1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <stdlib.h>
61 #include <string.h>
62
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65
66 #include "internal.h"
67 #include "../../internal.h"
68
69
70 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
71 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
72
73
bn_abs_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,size_t num,BN_ULONG * tmp)74 static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
75 size_t num, BN_ULONG *tmp) {
76 BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
77 bn_sub_words(r, b, a, num);
78 bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
79 }
80
bn_mul_normal(BN_ULONG * r,const BN_ULONG * a,size_t na,const BN_ULONG * b,size_t nb)81 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
82 const BN_ULONG *b, size_t nb) {
83 if (na < nb) {
84 size_t itmp = na;
85 na = nb;
86 nb = itmp;
87 const BN_ULONG *ltmp = a;
88 a = b;
89 b = ltmp;
90 }
91 BN_ULONG *rr = &(r[na]);
92 if (nb == 0) {
93 OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
94 return;
95 }
96 rr[0] = bn_mul_words(r, a, na, b[0]);
97
98 for (;;) {
99 if (--nb == 0) {
100 return;
101 }
102 rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
103 if (--nb == 0) {
104 return;
105 }
106 rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
107 if (--nb == 0) {
108 return;
109 }
110 rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
111 if (--nb == 0) {
112 return;
113 }
114 rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
115 rr += 4;
116 r += 4;
117 b += 4;
118 }
119 }
120
121 // bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
122 // one if the operation underflowed and zero otherwise. |cl| is the common
123 // length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
124 // that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
125 // cl + abs(dl).
126 //
127 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
128 // is confusing.
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)129 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
130 const BN_ULONG *b, int cl, int dl) {
131 assert(cl >= 0);
132 BN_ULONG borrow = bn_sub_words(r, a, b, cl);
133 if (dl == 0) {
134 return borrow;
135 }
136
137 r += cl;
138 a += cl;
139 b += cl;
140
141 if (dl < 0) {
142 // |a| is shorter than |b|. Complete the subtraction as if the excess words
143 // in |a| were zeros.
144 dl = -dl;
145 for (int i = 0; i < dl; i++) {
146 r[i] = CRYPTO_subc_w(0, b[i], borrow, &borrow);
147 }
148 } else {
149 // |b| is shorter than |a|. Complete the subtraction as if the excess words
150 // in |b| were zeros.
151 for (int i = 0; i < dl; i++) {
152 r[i] = CRYPTO_subc_w(a[i], 0, borrow, &borrow);
153 }
154 }
155
156 return borrow;
157 }
158
159 // bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
160 // and returning a mask of all ones if the result was negative and all zeros if
161 // the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
162 // convention.
163 //
164 // TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
165 // is confusing.
bn_abs_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl,BN_ULONG * tmp)166 static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
167 const BN_ULONG *b, int cl, int dl,
168 BN_ULONG *tmp) {
169 BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
170 bn_sub_part_words(r, b, a, cl, -dl);
171 int r_len = cl + (dl < 0 ? -dl : dl);
172 borrow = 0 - borrow;
173 bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
174 return borrow;
175 }
176
bn_abs_sub_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)177 int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
178 BN_CTX *ctx) {
179 int cl = a->width < b->width ? a->width : b->width;
180 int dl = a->width - b->width;
181 int r_len = a->width < b->width ? b->width : a->width;
182 BN_CTX_start(ctx);
183 BIGNUM *tmp = BN_CTX_get(ctx);
184 int ok = tmp != NULL &&
185 bn_wexpand(r, r_len) &&
186 bn_wexpand(tmp, r_len);
187 if (ok) {
188 bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
189 r->width = r_len;
190 }
191 BN_CTX_end(ctx);
192 return ok;
193 }
194
195 // Karatsuba recursive multiplication algorithm
196 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
197
198 // bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
199 // length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
200 // |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
201 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
202 // -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
203 //
204 // TODO(davidben): Simplify and |size_t| the calling convention around lengths
205 // here.
bn_mul_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)206 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
207 int n2, int dna, int dnb, BN_ULONG *t) {
208 // |n2| is a power of two.
209 assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
210 // Check |dna| and |dnb| are in range.
211 assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
212 assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
213
214 // Only call bn_mul_comba 8 if n2 == 8 and the
215 // two arrays are complete [steve]
216 if (n2 == 8 && dna == 0 && dnb == 0) {
217 bn_mul_comba8(r, a, b);
218 return;
219 }
220
221 // Else do normal multiply
222 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
223 bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
224 if (dna + dnb < 0) {
225 OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
226 sizeof(BN_ULONG) * -(dna + dnb));
227 }
228 return;
229 }
230
231 // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
232 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
233 // for recursive calls.
234 // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
235 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
236 //
237 // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
238 //
239 // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
240 // |tna| and |tnb| are non-negative.
241 int n = n2 / 2, tna = n + dna, tnb = n + dnb;
242
243 // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
244 // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
245 // themselves store the absolute value.
246 BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
247 neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
248
249 // Compute:
250 // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
251 // r0,r1 = a0 * b0
252 // r2,r3 = a1 * b1
253 if (n == 4 && dna == 0 && dnb == 0) {
254 bn_mul_comba4(&t[n2], t, &t[n]);
255
256 bn_mul_comba4(r, a, b);
257 bn_mul_comba4(&r[n2], &a[n], &b[n]);
258 } else if (n == 8 && dna == 0 && dnb == 0) {
259 bn_mul_comba8(&t[n2], t, &t[n]);
260
261 bn_mul_comba8(r, a, b);
262 bn_mul_comba8(&r[n2], &a[n], &b[n]);
263 } else {
264 BN_ULONG *p = &t[n2 * 2];
265 bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
266 bn_mul_recursive(r, a, b, n, 0, 0, p);
267 bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
268 }
269
270 // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
271 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
272
273 // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
274 // The second term is stored as the absolute value, so we do this with a
275 // constant-time select.
276 BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
277 BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
278 bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
279 static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
280 "crypto_word_t is too small");
281 c = constant_time_select_w(neg, c_neg, c_pos);
282
283 // We now have our three components. Add them together.
284 // r1,r2,c = r1,r2 + t2,t3,c
285 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
286
287 // Propagate the carry bit to the end.
288 for (int i = n + n2; i < n2 + n2; i++) {
289 BN_ULONG old = r[i];
290 r[i] = old + c;
291 c = r[i] < old;
292 }
293
294 // The product should fit without carries.
295 declassify_assert(c == 0);
296 }
297
298 // bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
299 // has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
300 // |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
301 // 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
302 // one.
303 //
304 // TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
305 // and |b|.
bn_mul_part_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)306 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
307 const BN_ULONG *b, int n, int tna, int tnb,
308 BN_ULONG *t) {
309 // |n| is a power of two.
310 assert(n != 0 && (n & (n - 1)) == 0);
311 // Check |tna| and |tnb| are in range.
312 assert(0 <= tna && tna < n);
313 assert(0 <= tnb && tnb < n);
314 assert(-1 <= tna - tnb && tna - tnb <= 1);
315
316 int n2 = n * 2;
317 if (n < 8) {
318 bn_mul_normal(r, a, n + tna, b, n + tnb);
319 OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
320 return;
321 }
322
323 // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
324 // and |b1| have size |tna| and |tnb|, respectively.
325 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
326 // for recursive calls.
327 // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
328 // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
329 //
330 // a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
331
332 // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
333 // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
334 // themselves store the absolute value.
335 BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
336 neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
337
338 // Compute:
339 // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
340 // r0,r1 = a0 * b0
341 // r2,r3 = a1 * b1
342 if (n == 8) {
343 bn_mul_comba8(&t[n2], t, &t[n]);
344 bn_mul_comba8(r, a, b);
345
346 bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
347 // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
348 OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
349 } else {
350 BN_ULONG *p = &t[n2 * 2];
351 bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
352 bn_mul_recursive(r, a, b, n, 0, 0, p);
353
354 OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
355 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
356 tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
357 bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
358 } else {
359 int i = n;
360 for (;;) {
361 i /= 2;
362 if (i < tna || i < tnb) {
363 // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
364 // of each other, so if |tna| is larger and tna > i, then we know
365 // tnb >= i, and this call is valid.
366 bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
367 break;
368 }
369 if (i == tna || i == tnb) {
370 // If there is only a bottom half to the number, just do it. We know
371 // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
372 // -1 by because of |tna| and |tnb| differ by at most one.
373 bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
374 break;
375 }
376
377 // This loop will eventually terminate when |i| falls below
378 // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
379 // exceeds that.
380 }
381 }
382 }
383
384 // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
385 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
386
387 // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
388 // The second term is stored as the absolute value, so we do this with a
389 // constant-time select.
390 BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
391 BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
392 bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
393 static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
394 "crypto_word_t is too small");
395 c = constant_time_select_w(neg, c_neg, c_pos);
396
397 // We now have our three components. Add them together.
398 // r1,r2,c = r1,r2 + t2,t3,c
399 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
400
401 // Propagate the carry bit to the end.
402 for (int i = n + n2; i < n2 + n2; i++) {
403 BN_ULONG old = r[i];
404 r[i] = old + c;
405 c = r[i] < old;
406 }
407
408 // The product should fit without carries.
409 declassify_assert(c == 0);
410 }
411
412 // bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
413 // breaks |BIGNUM| invariants and may return a negative zero. This is handled by
414 // the callers.
bn_mul_impl(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)415 static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
416 BN_CTX *ctx) {
417 int al = a->width;
418 int bl = b->width;
419 if (al == 0 || bl == 0) {
420 BN_zero(r);
421 return 1;
422 }
423
424 int ret = 0;
425 BIGNUM *rr;
426 BN_CTX_start(ctx);
427 if (r == a || r == b) {
428 rr = BN_CTX_get(ctx);
429 if (rr == NULL) {
430 goto err;
431 }
432 } else {
433 rr = r;
434 }
435 rr->neg = a->neg ^ b->neg;
436
437 int i = al - bl;
438 if (i == 0) {
439 if (al == 8) {
440 if (!bn_wexpand(rr, 16)) {
441 goto err;
442 }
443 rr->width = 16;
444 bn_mul_comba8(rr->d, a->d, b->d);
445 goto end;
446 }
447 }
448
449 int top = al + bl;
450 static const int kMulNormalSize = 16;
451 if (al >= kMulNormalSize && bl >= kMulNormalSize) {
452 if (-1 <= i && i <= 1) {
453 // Find the largest power of two less than or equal to the larger length.
454 int j;
455 if (i >= 0) {
456 j = BN_num_bits_word((BN_ULONG)al);
457 } else {
458 j = BN_num_bits_word((BN_ULONG)bl);
459 }
460 j = 1 << (j - 1);
461 assert(j <= al || j <= bl);
462 BIGNUM *t = BN_CTX_get(ctx);
463 if (t == NULL) {
464 goto err;
465 }
466 if (al > j || bl > j) {
467 // We know |al| and |bl| are at most one from each other, so if al > j,
468 // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
469 //
470 // TODO(davidben): This codepath is almost unused in standard
471 // algorithms. Is this optimization necessary? See notes in
472 // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
473 assert(al >= j && bl >= j);
474 if (!bn_wexpand(t, j * 8) ||
475 !bn_wexpand(rr, j * 4)) {
476 goto err;
477 }
478 bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
479 } else {
480 // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
481 // of al - j or bl - j is zero. The other, by the bound on |i| above, is
482 // zero or -1. Thus, we can use |bn_mul_recursive|.
483 if (!bn_wexpand(t, j * 4) ||
484 !bn_wexpand(rr, j * 2)) {
485 goto err;
486 }
487 bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
488 }
489 rr->width = top;
490 goto end;
491 }
492 }
493
494 if (!bn_wexpand(rr, top)) {
495 goto err;
496 }
497 rr->width = top;
498 bn_mul_normal(rr->d, a->d, al, b->d, bl);
499
500 end:
501 if (r != rr && !BN_copy(r, rr)) {
502 goto err;
503 }
504 ret = 1;
505
506 err:
507 BN_CTX_end(ctx);
508 return ret;
509 }
510
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)511 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
512 if (!bn_mul_impl(r, a, b, ctx)) {
513 return 0;
514 }
515
516 // This additionally fixes any negative zeros created by |bn_mul_impl|.
517 bn_set_minimal_width(r);
518 return 1;
519 }
520
bn_mul_consttime(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)521 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
522 // Prevent negative zeros.
523 if (a->neg || b->neg) {
524 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
525 return 0;
526 }
527
528 return bn_mul_impl(r, a, b, ctx);
529 }
530
bn_mul_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_ULONG * b,size_t num_b)531 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
532 const BN_ULONG *b, size_t num_b) {
533 if (num_r != num_a + num_b) {
534 abort();
535 }
536 // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
537 // hit that code.
538 if (num_a == 8 && num_b == 8) {
539 bn_mul_comba8(r, a, b);
540 } else {
541 bn_mul_normal(r, a, num_a, b, num_b);
542 }
543 }
544
545 // tmp must have 2*n words
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,size_t n,BN_ULONG * tmp)546 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
547 BN_ULONG *tmp) {
548 if (n == 0) {
549 return;
550 }
551
552 size_t max = n * 2;
553 const BN_ULONG *ap = a;
554 BN_ULONG *rp = r;
555 rp[0] = rp[max - 1] = 0;
556 rp++;
557
558 // Compute the contribution of a[i] * a[j] for all i < j.
559 if (n > 1) {
560 ap++;
561 rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
562 rp += 2;
563 }
564 if (n > 2) {
565 for (size_t i = n - 2; i > 0; i--) {
566 ap++;
567 rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
568 rp += 2;
569 }
570 }
571
572 // The final result fits in |max| words, so none of the following operations
573 // will overflow.
574
575 // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
576 bn_add_words(r, r, r, max);
577
578 // Add in the contribution of a[i] * a[i] for all i.
579 bn_sqr_words(tmp, a, n);
580 bn_add_words(r, r, tmp, max);
581 }
582
583 // bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
584 // length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
585 // a power of two.
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,size_t n2,BN_ULONG * t)586 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
587 BN_ULONG *t) {
588 // |n2| is a power of two.
589 assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
590
591 if (n2 == 4) {
592 bn_sqr_comba4(r, a);
593 return;
594 }
595 if (n2 == 8) {
596 bn_sqr_comba8(r, a);
597 return;
598 }
599 if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
600 bn_sqr_normal(r, a, n2, t);
601 return;
602 }
603
604 // Split |a| into a0,a1, each of size |n|.
605 // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
606 // for recursive calls.
607 // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
608 // r1,r2, and a1^2 to r2,r3.
609 size_t n = n2 / 2;
610 BN_ULONG *t_recursive = &t[n2 * 2];
611
612 // t0 = |a0 - a1|.
613 bn_abs_sub_words(t, a, &a[n], n, &t[n]);
614 // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
615 bn_sqr_recursive(&t[n2], t, n, t_recursive);
616
617 // r0,r1 = a0^2
618 bn_sqr_recursive(r, a, n, t_recursive);
619
620 // r2,r3 = a1^2
621 bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
622
623 // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
624 BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
625 // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
626 c -= bn_sub_words(&t[n2], t, &t[n2], n2);
627
628 // We now have our three components. Add them together.
629 // r1,r2,c = r1,r2 + t2,t3,c
630 c += bn_add_words(&r[n], &r[n], &t[n2], n2);
631
632 // Propagate the carry bit to the end.
633 for (size_t i = n + n2; i < n2 + n2; i++) {
634 BN_ULONG old = r[i];
635 r[i] = old + c;
636 c = r[i] < old;
637 }
638
639 // The square should fit without carries.
640 assert(c == 0);
641 }
642
BN_mul_word(BIGNUM * bn,BN_ULONG w)643 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
644 if (!bn->width) {
645 return 1;
646 }
647
648 if (w == 0) {
649 BN_zero(bn);
650 return 1;
651 }
652
653 BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
654 if (ll) {
655 if (!bn_wexpand(bn, bn->width + 1)) {
656 return 0;
657 }
658 bn->d[bn->width++] = ll;
659 }
660
661 return 1;
662 }
663
bn_sqr_consttime(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)664 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
665 int al = a->width;
666 if (al <= 0) {
667 r->width = 0;
668 r->neg = 0;
669 return 1;
670 }
671
672 int ret = 0;
673 BN_CTX_start(ctx);
674 BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
675 BIGNUM *tmp = BN_CTX_get(ctx);
676 if (!rr || !tmp) {
677 goto err;
678 }
679
680 int max = 2 * al; // Non-zero (from above)
681 if (!bn_wexpand(rr, max)) {
682 goto err;
683 }
684
685 if (al == 4) {
686 bn_sqr_comba4(rr->d, a->d);
687 } else if (al == 8) {
688 bn_sqr_comba8(rr->d, a->d);
689 } else {
690 if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
691 BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
692 bn_sqr_normal(rr->d, a->d, al, t);
693 } else {
694 // If |al| is a power of two, we can use |bn_sqr_recursive|.
695 if (al != 0 && (al & (al - 1)) == 0) {
696 if (!bn_wexpand(tmp, al * 4)) {
697 goto err;
698 }
699 bn_sqr_recursive(rr->d, a->d, al, tmp->d);
700 } else {
701 if (!bn_wexpand(tmp, max)) {
702 goto err;
703 }
704 bn_sqr_normal(rr->d, a->d, al, tmp->d);
705 }
706 }
707 }
708
709 rr->neg = 0;
710 rr->width = max;
711
712 if (rr != r && !BN_copy(r, rr)) {
713 goto err;
714 }
715 ret = 1;
716
717 err:
718 BN_CTX_end(ctx);
719 return ret;
720 }
721
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)722 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
723 if (!bn_sqr_consttime(r, a, ctx)) {
724 return 0;
725 }
726
727 bn_set_minimal_width(r);
728 return 1;
729 }
730
bn_sqr_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a)731 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
732 if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
733 abort();
734 }
735 if (num_a == 4) {
736 bn_sqr_comba4(r, a);
737 } else if (num_a == 8) {
738 bn_sqr_comba8(r, a);
739 } else {
740 BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
741 bn_sqr_normal(r, a, num_a, tmp);
742 OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
743 }
744 }
745