NO_PADDING;
643 }
644 return 1;
645 }
646
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX * c,unsigned key_len)647 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
648 if (c->key_len == key_len) {
649 return 1;
650 }
651
652 if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
653 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH);
654 return 0;
655 }
656
657 c->key_len = key_len;
658 return 1;
659 }
660
EVP_CIPHER_nid(const EVP_CIPHER * cipher)661 int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
662
EVP_CIPHER_block_size(const EVP_CIPHER * cipher)663 unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
664 return cipher->block_size;
665 }
666
EVP_CIPHER_key_length(const EVP_CIPHER * cipher)667 unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
668 return cipher->key_len;
669 }
670
EVP_CIPHER_iv_length(const EVP_CIPHER * cipher)671 unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
672 return cipher->iv_len;
673 }
674
EVP_CIPHER_flags(const EVP_CIPHER * cipher)675 uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
676 return cipher->flags & ~EVP_CIPH_MODE_MASK;
677 }
678
EVP_CIPHER_mode(const EVP_CIPHER * cipher)679 uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
680 return cipher->flags & EVP_CIPH_MODE_MASK;
681 }
682
EVP_CipherInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv,int enc)683 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
684 const uint8_t *key, const uint8_t *iv, int enc) {
685 if (cipher) {
686 EVP_CIPHER_CTX_init(ctx);
687 }
688 return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
689 }
690
EVP_EncryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)691 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
692 const uint8_t *key, const uint8_t *iv) {
693 return EVP_CipherInit(ctx, cipher, key, iv, 1);
694 }
695
EVP_DecryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)696 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
697 const uint8_t *key, const uint8_t *iv) {
698 return EVP_CipherInit(ctx, cipher, key, iv, 0);
699 }
700
EVP_CipherFinal(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)701 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
702 return EVP_CipherFinal_ex(ctx, out, out_len);
703 }
704
EVP_EncryptFinal(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)705 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
706 return EVP_EncryptFinal_ex(ctx, out, out_len);
707 }
708
EVP_DecryptFinal(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)709 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
710 return EVP_DecryptFinal_ex(ctx, out, out_len);
711 }
712
EVP_add_cipher_alias(const char * a,const char * b)713 int EVP_add_cipher_alias(const char *a, const char *b) {
714 return 1;
715 }
716
EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX * ctx,uint32_t flags)717 void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {}
718