xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/bn/montgomery_inv.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright 2016 Brian Smith.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/bn.h>
16 
17 #include <assert.h>
18 
19 #include "internal.h"
20 #include "../../internal.h"
21 
22 
23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
24 
25 static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
26               "BN_MONT_CTX_N0_LIMBS value is invalid");
27 static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t),
28               "uint64_t is insufficient precision for n0");
29 
30 // LG_LITTLE_R is log_2(r).
31 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
32 
bn_mont_n0(const BIGNUM * n)33 uint64_t bn_mont_n0(const BIGNUM *n) {
34   // These conditions are checked by the caller, |BN_MONT_CTX_set| or
35   // |BN_MONT_CTX_new_consttime|.
36   assert(!BN_is_zero(n));
37   assert(!BN_is_negative(n));
38   assert(BN_is_odd(n));
39 
40   // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
41   // ensures that we can do integer division by |r| by simply ignoring
42   // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
43   // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
44   // what makes Montgomery multiplication efficient.
45   //
46   // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
47   // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
48   // multi-limb Montgomery multiplication of |a * b (mod n)|, given the
49   // unreduced product |t == a * b|, we repeatedly calculate:
50   //
51   //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
52   //    t2 := t1*n0*n
53   //    t3 := t + t2
54   //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
55   //
56   // In the last step, it would only make sense to ignore the lowest limb of
57   // |t3| if it were zero. The middle steps ensure that this is the case:
58   //
59   //                            t3 ==  0 (mod r)
60   //                        t + t2 ==  0 (mod r)
61   //                   t + t1*n0*n ==  0 (mod r)
62   //                       t1*n0*n == -t (mod r)
63   //                        t*n0*n == -t (mod r)
64   //                          n0*n == -1 (mod r)
65   //                            n0 == -1/n (mod r)
66   //
67   // Thus, in each iteration of the loop, we multiply by the constant factor
68   // |n0|, the negative inverse of n (mod r).
69 
70   // n_mod_r = n % r. As explained above, this is done by taking the lowest
71   // |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
72   uint64_t n_mod_r = n->d[0];
73 #if BN_MONT_CTX_N0_LIMBS == 2
74   if (n->width > 1) {
75     n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
76   }
77 #endif
78 
79   return bn_neg_inv_mod_r_u64(n_mod_r);
80 }
81 
82 // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
83 // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
84 // must be odd.
85 //
86 // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
87 // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
88 // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
89 // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
90 // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
91 //
92 // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
93 // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
94 // constant-time with respect to |n|. We assume uint64_t additions,
95 // subtractions, shifts, and bitwise operations are all constant time, which
96 // may be a large leap of faith on 32-bit targets. We avoid division and
97 // multiplication, which tend to be the most problematic in terms of timing
98 // leaks.
99 //
100 // Most GCD implementations return values such that |u*r + v*n == 1|, so the
101 // caller would have to negate the resultant |v| for the purpose of Montgomery
102 // multiplication. This implementation does the negation implicitly by doing
103 // the computations as a difference instead of a sum.
bn_neg_inv_mod_r_u64(uint64_t n)104 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
105   assert(n % 2 == 1);
106 
107   // alpha == 2**(lg r - 1) == r / 2.
108   static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
109 
110   const uint64_t beta = n;
111 
112   uint64_t u = 1;
113   uint64_t v = 0;
114 
115   // The invariant maintained from here on is:
116   // 2**(lg r - i) == u*2*alpha - v*beta.
117   for (size_t i = 0; i < LG_LITTLE_R; ++i) {
118 #if BN_BITS2 == 64 && defined(BN_ULLONG)
119     assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
120            ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
121 #endif
122 
123     // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
124     // |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
125 
126     uint64_t u_is_odd = UINT64_C(0) - (u & 1);  // Either 0xff..ff or 0.
127 
128     // The addition can overflow, so use Dietz's method for it.
129     //
130     // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
131     // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
132     // (embedded in 64 bits to so that overflow can be ignored):
133     //
134     // (declare-fun x () (_ BitVec 64))
135     // (declare-fun y () (_ BitVec 64))
136     // (assert (let (
137     //    (one (_ bv1 64))
138     //    (thirtyTwo (_ bv32 64)))
139     //    (and
140     //      (bvult x (bvshl one thirtyTwo))
141     //      (bvult y (bvshl one thirtyTwo))
142     //      (not (=
143     //        (bvadd (bvlshr (bvxor x y) one) (bvand x y))
144     //        (bvlshr (bvadd x y) one)))
145     // )))
146     // (check-sat)
147     uint64_t beta_if_u_is_odd = beta & u_is_odd;  // Either |beta| or 0.
148     u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
149 
150     uint64_t alpha_if_u_is_odd = alpha & u_is_odd;  // Either |alpha| or 0.
151     v = (v >> 1) + alpha_if_u_is_odd;
152   }
153 
154   // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
155 #if BN_BITS2 == 64 && defined(BN_ULLONG)
156   declassify_assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
157 #endif
158 
159   return v;
160 }
161 
bn_mont_ctx_set_RR_consttime(BN_MONT_CTX * mont,BN_CTX * ctx)162 int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) {
163   assert(!BN_is_zero(&mont->N));
164   assert(!BN_is_negative(&mont->N));
165   assert(BN_is_odd(&mont->N));
166   assert(bn_minimal_width(&mont->N) == mont->N.width);
167 
168   unsigned n_bits = BN_num_bits(&mont->N);
169   assert(n_bits != 0);
170   if (n_bits == 1) {
171     BN_zero(&mont->RR);
172     return bn_resize_words(&mont->RR, mont->N.width);
173   }
174 
175   unsigned lgBigR = mont->N.width * BN_BITS2;
176   assert(lgBigR >= n_bits);
177 
178   // RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the
179   // Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery
180   // square-and-multiply to exponentiate.
181   //
182   // The square steps take 2^n R to (2^n)*(2^n) R = 2^2n R. This is the same as
183   // doubling 2^n R, n times (doubling any x, n times, computes 2^n * x). When n
184   // is below some threshold, doubling is faster; when above, squaring is
185   // faster. From benchmarking various 32-bit and 64-bit architectures, the word
186   // count seems to work well as a threshold. (Doubling scales linearly and
187   // Montgomery reduction scales quadratically, so the threshold should scale
188   // roughly linearly.)
189   //
190   // The multiply steps take 2^n R to 2*2^n R = 2^(n+1) R. It is faster to
191   // double the value instead, so the square-and-multiply exponentiation would
192   // become square-and-double. However, when using the word count as the
193   // threshold, it turns out that no multiply/double steps will be needed at
194   // all, because squaring any x, i times, computes x^(2^i):
195   //
196   //   (2^threshold)^(2^BN_BITS2_LG) R
197   //   (2^mont->N.width)^BN_BITS2 R
198   // = 2^(mont->N.width*BN_BITS2) R
199   // = 2^lgBigR R
200   // = RR
201   int threshold = mont->N.width;
202 
203   // Calculate 2^threshold R = 2^(threshold + lgBigR) by doubling. The
204   // first n_bits - 1 doubles can be skipped because we don't need to reduce.
205   if (!BN_set_bit(&mont->RR, n_bits - 1) ||
206       !bn_mod_lshift_consttime(&mont->RR, &mont->RR,
207                                threshold + (lgBigR - (n_bits - 1)),
208                                &mont->N, ctx)) {
209     return 0;
210   }
211 
212   // The above steps are the same regardless of the threshold. The steps below
213   // need to be modified if the threshold changes.
214   assert(threshold == mont->N.width);
215   for (unsigned i = 0; i < BN_BITS2_LG; i++) {
216     if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) {
217       return 0;
218     }
219   }
220 
221   return bn_resize_words(&mont->RR, mont->N.width);
222 }
223