1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * [email protected].
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * ([email protected]). This product includes software written by Tim
107 * Hudson ([email protected]). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112 #include <limits.h>
113 #include <stdlib.h>
114 #include <string.h>
115
116 #include <openssl/err.h>
117 #include <openssl/mem.h>
118
119 #include "internal.h"
120 #include "rsaz_exp.h"
121
122 #if defined(OPENSSL_BN_ASM_MONT5)
123
124 // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it
125 // by |ap| modulo |np|, and stores the result in |rp|. The values are |num|
126 // words long and represented in Montgomery form. |n0| is a pointer to the
127 // corresponding field in |BN_MONT_CTX|. |table| must be aligned to at least
128 // 16 bytes. |power| must be less than 32 and is treated as secret.
129 //
130 // WARNING: This function implements Almost Montgomery Multiplication from
131 // https://eprint.iacr.org/2011/239. The inputs do not need to be fully reduced.
132 // However, even if they are fully reduced, the output may not be.
bn_mul_mont_gather5(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * table,const BN_ULONG * np,const BN_ULONG * n0,int num,int power)133 static void bn_mul_mont_gather5(
134 BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table, const BN_ULONG *np,
135 const BN_ULONG *n0, int num, int power) {
136 if (bn_mulx4x_mont_gather5_capable(num)) {
137 bn_mulx4x_mont_gather5(rp, ap, table, np, n0, num, power);
138 } else if (bn_mul4x_mont_gather5_capable(num)) {
139 bn_mul4x_mont_gather5(rp, ap, table, np, n0, num, power);
140 } else {
141 bn_mul_mont_gather5_nohw(rp, ap, table, np, n0, num, power);
142 }
143 }
144
145 // bn_power5 squares |ap| five times and multiplies it by the value stored at
146 // index |power| of |table|, modulo |np|. It stores the result in |rp|. The
147 // values are |num| words long and represented in Montgomery form. |n0| is a
148 // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible
149 // by 8. |power| must be less than 32 and is treated as secret.
150 //
151 // WARNING: This function implements Almost Montgomery Multiplication from
152 // https://eprint.iacr.org/2011/239. The inputs do not need to be fully reduced.
153 // However, even if they are fully reduced, the output may not be.
bn_power5(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * table,const BN_ULONG * np,const BN_ULONG * n0,int num,int power)154 static void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
155 const BN_ULONG *np, const BN_ULONG *n0, int num,
156 int power) {
157 assert(bn_power5_capable(num));
158 if (bn_powerx5_capable(num)) {
159 bn_powerx5(rp, ap, table, np, n0, num, power);
160 } else {
161 bn_power5_nohw(rp, ap, table, np, n0, num, power);
162 }
163 }
164
165 #endif // defined(OPENSSL_BN_ASM_MONT5)
166
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)167 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
168 int i, bits, ret = 0;
169 BIGNUM *v, *rr;
170
171 BN_CTX_start(ctx);
172 if (r == a || r == p) {
173 rr = BN_CTX_get(ctx);
174 } else {
175 rr = r;
176 }
177
178 v = BN_CTX_get(ctx);
179 if (rr == NULL || v == NULL) {
180 goto err;
181 }
182
183 if (BN_copy(v, a) == NULL) {
184 goto err;
185 }
186 bits = BN_num_bits(p);
187
188 if (BN_is_odd(p)) {
189 if (BN_copy(rr, a) == NULL) {
190 goto err;
191 }
192 } else {
193 if (!BN_one(rr)) {
194 goto err;
195 }
196 }
197
198 for (i = 1; i < bits; i++) {
199 if (!BN_sqr(v, v, ctx)) {
200 goto err;
201 }
202 if (BN_is_bit_set(p, i)) {
203 if (!BN_mul(rr, rr, v, ctx)) {
204 goto err;
205 }
206 }
207 }
208
209 if (r != rr && !BN_copy(r, rr)) {
210 goto err;
211 }
212 ret = 1;
213
214 err:
215 BN_CTX_end(ctx);
216 return ret;
217 }
218
219 typedef struct bn_recp_ctx_st {
220 BIGNUM N; // the divisor
221 BIGNUM Nr; // the reciprocal
222 int num_bits;
223 int shift;
224 int flags;
225 } BN_RECP_CTX;
226
BN_RECP_CTX_init(BN_RECP_CTX * recp)227 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
228 BN_init(&recp->N);
229 BN_init(&recp->Nr);
230 recp->num_bits = 0;
231 recp->shift = 0;
232 recp->flags = 0;
233 }
234
BN_RECP_CTX_free(BN_RECP_CTX * recp)235 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
236 if (recp == NULL) {
237 return;
238 }
239
240 BN_free(&recp->N);
241 BN_free(&recp->Nr);
242 }
243
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)244 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
245 if (!BN_copy(&(recp->N), d)) {
246 return 0;
247 }
248 BN_zero(&recp->Nr);
249 recp->num_bits = BN_num_bits(d);
250 recp->shift = 0;
251
252 return 1;
253 }
254
255 // len is the expected size of the result We actually calculate with an extra
256 // word of precision, so we can do faster division if the remainder is not
257 // required.
258 // r := 2^len / m
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)259 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
260 int ret = -1;
261 BIGNUM *t;
262
263 BN_CTX_start(ctx);
264 t = BN_CTX_get(ctx);
265 if (t == NULL) {
266 goto err;
267 }
268
269 if (!BN_set_bit(t, len)) {
270 goto err;
271 }
272
273 if (!BN_div(r, NULL, t, m, ctx)) {
274 goto err;
275 }
276
277 ret = len;
278
279 err:
280 BN_CTX_end(ctx);
281 return ret;
282 }
283
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)284 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
285 BN_RECP_CTX *recp, BN_CTX *ctx) {
286 int i, j, ret = 0;
287 BIGNUM *a, *b, *d, *r;
288
289 BN_CTX_start(ctx);
290 a = BN_CTX_get(ctx);
291 b = BN_CTX_get(ctx);
292 if (dv != NULL) {
293 d = dv;
294 } else {
295 d = BN_CTX_get(ctx);
296 }
297
298 if (rem != NULL) {
299 r = rem;
300 } else {
301 r = BN_CTX_get(ctx);
302 }
303
304 if (a == NULL || b == NULL || d == NULL || r == NULL) {
305 goto err;
306 }
307
308 if (BN_ucmp(m, &recp->N) < 0) {
309 BN_zero(d);
310 if (!BN_copy(r, m)) {
311 goto err;
312 }
313 BN_CTX_end(ctx);
314 return 1;
315 }
316
317 // We want the remainder
318 // Given input of ABCDEF / ab
319 // we need multiply ABCDEF by 3 digests of the reciprocal of ab
320
321 // i := max(BN_num_bits(m), 2*BN_num_bits(N))
322 i = BN_num_bits(m);
323 j = recp->num_bits << 1;
324 if (j > i) {
325 i = j;
326 }
327
328 // Nr := round(2^i / N)
329 if (i != recp->shift) {
330 recp->shift =
331 BN_reciprocal(&(recp->Nr), &(recp->N), i,
332 ctx); // BN_reciprocal returns i, or -1 for an error
333 }
334
335 if (recp->shift == -1) {
336 goto err;
337 }
338
339 // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
340 // BN_num_bits(N)))|
341 // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
342 // BN_num_bits(N)))|
343 // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
344 // = |m/N|
345 if (!BN_rshift(a, m, recp->num_bits)) {
346 goto err;
347 }
348 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
349 goto err;
350 }
351 if (!BN_rshift(d, b, i - recp->num_bits)) {
352 goto err;
353 }
354 d->neg = 0;
355
356 if (!BN_mul(b, &(recp->N), d, ctx)) {
357 goto err;
358 }
359 if (!BN_usub(r, m, b)) {
360 goto err;
361 }
362 r->neg = 0;
363
364 j = 0;
365 while (BN_ucmp(r, &(recp->N)) >= 0) {
366 if (j++ > 2) {
367 OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
368 goto err;
369 }
370 if (!BN_usub(r, r, &(recp->N))) {
371 goto err;
372 }
373 if (!BN_add_word(d, 1)) {
374 goto err;
375 }
376 }
377
378 r->neg = BN_is_zero(r) ? 0 : m->neg;
379 d->neg = m->neg ^ recp->N.neg;
380 ret = 1;
381
382 err:
383 BN_CTX_end(ctx);
384 return ret;
385 }
386
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)387 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
388 BN_RECP_CTX *recp, BN_CTX *ctx) {
389 int ret = 0;
390 BIGNUM *a;
391 const BIGNUM *ca;
392
393 BN_CTX_start(ctx);
394 a = BN_CTX_get(ctx);
395 if (a == NULL) {
396 goto err;
397 }
398
399 if (y != NULL) {
400 if (x == y) {
401 if (!BN_sqr(a, x, ctx)) {
402 goto err;
403 }
404 } else {
405 if (!BN_mul(a, x, y, ctx)) {
406 goto err;
407 }
408 }
409 ca = a;
410 } else {
411 ca = x; // Just do the mod
412 }
413
414 ret = BN_div_recp(NULL, r, ca, recp, ctx);
415
416 err:
417 BN_CTX_end(ctx);
418 return ret;
419 }
420
421 // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
422 // a |b| bit exponent.
423 //
424 // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
425 // multiplications is a constant plus on average
426 //
427 // 2^(w-1) + (b-w)/(w+1);
428 //
429 // here 2^(w-1) is for precomputing the table (we actually need entries only
430 // for windows that have the lowest bit set), and (b-w)/(w+1) is an
431 // approximation for the expected number of w-bit windows, not counting the
432 // first one.
433 //
434 // Thus we should use
435 //
436 // w >= 6 if b > 671
437 // w = 5 if 671 > b > 239
438 // w = 4 if 239 > b > 79
439 // w = 3 if 79 > b > 23
440 // w <= 2 if 23 > b
441 //
442 // (with draws in between). Very small exponents are often selected
443 // with low Hamming weight, so we use w = 1 for b <= 23.
BN_window_bits_for_exponent_size(size_t b)444 static int BN_window_bits_for_exponent_size(size_t b) {
445 if (b > 671) {
446 return 6;
447 }
448 if (b > 239) {
449 return 5;
450 }
451 if (b > 79) {
452 return 4;
453 }
454 if (b > 23) {
455 return 3;
456 }
457 return 1;
458 }
459
460 // TABLE_SIZE is the maximum precomputation table size for *variable* sliding
461 // windows. This must be 2^(max_window - 1), where max_window is the largest
462 // value returned from |BN_window_bits_for_exponent_size|.
463 #define TABLE_SIZE 32
464
465 // TABLE_BITS_SMALL is the smallest value returned from
466 // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
467 // |BN_SMALL_MAX_WORDS| words.
468 #define TABLE_BITS_SMALL 5
469
470 // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
471 // |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
472 #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
473
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)474 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
475 const BIGNUM *m, BN_CTX *ctx) {
476 int i, j, ret = 0, wstart, window;
477 int start = 1;
478 BIGNUM *aa;
479 // Table of variables obtained from 'ctx'
480 BIGNUM *val[TABLE_SIZE];
481 BN_RECP_CTX recp;
482
483 // This function is only called on even moduli.
484 assert(!BN_is_odd(m));
485
486 int bits = BN_num_bits(p);
487 if (bits == 0) {
488 return BN_one(r);
489 }
490
491 BN_RECP_CTX_init(&recp);
492 BN_CTX_start(ctx);
493 aa = BN_CTX_get(ctx);
494 val[0] = BN_CTX_get(ctx);
495 if (!aa || !val[0]) {
496 goto err;
497 }
498
499 if (m->neg) {
500 // ignore sign of 'm'
501 if (!BN_copy(aa, m)) {
502 goto err;
503 }
504 aa->neg = 0;
505 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
506 goto err;
507 }
508 } else {
509 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
510 goto err;
511 }
512 }
513
514 if (!BN_nnmod(val[0], a, m, ctx)) {
515 goto err; // 1
516 }
517 if (BN_is_zero(val[0])) {
518 BN_zero(r);
519 ret = 1;
520 goto err;
521 }
522
523 window = BN_window_bits_for_exponent_size(bits);
524 if (window > 1) {
525 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
526 goto err; // 2
527 }
528 j = 1 << (window - 1);
529 for (i = 1; i < j; i++) {
530 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
531 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
532 goto err;
533 }
534 }
535 }
536
537 start = 1; // This is used to avoid multiplication etc
538 // when there is only the value '1' in the
539 // buffer.
540 wstart = bits - 1; // The top bit of the window
541
542 if (!BN_one(r)) {
543 goto err;
544 }
545
546 for (;;) {
547 int wvalue; // The 'value' of the window
548 int wend; // The bottom bit of the window
549
550 if (!BN_is_bit_set(p, wstart)) {
551 if (!start) {
552 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
553 goto err;
554 }
555 }
556 if (wstart == 0) {
557 break;
558 }
559 wstart--;
560 continue;
561 }
562
563 // We now have wstart on a 'set' bit, we now need to work out
564 // how bit a window to do. To do this we need to scan
565 // forward until the last set bit before the end of the
566 // window
567 wvalue = 1;
568 wend = 0;
569 for (i = 1; i < window; i++) {
570 if (wstart - i < 0) {
571 break;
572 }
573 if (BN_is_bit_set(p, wstart - i)) {
574 wvalue <<= (i - wend);
575 wvalue |= 1;
576 wend = i;
577 }
578 }
579
580 // wend is the size of the current window
581 j = wend + 1;
582 // add the 'bytes above'
583 if (!start) {
584 for (i = 0; i < j; i++) {
585 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
586 goto err;
587 }
588 }
589 }
590
591 // wvalue will be an odd number < 2^window
592 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
593 goto err;
594 }
595
596 // move the 'window' down further
597 wstart -= wend + 1;
598 start = 0;
599 if (wstart < 0) {
600 break;
601 }
602 }
603 ret = 1;
604
605 err:
606 BN_CTX_end(ctx);
607 BN_RECP_CTX_free(&recp);
608 return ret;
609 }
610
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)611 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
612 BN_CTX *ctx) {
613 if (m->neg) {
614 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
615 return 0;
616 }
617 if (a->neg || BN_ucmp(a, m) >= 0) {
618 if (!BN_nnmod(r, a, m, ctx)) {
619 return 0;
620 }
621 a = r;
622 }
623
624 if (BN_is_odd(m)) {
625 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
626 }
627
628 return mod_exp_recp(r, a, p, m, ctx);
629 }
630
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)631 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
632 const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
633 if (!BN_is_odd(m)) {
634 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
635 return 0;
636 }
637 if (m->neg) {
638 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
639 return 0;
640 }
641 // |a| is secret, but |a < m| is not.
642 if (a->neg || constant_time_declassify_int(BN_ucmp(a, m)) >= 0) {
643 OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
644 return 0;
645 }
646
647 int bits = BN_num_bits(p);
648 if (bits == 0) {
649 // x**0 mod 1 is still zero.
650 if (BN_abs_is_word(m, 1)) {
651 BN_zero(rr);
652 return 1;
653 }
654 return BN_one(rr);
655 }
656
657 int ret = 0;
658 BIGNUM *val[TABLE_SIZE];
659 BN_MONT_CTX *new_mont = NULL;
660
661 BN_CTX_start(ctx);
662 BIGNUM *r = BN_CTX_get(ctx);
663 val[0] = BN_CTX_get(ctx);
664 if (r == NULL || val[0] == NULL) {
665 goto err;
666 }
667
668 // Allocate a montgomery context if it was not supplied by the caller.
669 if (mont == NULL) {
670 new_mont = BN_MONT_CTX_new_consttime(m, ctx);
671 if (new_mont == NULL) {
672 goto err;
673 }
674 mont = new_mont;
675 }
676
677 // We exponentiate by looking at sliding windows of the exponent and
678 // precomputing powers of |a|. Windows may be shifted so they always end on a
679 // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1)
680 // for i = 0 to 2^(window-1), all in Montgomery form.
681 int window = BN_window_bits_for_exponent_size(bits);
682 if (!BN_to_montgomery(val[0], a, mont, ctx)) {
683 goto err;
684 }
685 if (window > 1) {
686 BIGNUM *d = BN_CTX_get(ctx);
687 if (d == NULL ||
688 !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
689 goto err;
690 }
691 for (int i = 1; i < 1 << (window - 1); i++) {
692 val[i] = BN_CTX_get(ctx);
693 if (val[i] == NULL ||
694 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
695 goto err;
696 }
697 }
698 }
699
700 // |p| is non-zero, so at least one window is non-zero. To save some
701 // multiplications, defer initializing |r| until then.
702 int r_is_one = 1;
703 int wstart = bits - 1; // The top bit of the window.
704 for (;;) {
705 if (!BN_is_bit_set(p, wstart)) {
706 if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
707 goto err;
708 }
709 if (wstart == 0) {
710 break;
711 }
712 wstart--;
713 continue;
714 }
715
716 // We now have wstart on a set bit. Find the largest window we can use.
717 int wvalue = 1;
718 int wsize = 0;
719 for (int i = 1; i < window && i <= wstart; i++) {
720 if (BN_is_bit_set(p, wstart - i)) {
721 wvalue <<= (i - wsize);
722 wvalue |= 1;
723 wsize = i;
724 }
725 }
726
727 // Shift |r| to the end of the window.
728 if (!r_is_one) {
729 for (int i = 0; i < wsize + 1; i++) {
730 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
731 goto err;
732 }
733 }
734 }
735
736 assert(wvalue & 1);
737 assert(wvalue < (1 << window));
738 if (r_is_one) {
739 if (!BN_copy(r, val[wvalue >> 1])) {
740 goto err;
741 }
742 } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
743 goto err;
744 }
745
746 r_is_one = 0;
747 if (wstart == wsize) {
748 break;
749 }
750 wstart -= wsize + 1;
751 }
752
753 // |p| is non-zero, so |r_is_one| must be cleared at some point.
754 assert(!r_is_one);
755
756 if (!BN_from_montgomery(rr, r, mont, ctx)) {
757 goto err;
758 }
759 ret = 1;
760
761 err:
762 BN_MONT_CTX_free(new_mont);
763 BN_CTX_end(ctx);
764 return ret;
765 }
766
bn_mod_exp_mont_small(BN_ULONG * r,const BN_ULONG * a,size_t num,const BN_ULONG * p,size_t num_p,const BN_MONT_CTX * mont)767 void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
768 const BN_ULONG *p, size_t num_p,
769 const BN_MONT_CTX *mont) {
770 if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS ||
771 num_p > SIZE_MAX / BN_BITS2) {
772 abort();
773 }
774 assert(BN_is_odd(&mont->N));
775
776 // Count the number of bits in |p|, skipping leading zeros. Note this function
777 // treats |p| as public.
778 while (num_p != 0 && p[num_p - 1] == 0) {
779 num_p--;
780 }
781 if (num_p == 0) {
782 bn_from_montgomery_small(r, num, mont->RR.d, num, mont);
783 return;
784 }
785 size_t bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
786 assert(bits != 0);
787
788 // We exponentiate by looking at sliding windows of the exponent and
789 // precomputing powers of |a|. Windows may be shifted so they always end on a
790 // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
791 // i = 0 to 2^(window-1), all in Montgomery form.
792 unsigned window = BN_window_bits_for_exponent_size(bits);
793 if (window > TABLE_BITS_SMALL) {
794 window = TABLE_BITS_SMALL; // Tolerate excessively large |p|.
795 }
796 BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
797 OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG));
798 if (window > 1) {
799 BN_ULONG d[BN_SMALL_MAX_WORDS];
800 bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont);
801 for (unsigned i = 1; i < 1u << (window - 1); i++) {
802 bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont);
803 }
804 }
805
806 // |p| is non-zero, so at least one window is non-zero. To save some
807 // multiplications, defer initializing |r| until then.
808 int r_is_one = 1;
809 size_t wstart = bits - 1; // The top bit of the window.
810 for (;;) {
811 if (!bn_is_bit_set_words(p, num_p, wstart)) {
812 if (!r_is_one) {
813 bn_mod_mul_montgomery_small(r, r, r, num, mont);
814 }
815 if (wstart == 0) {
816 break;
817 }
818 wstart--;
819 continue;
820 }
821
822 // We now have wstart on a set bit. Find the largest window we can use.
823 unsigned wvalue = 1;
824 unsigned wsize = 0;
825 for (unsigned i = 1; i < window && i <= wstart; i++) {
826 if (bn_is_bit_set_words(p, num_p, wstart - i)) {
827 wvalue <<= (i - wsize);
828 wvalue |= 1;
829 wsize = i;
830 }
831 }
832
833 // Shift |r| to the end of the window.
834 if (!r_is_one) {
835 for (unsigned i = 0; i < wsize + 1; i++) {
836 bn_mod_mul_montgomery_small(r, r, r, num, mont);
837 }
838 }
839
840 assert(wvalue & 1);
841 assert(wvalue < (1u << window));
842 if (r_is_one) {
843 OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG));
844 } else {
845 bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont);
846 }
847 r_is_one = 0;
848 if (wstart == wsize) {
849 break;
850 }
851 wstart -= wsize + 1;
852 }
853
854 // |p| is non-zero, so |r_is_one| must be cleared at some point.
855 assert(!r_is_one);
856 OPENSSL_cleanse(val, sizeof(val));
857 }
858
bn_mod_inverse0_prime_mont_small(BN_ULONG * r,const BN_ULONG * a,size_t num,const BN_MONT_CTX * mont)859 void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
860 size_t num, const BN_MONT_CTX *mont) {
861 if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
862 abort();
863 }
864
865 // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
866 BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
867 const BN_ULONG *p = mont->N.d;
868 OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG));
869 if (p_minus_two[0] >= 2) {
870 p_minus_two[0] -= 2;
871 } else {
872 p_minus_two[0] -= 2;
873 for (size_t i = 1; i < num; i++) {
874 if (p_minus_two[i]-- != 0) {
875 break;
876 }
877 }
878 }
879
880 bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont);
881 }
882
copy_to_prebuf(const BIGNUM * b,int top,BN_ULONG * table,int idx,int window)883 static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx,
884 int window) {
885 int ret = bn_copy_words(table + idx * top, top, b);
886 assert(ret); // |b| is guaranteed to fit.
887 (void)ret;
888 }
889
copy_from_prebuf(BIGNUM * b,int top,const BN_ULONG * table,int idx,int window)890 static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx,
891 int window) {
892 if (!bn_wexpand(b, top)) {
893 return 0;
894 }
895
896 OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top);
897 const int width = 1 << window;
898 for (int i = 0; i < width; i++, table += top) {
899 // Use a value barrier to prevent Clang from adding a branch when |i != idx|
900 // and making this copy not constant time. Clang is still allowed to learn
901 // that |mask| is constant across the inner loop, so this won't inhibit any
902 // vectorization it might do.
903 BN_ULONG mask = value_barrier_w(constant_time_eq_int(i, idx));
904 for (int j = 0; j < top; j++) {
905 b->d[j] |= table[j] & mask;
906 }
907 }
908
909 b->width = top;
910 return 1;
911 }
912
913 // Window sizes optimized for fixed window size modular exponentiation
914 // algorithm (BN_mod_exp_mont_consttime).
915 //
916 // TODO(davidben): These window sizes were originally set for 64-byte cache
917 // lines with a cache-line-dependent constant-time mitigation. They can probably
918 // be revised now that our implementation is no longer cache-time-dependent.
919 #define BN_window_bits_for_ctime_exponent_size(b) \
920 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
921 #define BN_MAX_MOD_EXP_CTIME_WINDOW (6)
922
923 // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access
924 // patterns to protect secret exponents (cf. the hyper-threading timing attacks
925 // pointed out by Colin Percival,
926 // http://www.daemonology.net/hyperthreading-considered-harmful/)
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)927 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
928 const BIGNUM *m, BN_CTX *ctx,
929 const BN_MONT_CTX *mont) {
930 int i, ret = 0, wvalue;
931 BN_MONT_CTX *new_mont = NULL;
932
933 unsigned char *powerbuf_free = NULL;
934 size_t powerbuf_len = 0;
935 BN_ULONG *powerbuf = NULL;
936
937 if (!BN_is_odd(m)) {
938 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
939 return 0;
940 }
941 if (m->neg) {
942 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
943 return 0;
944 }
945 // |a| is secret, but it is required to be in range, so these comparisons may
946 // be leaked.
947 if (a->neg || constant_time_declassify_int(BN_ucmp(a, m) >= 0)) {
948 OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
949 return 0;
950 }
951
952 // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
953 // whether the top bits are zero.
954 int max_bits = p->width * BN_BITS2;
955 int bits = max_bits;
956 if (bits == 0) {
957 // x**0 mod 1 is still zero.
958 if (BN_abs_is_word(m, 1)) {
959 BN_zero(rr);
960 return 1;
961 }
962 return BN_one(rr);
963 }
964
965 // Allocate a montgomery context if it was not supplied by the caller.
966 if (mont == NULL) {
967 new_mont = BN_MONT_CTX_new_consttime(m, ctx);
968 if (new_mont == NULL) {
969 goto err;
970 }
971 mont = new_mont;
972 }
973
974 // Use the width in |mont->N|, rather than the copy in |m|. The assembly
975 // implementation assumes it can use |top| to size R.
976 int top = mont->N.width;
977
978 #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
979 // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
980 // paths. If we were to use separate static buffers for each then there is
981 // some chance that both large buffers would be allocated on the stack,
982 // causing the stack space requirement to be truly huge (~10KB).
983 alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN];
984 #endif
985 #if defined(RSAZ_ENABLED)
986 // If the size of the operands allow it, perform the optimized RSAZ
987 // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c
988 // and accompanying assembly modules.
989 if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 &&
990 rsaz_avx2_preferred()) {
991 if (!bn_wexpand(rr, 16)) {
992 goto err;
993 }
994 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
995 storage);
996 rr->width = 16;
997 rr->neg = 0;
998 ret = 1;
999 goto err;
1000 }
1001 #endif
1002
1003 // Get the window size to use with size of p.
1004 int window = BN_window_bits_for_ctime_exponent_size(bits);
1005 assert(window <= BN_MAX_MOD_EXP_CTIME_WINDOW);
1006
1007 // Calculating |powerbuf_len| below cannot overflow because of the bound on
1008 // Montgomery reduction.
1009 assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS);
1010 static_assert(
1011 BN_MONTGOMERY_MAX_WORDS <=
1012 INT_MAX / sizeof(BN_ULONG) / ((1 << BN_MAX_MOD_EXP_CTIME_WINDOW) + 3),
1013 "powerbuf_len may overflow");
1014
1015 #if defined(OPENSSL_BN_ASM_MONT5)
1016 if (window >= 5) {
1017 window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096
1018 // Reserve space for the |mont->N| copy.
1019 powerbuf_len += top * sizeof(mont->N.d[0]);
1020 }
1021 #endif
1022
1023 // Allocate a buffer large enough to hold all of the pre-computed
1024 // powers of |am|, |am| itself, and |tmp|.
1025 int num_powers = 1 << window;
1026 powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2);
1027
1028 #if defined(OPENSSL_BN_ASM_MONT5)
1029 if (powerbuf_len <= sizeof(storage)) {
1030 powerbuf = storage;
1031 }
1032 // |storage| is more than large enough to handle 1024-bit inputs.
1033 assert(powerbuf != NULL || top * BN_BITS2 > 1024);
1034 #endif
1035 if (powerbuf == NULL) {
1036 powerbuf_free = OPENSSL_malloc(powerbuf_len + MOD_EXP_CTIME_ALIGN);
1037 if (powerbuf_free == NULL) {
1038 goto err;
1039 }
1040 powerbuf = align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN);
1041 }
1042 OPENSSL_memset(powerbuf, 0, powerbuf_len);
1043
1044 // Place |tmp| and |am| right after powers table.
1045 BIGNUM tmp, am;
1046 tmp.d = powerbuf + top * num_powers;
1047 am.d = tmp.d + top;
1048 tmp.width = am.width = 0;
1049 tmp.dmax = am.dmax = top;
1050 tmp.neg = am.neg = 0;
1051 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
1052
1053 if (!bn_one_to_montgomery(&tmp, mont, ctx) ||
1054 !bn_resize_words(&tmp, top)) {
1055 goto err;
1056 }
1057
1058 // Prepare a^1 in the Montgomery domain.
1059 assert(!a->neg);
1060 declassify_assert(BN_ucmp(a, m) < 0);
1061 if (!BN_to_montgomery(&am, a, mont, ctx) ||
1062 !bn_resize_words(&am, top)) {
1063 goto err;
1064 }
1065
1066 #if defined(OPENSSL_BN_ASM_MONT5)
1067 // This optimization uses ideas from https://eprint.iacr.org/2011/239,
1068 // specifically optimization of cache-timing attack countermeasures,
1069 // pre-computation optimization, and Almost Montgomery Multiplication.
1070 //
1071 // The paper discusses a 4-bit window to optimize 512-bit modular
1072 // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
1073 // important.
1074 //
1075 // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction
1076 // variant, so the values here may not be fully reduced. They are bounded by R
1077 // (i.e. they fit in |top| words), not |m|. Additionally, we pass these
1078 // "almost" reduced inputs into |bn_mul_mont|, which implements the normal
1079 // reduction variant. Given those inputs, |bn_mul_mont| may not give reduced
1080 // output, but it will still produce "almost" reduced output.
1081 //
1082 // TODO(davidben): Using "almost" reduction complicates analysis of this code,
1083 // and its interaction with other parts of the project. Determine whether this
1084 // is actually necessary for performance.
1085 if (window == 5 && top > 1) {
1086 // Copy |mont->N| to improve cache locality.
1087 BN_ULONG *np = am.d + top;
1088 for (i = 0; i < top; i++) {
1089 np[i] = mont->N.d[i];
1090 }
1091
1092 // Fill |powerbuf| with the first 32 powers of |am|.
1093 const BN_ULONG *n0 = mont->n0;
1094 bn_scatter5(tmp.d, top, powerbuf, 0);
1095 bn_scatter5(am.d, am.width, powerbuf, 1);
1096 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1097 bn_scatter5(tmp.d, top, powerbuf, 2);
1098
1099 // Square to compute powers of two.
1100 for (i = 4; i < 32; i *= 2) {
1101 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1102 bn_scatter5(tmp.d, top, powerbuf, i);
1103 }
1104 // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|.
1105 for (i = 3; i < 32; i += 2) {
1106 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1107 bn_scatter5(tmp.d, top, powerbuf, i);
1108 for (int j = 2 * i; j < 32; j *= 2) {
1109 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1110 bn_scatter5(tmp.d, top, powerbuf, j);
1111 }
1112 }
1113
1114 bits--;
1115 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1116 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1117 }
1118 bn_gather5(tmp.d, top, powerbuf, wvalue);
1119
1120 // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1121 // that has not been read yet.)
1122 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1123
1124 // Scan the exponent one window at a time starting from the most
1125 // significant bits.
1126 if (!bn_power5_capable(top)) {
1127 while (bits >= 0) {
1128 for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1129 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1130 }
1131
1132 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1133 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1134 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1135 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1136 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1137 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1138 }
1139 } else {
1140 const uint8_t *p_bytes = (const uint8_t *)p->d;
1141 assert(bits < max_bits);
1142 // |p = 0| has been handled as a special case, so |max_bits| is at least
1143 // one word.
1144 assert(max_bits >= 64);
1145
1146 // If the first bit to be read lands in the last byte, unroll the first
1147 // iteration to avoid reading past the bounds of |p->d|. (After the first
1148 // iteration, we are guaranteed to be past the last byte.) Note |bits|
1149 // here is the top bit, inclusive.
1150 if (bits - 4 >= max_bits - 8) {
1151 // Read five bits from |bits-4| through |bits|, inclusive.
1152 wvalue = p_bytes[p->width * BN_BYTES - 1];
1153 wvalue >>= (bits - 4) & 7;
1154 wvalue &= 0x1f;
1155 bits -= 5;
1156 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1157 }
1158 while (bits >= 0) {
1159 // Read five bits from |bits-4| through |bits|, inclusive.
1160 int first_bit = bits - 4;
1161 uint16_t val;
1162 OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
1163 val >>= first_bit & 7;
1164 val &= 0x1f;
1165 bits -= 5;
1166 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
1167 }
1168 }
1169 // The result is now in |tmp| in Montgomery form, but it may not be fully
1170 // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R)
1171 // so it will, when converting from Montgomery form, produce a fully reduced
1172 // result.
1173 //
1174 // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert
1175 // from Montgomery form with unreduced output, followed by an extra
1176 // reduction step. In the paper's terminology, we replace steps 9 and 10
1177 // with MM(h, 1).
1178 } else
1179 #endif
1180 {
1181 copy_to_prebuf(&tmp, top, powerbuf, 0, window);
1182 copy_to_prebuf(&am, top, powerbuf, 1, window);
1183
1184 // If the window size is greater than 1, then calculate
1185 // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1186 // (even powers could instead be computed as (a^(i/2))^2
1187 // to use the slight performance advantage of sqr over mul).
1188 if (window > 1) {
1189 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
1190 goto err;
1191 }
1192
1193 copy_to_prebuf(&tmp, top, powerbuf, 2, window);
1194
1195 for (i = 3; i < num_powers; i++) {
1196 // Calculate a^i = a^(i-1) * a
1197 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
1198 goto err;
1199 }
1200
1201 copy_to_prebuf(&tmp, top, powerbuf, i, window);
1202 }
1203 }
1204
1205 bits--;
1206 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1207 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1208 }
1209 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
1210 goto err;
1211 }
1212
1213 // Scan the exponent one window at a time starting from the most
1214 // significant bits.
1215 while (bits >= 0) {
1216 wvalue = 0; // The 'value' of the window
1217
1218 // Scan the window, squaring the result as we go
1219 for (i = 0; i < window; i++, bits--) {
1220 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1221 goto err;
1222 }
1223 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1224 }
1225
1226 // Fetch the appropriate pre-computed value from the pre-buf
1227 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
1228 goto err;
1229 }
1230
1231 // Multiply the result into the intermediate result
1232 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1233 goto err;
1234 }
1235 }
1236 }
1237
1238 // Convert the final result from Montgomery to standard format. If we used the
1239 // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only
1240 // bounded by R rather than |m|. However, that is still within bounds for
1241 // |BN_from_montgomery|, which implements full Montgomery reduction, not
1242 // "almost" Montgomery reduction.
1243 if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1244 goto err;
1245 }
1246 ret = 1;
1247
1248 err:
1249 BN_MONT_CTX_free(new_mont);
1250 if (powerbuf != NULL && powerbuf_free == NULL) {
1251 OPENSSL_cleanse(powerbuf, powerbuf_len);
1252 }
1253 OPENSSL_free(powerbuf_free);
1254 return ret;
1255 }
1256
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1257 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1258 const BIGNUM *m, BN_CTX *ctx,
1259 const BN_MONT_CTX *mont) {
1260 BIGNUM a_bignum;
1261 BN_init(&a_bignum);
1262
1263 int ret = 0;
1264
1265 // BN_mod_exp_mont requires reduced inputs.
1266 if (bn_minimal_width(m) == 1) {
1267 a %= m->d[0];
1268 }
1269
1270 if (!BN_set_word(&a_bignum, a)) {
1271 OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
1272 goto err;
1273 }
1274
1275 ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
1276
1277 err:
1278 BN_free(&a_bignum);
1279
1280 return ret;
1281 }
1282
1283 #define TABLE_SIZE 32
1284
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1285 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1286 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1287 BN_CTX *ctx, const BN_MONT_CTX *mont) {
1288 BIGNUM tmp;
1289 BN_init(&tmp);
1290
1291 int ret = 0;
1292 BN_MONT_CTX *new_mont = NULL;
1293
1294 // Allocate a montgomery context if it was not supplied by the caller.
1295 if (mont == NULL) {
1296 new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
1297 if (new_mont == NULL) {
1298 goto err;
1299 }
1300 mont = new_mont;
1301 }
1302
1303 // BN_mod_mul_montgomery removes one Montgomery factor, so passing one
1304 // Montgomery-encoded and one non-Montgomery-encoded value gives a
1305 // non-Montgomery-encoded result.
1306 if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
1307 !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
1308 !BN_to_montgomery(rr, rr, mont, ctx) ||
1309 !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
1310 goto err;
1311 }
1312
1313 ret = 1;
1314
1315 err:
1316 BN_MONT_CTX_free(new_mont);
1317 BN_free(&tmp);
1318
1319 return ret;
1320 }
1321