1 /* Copyright 2016 Brian Smith.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/bn.h>
16
17 #include <assert.h>
18
19 #include "internal.h"
20 #include "../../internal.h"
21
22
23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
24
25 static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
26 "BN_MONT_CTX_N0_LIMBS value is invalid");
27 static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t),
28 "uint64_t is insufficient precision for n0");
29
30 // LG_LITTLE_R is log_2(r).
31 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
32
bn_mont_n0(const BIGNUM * n)33 uint64_t bn_mont_n0(const BIGNUM *n) {
34 // These conditions are checked by the caller, |BN_MONT_CTX_set| or
35 // |BN_MONT_CTX_new_consttime|.
36 assert(!BN_is_zero(n));
37 assert(!BN_is_negative(n));
38 assert(BN_is_odd(n));
39
40 // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
41 // ensures that we can do integer division by |r| by simply ignoring
42 // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
43 // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
44 // what makes Montgomery multiplication efficient.
45 //
46 // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
47 // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
48 // multi-limb Montgomery multiplication of |a * b (mod n)|, given the
49 // unreduced product |t == a * b|, we repeatedly calculate:
50 //
51 // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
52 // t2 := t1*n0*n
53 // t3 := t + t2
54 // t := t3 / r copy all limbs of |t3| except the lowest to |t|.
55 //
56 // In the last step, it would only make sense to ignore the lowest limb of
57 // |t3| if it were zero. The middle steps ensure that this is the case:
58 //
59 // t3 == 0 (mod r)
60 // t + t2 == 0 (mod r)
61 // t + t1*n0*n == 0 (mod r)
62 // t1*n0*n == -t (mod r)
63 // t*n0*n == -t (mod r)
64 // n0*n == -1 (mod r)
65 // n0 == -1/n (mod r)
66 //
67 // Thus, in each iteration of the loop, we multiply by the constant factor
68 // |n0|, the negative inverse of n (mod r).
69
70 // n_mod_r = n % r. As explained above, this is done by taking the lowest
71 // |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
72 uint64_t n_mod_r = n->d[0];
73 #if BN_MONT_CTX_N0_LIMBS == 2
74 if (n->width > 1) {
75 n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
76 }
77 #endif
78
79 return bn_neg_inv_mod_r_u64(n_mod_r);
80 }
81
82 // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
83 // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
84 // must be odd.
85 //
86 // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
87 // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
88 // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
89 // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
90 // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
91 //
92 // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
93 // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
94 // constant-time with respect to |n|. We assume uint64_t additions,
95 // subtractions, shifts, and bitwise operations are all constant time, which
96 // may be a large leap of faith on 32-bit targets. We avoid division and
97 // multiplication, which tend to be the most problematic in terms of timing
98 // leaks.
99 //
100 // Most GCD implementations return values such that |u*r + v*n == 1|, so the
101 // caller would have to negate the resultant |v| for the purpose of Montgomery
102 // multiplication. This implementation does the negation implicitly by doing
103 // the computations as a difference instead of a sum.
bn_neg_inv_mod_r_u64(uint64_t n)104 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
105 assert(n % 2 == 1);
106
107 // alpha == 2**(lg r - 1) == r / 2.
108 static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
109
110 const uint64_t beta = n;
111
112 uint64_t u = 1;
113 uint64_t v = 0;
114
115 // The invariant maintained from here on is:
116 // 2**(lg r - i) == u*2*alpha - v*beta.
117 for (size_t i = 0; i < LG_LITTLE_R; ++i) {
118 #if BN_BITS2 == 64 && defined(BN_ULLONG)
119 assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
120 ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
121 #endif
122
123 // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
124 // |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
125
126 uint64_t u_is_odd = UINT64_C(0) - (u & 1); // Either 0xff..ff or 0.
127
128 // The addition can overflow, so use Dietz's method for it.
129 //
130 // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
131 // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
132 // (embedded in 64 bits to so that overflow can be ignored):
133 //
134 // (declare-fun x () (_ BitVec 64))
135 // (declare-fun y () (_ BitVec 64))
136 // (assert (let (
137 // (one (_ bv1 64))
138 // (thirtyTwo (_ bv32 64)))
139 // (and
140 // (bvult x (bvshl one thirtyTwo))
141 // (bvult y (bvshl one thirtyTwo))
142 // (not (=
143 // (bvadd (bvlshr (bvxor x y) one) (bvand x y))
144 // (bvlshr (bvadd x y) one)))
145 // )))
146 // (check-sat)
147 uint64_t beta_if_u_is_odd = beta & u_is_odd; // Either |beta| or 0.
148 u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
149
150 uint64_t alpha_if_u_is_odd = alpha & u_is_odd; // Either |alpha| or 0.
151 v = (v >> 1) + alpha_if_u_is_odd;
152 }
153
154 // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
155 #if BN_BITS2 == 64 && defined(BN_ULLONG)
156 declassify_assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
157 #endif
158
159 return v;
160 }
161
bn_mont_ctx_set_RR_consttime(BN_MONT_CTX * mont,BN_CTX * ctx)162 int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) {
163 assert(!BN_is_zero(&mont->N));
164 assert(!BN_is_negative(&mont->N));
165 assert(BN_is_odd(&mont->N));
166 assert(bn_minimal_width(&mont->N) == mont->N.width);
167
168 unsigned n_bits = BN_num_bits(&mont->N);
169 assert(n_bits != 0);
170 if (n_bits == 1) {
171 BN_zero(&mont->RR);
172 return bn_resize_words(&mont->RR, mont->N.width);
173 }
174
175 unsigned lgBigR = mont->N.width * BN_BITS2;
176 assert(lgBigR >= n_bits);
177
178 // RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the
179 // Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery
180 // square-and-multiply to exponentiate.
181 //
182 // The square steps take 2^n R to (2^n)*(2^n) R = 2^2n R. This is the same as
183 // doubling 2^n R, n times (doubling any x, n times, computes 2^n * x). When n
184 // is below some threshold, doubling is faster; when above, squaring is
185 // faster. From benchmarking various 32-bit and 64-bit architectures, the word
186 // count seems to work well as a threshold. (Doubling scales linearly and
187 // Montgomery reduction scales quadratically, so the threshold should scale
188 // roughly linearly.)
189 //
190 // The multiply steps take 2^n R to 2*2^n R = 2^(n+1) R. It is faster to
191 // double the value instead, so the square-and-multiply exponentiation would
192 // become square-and-double. However, when using the word count as the
193 // threshold, it turns out that no multiply/double steps will be needed at
194 // all, because squaring any x, i times, computes x^(2^i):
195 //
196 // (2^threshold)^(2^BN_BITS2_LG) R
197 // (2^mont->N.width)^BN_BITS2 R
198 // = 2^(mont->N.width*BN_BITS2) R
199 // = 2^lgBigR R
200 // = RR
201 int threshold = mont->N.width;
202
203 // Calculate 2^threshold R = 2^(threshold + lgBigR) by doubling. The
204 // first n_bits - 1 doubles can be skipped because we don't need to reduce.
205 if (!BN_set_bit(&mont->RR, n_bits - 1) ||
206 !bn_mod_lshift_consttime(&mont->RR, &mont->RR,
207 threshold + (lgBigR - (n_bits - 1)),
208 &mont->N, ctx)) {
209 return 0;
210 }
211
212 // The above steps are the same regardless of the threshold. The steps below
213 // need to be modified if the threshold changes.
214 assert(threshold == mont->N.width);
215 for (unsigned i = 0; i < BN_BITS2_LG; i++) {
216 if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) {
217 return 0;
218 }
219 }
220
221 return bn_resize_words(&mont->RR, mont->N.width);
222 }
223