xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/bn/montgomery.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    [email protected].
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * ([email protected]).  This product includes software written by Tim
107  * Hudson ([email protected]). */
108 
109 #include <openssl/bn.h>
110 
111 #include <assert.h>
112 #include <stdio.h>
113 #include <stdlib.h>
114 #include <string.h>
115 
116 #include <openssl/err.h>
117 #include <openssl/mem.h>
118 #include <openssl/thread.h>
119 
120 #include "internal.h"
121 #include "../../internal.h"
122 
123 
bn_mont_ctx_init(BN_MONT_CTX * mont)124 void bn_mont_ctx_init(BN_MONT_CTX *mont) {
125   OPENSSL_memset(mont, 0, sizeof(BN_MONT_CTX));
126   BN_init(&mont->RR);
127   BN_init(&mont->N);
128 }
129 
bn_mont_ctx_cleanup(BN_MONT_CTX * mont)130 void bn_mont_ctx_cleanup(BN_MONT_CTX *mont) {
131   BN_free(&mont->RR);
132   BN_free(&mont->N);
133 }
134 
BN_MONT_CTX_new(void)135 BN_MONT_CTX *BN_MONT_CTX_new(void) {
136   BN_MONT_CTX *ret = OPENSSL_malloc(sizeof(BN_MONT_CTX));
137   if (ret == NULL) {
138     return NULL;
139   }
140 
141   bn_mont_ctx_init(ret);
142   return ret;
143 }
144 
BN_MONT_CTX_free(BN_MONT_CTX * mont)145 void BN_MONT_CTX_free(BN_MONT_CTX *mont) {
146   if (mont == NULL) {
147     return;
148   }
149 
150   bn_mont_ctx_cleanup(mont);
151   OPENSSL_free(mont);
152 }
153 
BN_MONT_CTX_copy(BN_MONT_CTX * to,const BN_MONT_CTX * from)154 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from) {
155   if (to == from) {
156     return to;
157   }
158 
159   if (!BN_copy(&to->RR, &from->RR) ||
160       !BN_copy(&to->N, &from->N)) {
161     return NULL;
162   }
163   to->n0[0] = from->n0[0];
164   to->n0[1] = from->n0[1];
165   return to;
166 }
167 
bn_mont_ctx_set_N_and_n0(BN_MONT_CTX * mont,const BIGNUM * mod)168 static int bn_mont_ctx_set_N_and_n0(BN_MONT_CTX *mont, const BIGNUM *mod) {
169   if (BN_is_zero(mod)) {
170     OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
171     return 0;
172   }
173   if (!BN_is_odd(mod)) {
174     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
175     return 0;
176   }
177   if (BN_is_negative(mod)) {
178     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
179     return 0;
180   }
181   if (!bn_fits_in_words(mod, BN_MONTGOMERY_MAX_WORDS)) {
182     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
183     return 0;
184   }
185 
186   // Save the modulus.
187   if (!BN_copy(&mont->N, mod)) {
188     OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
189     return 0;
190   }
191   // |mont->N| is always stored minimally. Computing RR efficiently leaks the
192   // size of the modulus. While the modulus may be private in RSA (one of the
193   // primes), their sizes are public, so this is fine.
194   bn_set_minimal_width(&mont->N);
195 
196   // Find n0 such that n0 * N == -1 (mod r).
197   //
198   // Only certain BN_BITS2<=32 platforms actually make use of n0[1]. For the
199   // others, we could use a shorter R value and use faster |BN_ULONG|-based
200   // math instead of |uint64_t|-based math, which would be double-precision.
201   // However, currently only the assembler files know which is which.
202   static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
203                 "BN_MONT_CTX_N0_LIMBS value is invalid");
204   static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t),
205                 "uint64_t is insufficient precision for n0");
206   uint64_t n0 = bn_mont_n0(&mont->N);
207   mont->n0[0] = (BN_ULONG)n0;
208 #if BN_MONT_CTX_N0_LIMBS == 2
209   mont->n0[1] = (BN_ULONG)(n0 >> BN_BITS2);
210 #else
211   mont->n0[1] = 0;
212 #endif
213   return 1;
214 }
215 
BN_MONT_CTX_set(BN_MONT_CTX * mont,const BIGNUM * mod,BN_CTX * ctx)216 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) {
217   if (!bn_mont_ctx_set_N_and_n0(mont, mod)) {
218     return 0;
219   }
220 
221   BN_CTX *new_ctx = NULL;
222   if (ctx == NULL) {
223     new_ctx = BN_CTX_new();
224     if (new_ctx == NULL) {
225       return 0;
226     }
227     ctx = new_ctx;
228   }
229 
230   // Save RR = R**2 (mod N). R is the smallest power of 2**BN_BITS2 such that R
231   // > mod. Even though the assembly on some 32-bit platforms works with 64-bit
232   // values, using |BN_BITS2| here, rather than |BN_MONT_CTX_N0_LIMBS *
233   // BN_BITS2|, is correct because R**2 will still be a multiple of the latter
234   // as |BN_MONT_CTX_N0_LIMBS| is either one or two.
235   unsigned lgBigR = mont->N.width * BN_BITS2;
236   BN_zero(&mont->RR);
237   int ok = BN_set_bit(&mont->RR, lgBigR * 2) &&
238            BN_mod(&mont->RR, &mont->RR, &mont->N, ctx) &&
239            bn_resize_words(&mont->RR, mont->N.width);
240   BN_CTX_free(new_ctx);
241   return ok;
242 }
243 
BN_MONT_CTX_new_for_modulus(const BIGNUM * mod,BN_CTX * ctx)244 BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, BN_CTX *ctx) {
245   BN_MONT_CTX *mont = BN_MONT_CTX_new();
246   if (mont == NULL ||
247       !BN_MONT_CTX_set(mont, mod, ctx)) {
248     BN_MONT_CTX_free(mont);
249     return NULL;
250   }
251   return mont;
252 }
253 
BN_MONT_CTX_new_consttime(const BIGNUM * mod,BN_CTX * ctx)254 BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, BN_CTX *ctx) {
255   BN_MONT_CTX *mont = BN_MONT_CTX_new();
256   if (mont == NULL ||
257       !bn_mont_ctx_set_N_and_n0(mont, mod) ||
258       !bn_mont_ctx_set_RR_consttime(mont, ctx)) {
259     BN_MONT_CTX_free(mont);
260     return NULL;
261   }
262   return mont;
263 }
264 
BN_MONT_CTX_set_locked(BN_MONT_CTX ** pmont,CRYPTO_MUTEX * lock,const BIGNUM * mod,BN_CTX * bn_ctx)265 int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
266                            const BIGNUM *mod, BN_CTX *bn_ctx) {
267   CRYPTO_MUTEX_lock_read(lock);
268   BN_MONT_CTX *ctx = *pmont;
269   CRYPTO_MUTEX_unlock_read(lock);
270 
271   if (ctx) {
272     return 1;
273   }
274 
275   CRYPTO_MUTEX_lock_write(lock);
276   if (*pmont == NULL) {
277     *pmont = BN_MONT_CTX_new_for_modulus(mod, bn_ctx);
278   }
279   const int ok = *pmont != NULL;
280   CRYPTO_MUTEX_unlock_write(lock);
281   return ok;
282 }
283 
BN_to_montgomery(BIGNUM * ret,const BIGNUM * a,const BN_MONT_CTX * mont,BN_CTX * ctx)284 int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont,
285                      BN_CTX *ctx) {
286   return BN_mod_mul_montgomery(ret, a, &mont->RR, mont, ctx);
287 }
288 
bn_from_montgomery_in_place(BN_ULONG * r,size_t num_r,BN_ULONG * a,size_t num_a,const BN_MONT_CTX * mont)289 static int bn_from_montgomery_in_place(BN_ULONG *r, size_t num_r, BN_ULONG *a,
290                                        size_t num_a, const BN_MONT_CTX *mont) {
291   const BN_ULONG *n = mont->N.d;
292   size_t num_n = mont->N.width;
293   if (num_r != num_n || num_a != 2 * num_n) {
294     OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
295     return 0;
296   }
297 
298   // Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
299   // input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
300   // includes |carry| which is stored separately.
301   BN_ULONG n0 = mont->n0[0];
302   BN_ULONG carry = 0;
303   for (size_t i = 0; i < num_n; i++) {
304     BN_ULONG v = bn_mul_add_words(a + i, n, num_n, a[i] * n0);
305     v += carry + a[i + num_n];
306     carry |= (v != a[i + num_n]);
307     carry &= (v <= a[i + num_n]);
308     a[i + num_n] = v;
309   }
310 
311   // Shift |num_n| words to divide by R. We have |a| < 2 * |n|. Note that |a|
312   // includes |carry| which is stored separately.
313   a += num_n;
314 
315   // |a| thus requires at most one additional subtraction |n| to be reduced.
316   bn_reduce_once(r, a, carry, n, num_n);
317   return 1;
318 }
319 
BN_from_montgomery_word(BIGNUM * ret,BIGNUM * r,const BN_MONT_CTX * mont)320 static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r,
321                                    const BN_MONT_CTX *mont) {
322   if (r->neg) {
323     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
324     return 0;
325   }
326 
327   const BIGNUM *n = &mont->N;
328   if (n->width == 0) {
329     ret->width = 0;
330     return 1;
331   }
332 
333   int max = 2 * n->width;  // carry is stored separately
334   if (!bn_resize_words(r, max) ||
335       !bn_wexpand(ret, n->width)) {
336     return 0;
337   }
338 
339   ret->width = n->width;
340   ret->neg = 0;
341   return bn_from_montgomery_in_place(ret->d, ret->width, r->d, r->width, mont);
342 }
343 
BN_from_montgomery(BIGNUM * r,const BIGNUM * a,const BN_MONT_CTX * mont,BN_CTX * ctx)344 int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, const BN_MONT_CTX *mont,
345                        BN_CTX *ctx) {
346   int ret = 0;
347   BIGNUM *t;
348 
349   BN_CTX_start(ctx);
350   t = BN_CTX_get(ctx);
351   if (t == NULL ||
352       !BN_copy(t, a)) {
353     goto err;
354   }
355 
356   ret = BN_from_montgomery_word(r, t, mont);
357 
358 err:
359   BN_CTX_end(ctx);
360 
361   return ret;
362 }
363 
bn_one_to_montgomery(BIGNUM * r,const BN_MONT_CTX * mont,BN_CTX * ctx)364 int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx) {
365   // If the high bit of |n| is set, R = 2^(width*BN_BITS2) < 2 * |n|, so we
366   // compute R - |n| rather than perform Montgomery reduction.
367   const BIGNUM *n = &mont->N;
368   if (n->width > 0 && (n->d[n->width - 1] >> (BN_BITS2 - 1)) != 0) {
369     if (!bn_wexpand(r, n->width)) {
370       return 0;
371     }
372     r->d[0] = 0 - n->d[0];
373     for (int i = 1; i < n->width; i++) {
374       r->d[i] = ~n->d[i];
375     }
376     r->width = n->width;
377     r->neg = 0;
378     return 1;
379   }
380 
381   return BN_from_montgomery(r, &mont->RR, mont, ctx);
382 }
383 
bn_mod_mul_montgomery_fallback(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BN_MONT_CTX * mont,BN_CTX * ctx)384 static int bn_mod_mul_montgomery_fallback(BIGNUM *r, const BIGNUM *a,
385                                           const BIGNUM *b,
386                                           const BN_MONT_CTX *mont,
387                                           BN_CTX *ctx) {
388   int ret = 0;
389 
390   BN_CTX_start(ctx);
391   BIGNUM *tmp = BN_CTX_get(ctx);
392   if (tmp == NULL) {
393     goto err;
394   }
395 
396   if (a == b) {
397     if (!bn_sqr_consttime(tmp, a, ctx)) {
398       goto err;
399     }
400   } else {
401     if (!bn_mul_consttime(tmp, a, b, ctx)) {
402       goto err;
403     }
404   }
405 
406   // reduce from aRR to aR
407   if (!BN_from_montgomery_word(r, tmp, mont)) {
408     goto err;
409   }
410 
411   ret = 1;
412 
413 err:
414   BN_CTX_end(ctx);
415   return ret;
416 }
417 
BN_mod_mul_montgomery(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BN_MONT_CTX * mont,BN_CTX * ctx)418 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
419                           const BN_MONT_CTX *mont, BN_CTX *ctx) {
420   if (a->neg || b->neg) {
421     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
422     return 0;
423   }
424 
425 #if defined(OPENSSL_BN_ASM_MONT)
426   // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86.
427   int num = mont->N.width;
428   if (num >= (128 / BN_BITS2) &&
429       a->width == num &&
430       b->width == num) {
431     if (!bn_wexpand(r, num)) {
432       return 0;
433     }
434     // This bound is implied by |bn_mont_ctx_set_N_and_n0|. |bn_mul_mont|
435     // allocates |num| words on the stack, so |num| cannot be too large.
436     assert((size_t)num <= BN_MONTGOMERY_MAX_WORDS);
437     if (!bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
438       // The check above ensures this won't happen.
439       assert(0);
440       OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
441       return 0;
442     }
443     r->neg = 0;
444     r->width = num;
445     return 1;
446   }
447 #endif
448 
449   return bn_mod_mul_montgomery_fallback(r, a, b, mont, ctx);
450 }
451 
bn_less_than_montgomery_R(const BIGNUM * bn,const BN_MONT_CTX * mont)452 int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont) {
453   return !BN_is_negative(bn) &&
454          bn_fits_in_words(bn, mont->N.width);
455 }
456 
bn_to_montgomery_small(BN_ULONG * r,const BN_ULONG * a,size_t num,const BN_MONT_CTX * mont)457 void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
458                             const BN_MONT_CTX *mont) {
459   bn_mod_mul_montgomery_small(r, a, mont->RR.d, num, mont);
460 }
461 
bn_from_montgomery_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_MONT_CTX * mont)462 void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
463                               size_t num_a, const BN_MONT_CTX *mont) {
464   if (num_r != (size_t)mont->N.width || num_r > BN_SMALL_MAX_WORDS ||
465       num_a > 2 * num_r) {
466     abort();
467   }
468   BN_ULONG tmp[BN_SMALL_MAX_WORDS * 2] = {0};
469   OPENSSL_memcpy(tmp, a, num_a * sizeof(BN_ULONG));
470   if (!bn_from_montgomery_in_place(r, num_r, tmp, 2 * num_r, mont)) {
471     abort();
472   }
473   OPENSSL_cleanse(tmp, 2 * num_r * sizeof(BN_ULONG));
474 }
475 
bn_mod_mul_montgomery_small(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,size_t num,const BN_MONT_CTX * mont)476 void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
477                                  const BN_ULONG *b, size_t num,
478                                  const BN_MONT_CTX *mont) {
479   if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
480     abort();
481   }
482 
483 #if defined(OPENSSL_BN_ASM_MONT)
484   // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86.
485   if (num >= (128 / BN_BITS2)) {
486     if (!bn_mul_mont(r, a, b, mont->N.d, mont->n0, num)) {
487       abort();  // The check above ensures this won't happen.
488     }
489     return;
490   }
491 #endif
492 
493   // Compute the product.
494   BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
495   if (a == b) {
496     bn_sqr_small(tmp, 2 * num, a, num);
497   } else {
498     bn_mul_small(tmp, 2 * num, a, num, b, num);
499   }
500 
501   // Reduce.
502   if (!bn_from_montgomery_in_place(r, num, tmp, 2 * num, mont)) {
503     abort();
504   }
505   OPENSSL_cleanse(tmp, 2 * num * sizeof(BN_ULONG));
506 }
507 
508 #if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_X86_64)
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,size_t num)509 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
510                 const BN_ULONG *np, const BN_ULONG *n0, size_t num) {
511   if (ap == bp && bn_sqr8x_mont_capable(num)) {
512     return bn_sqr8x_mont(rp, ap, bn_mulx_adx_capable(), np, n0, num);
513   }
514   if (bn_mulx4x_mont_capable(num)) {
515     return bn_mulx4x_mont(rp, ap, bp, np, n0, num);
516   }
517   if (bn_mul4x_mont_capable(num)) {
518     return bn_mul4x_mont(rp, ap, bp, np, n0, num);
519   }
520   return bn_mul_mont_nohw(rp, ap, bp, np, n0, num);
521 }
522 #endif
523 
524 #if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_ARM)
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,size_t num)525 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
526                 const BN_ULONG *np, const BN_ULONG *n0, size_t num) {
527   if (bn_mul8x_mont_neon_capable(num)) {
528     return bn_mul8x_mont_neon(rp, ap, bp, np, n0, num);
529   }
530   return bn_mul_mont_nohw(rp, ap, bp, np, n0, num);
531 }
532 #endif
533