xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/bn/bn.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young ([email protected]).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson ([email protected]).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young ([email protected])"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson ([email protected])"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 
66 #include "internal.h"
67 #include "../delocate.h"
68 
69 
70 // BN_MAX_WORDS is the maximum number of words allowed in a |BIGNUM|. It is
71 // sized so byte and bit counts of a |BIGNUM| always fit in |int|, with room to
72 // spare.
73 #define BN_MAX_WORDS (INT_MAX / (4 * BN_BITS2))
74 
BN_new(void)75 BIGNUM *BN_new(void) {
76   BIGNUM *bn = OPENSSL_malloc(sizeof(BIGNUM));
77 
78   if (bn == NULL) {
79     return NULL;
80   }
81 
82   OPENSSL_memset(bn, 0, sizeof(BIGNUM));
83   bn->flags = BN_FLG_MALLOCED;
84 
85   return bn;
86 }
87 
BN_secure_new(void)88 BIGNUM *BN_secure_new(void) { return BN_new(); }
89 
BN_init(BIGNUM * bn)90 void BN_init(BIGNUM *bn) {
91   OPENSSL_memset(bn, 0, sizeof(BIGNUM));
92 }
93 
BN_free(BIGNUM * bn)94 void BN_free(BIGNUM *bn) {
95   if (bn == NULL) {
96     return;
97   }
98 
99   if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
100     OPENSSL_free(bn->d);
101   }
102 
103   if (bn->flags & BN_FLG_MALLOCED) {
104     OPENSSL_free(bn);
105   } else {
106     bn->d = NULL;
107   }
108 }
109 
BN_clear_free(BIGNUM * bn)110 void BN_clear_free(BIGNUM *bn) {
111   BN_free(bn);
112 }
113 
BN_dup(const BIGNUM * src)114 BIGNUM *BN_dup(const BIGNUM *src) {
115   BIGNUM *copy;
116 
117   if (src == NULL) {
118     return NULL;
119   }
120 
121   copy = BN_new();
122   if (copy == NULL) {
123     return NULL;
124   }
125 
126   if (!BN_copy(copy, src)) {
127     BN_free(copy);
128     return NULL;
129   }
130 
131   return copy;
132 }
133 
BN_copy(BIGNUM * dest,const BIGNUM * src)134 BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src) {
135   if (src == dest) {
136     return dest;
137   }
138 
139   if (!bn_wexpand(dest, src->width)) {
140     return NULL;
141   }
142 
143   OPENSSL_memcpy(dest->d, src->d, sizeof(src->d[0]) * src->width);
144 
145   dest->width = src->width;
146   dest->neg = src->neg;
147   return dest;
148 }
149 
BN_clear(BIGNUM * bn)150 void BN_clear(BIGNUM *bn) {
151   if (bn->d != NULL) {
152     OPENSSL_memset(bn->d, 0, bn->dmax * sizeof(bn->d[0]));
153   }
154 
155   bn->width = 0;
156   bn->neg = 0;
157 }
158 
DEFINE_METHOD_FUNCTION(BIGNUM,BN_value_one)159 DEFINE_METHOD_FUNCTION(BIGNUM, BN_value_one) {
160   static const BN_ULONG kOneLimbs[1] = { 1 };
161   out->d = (BN_ULONG*) kOneLimbs;
162   out->width = 1;
163   out->dmax = 1;
164   out->neg = 0;
165   out->flags = BN_FLG_STATIC_DATA;
166 }
167 
168 // BN_num_bits_word returns the minimum number of bits needed to represent the
169 // value in |l|.
BN_num_bits_word(BN_ULONG l)170 unsigned BN_num_bits_word(BN_ULONG l) {
171   // |BN_num_bits| is often called on RSA prime factors. These have public bit
172   // lengths, but all bits beyond the high bit are secret, so count bits in
173   // constant time.
174   BN_ULONG x, mask;
175   int bits = (l != 0);
176 
177 #if BN_BITS2 > 32
178   // Look at the upper half of |x|. |x| is at most 64 bits long.
179   x = l >> 32;
180   // Set |mask| to all ones if |x| (the top 32 bits of |l|) is non-zero and all
181   // all zeros otherwise.
182   mask = 0u - x;
183   mask = (0u - (mask >> (BN_BITS2 - 1)));
184   // If |x| is non-zero, the lower half is included in the bit count in full,
185   // and we count the upper half. Otherwise, we count the lower half.
186   bits += 32 & mask;
187   l ^= (x ^ l) & mask;  // |l| is |x| if |mask| and remains |l| otherwise.
188 #endif
189 
190   // The remaining blocks are analogous iterations at lower powers of two.
191   x = l >> 16;
192   mask = 0u - x;
193   mask = (0u - (mask >> (BN_BITS2 - 1)));
194   bits += 16 & mask;
195   l ^= (x ^ l) & mask;
196 
197   x = l >> 8;
198   mask = 0u - x;
199   mask = (0u - (mask >> (BN_BITS2 - 1)));
200   bits += 8 & mask;
201   l ^= (x ^ l) & mask;
202 
203   x = l >> 4;
204   mask = 0u - x;
205   mask = (0u - (mask >> (BN_BITS2 - 1)));
206   bits += 4 & mask;
207   l ^= (x ^ l) & mask;
208 
209   x = l >> 2;
210   mask = 0u - x;
211   mask = (0u - (mask >> (BN_BITS2 - 1)));
212   bits += 2 & mask;
213   l ^= (x ^ l) & mask;
214 
215   x = l >> 1;
216   mask = 0u - x;
217   mask = (0u - (mask >> (BN_BITS2 - 1)));
218   bits += 1 & mask;
219 
220   return bits;
221 }
222 
BN_num_bits(const BIGNUM * bn)223 unsigned BN_num_bits(const BIGNUM *bn) {
224   const int width = bn_minimal_width(bn);
225   if (width == 0) {
226     return 0;
227   }
228 
229   return (width - 1) * BN_BITS2 + BN_num_bits_word(bn->d[width - 1]);
230 }
231 
BN_num_bytes(const BIGNUM * bn)232 unsigned BN_num_bytes(const BIGNUM *bn) {
233   return (BN_num_bits(bn) + 7) / 8;
234 }
235 
BN_zero(BIGNUM * bn)236 void BN_zero(BIGNUM *bn) {
237   bn->width = bn->neg = 0;
238 }
239 
BN_one(BIGNUM * bn)240 int BN_one(BIGNUM *bn) {
241   return BN_set_word(bn, 1);
242 }
243 
BN_set_word(BIGNUM * bn,BN_ULONG value)244 int BN_set_word(BIGNUM *bn, BN_ULONG value) {
245   if (value == 0) {
246     BN_zero(bn);
247     return 1;
248   }
249 
250   if (!bn_wexpand(bn, 1)) {
251     return 0;
252   }
253 
254   bn->neg = 0;
255   bn->d[0] = value;
256   bn->width = 1;
257   return 1;
258 }
259 
BN_set_u64(BIGNUM * bn,uint64_t value)260 int BN_set_u64(BIGNUM *bn, uint64_t value) {
261 #if BN_BITS2 == 64
262   return BN_set_word(bn, value);
263 #elif BN_BITS2 == 32
264   if (value <= BN_MASK2) {
265     return BN_set_word(bn, (BN_ULONG)value);
266   }
267 
268   if (!bn_wexpand(bn, 2)) {
269     return 0;
270   }
271 
272   bn->neg = 0;
273   bn->d[0] = (BN_ULONG)value;
274   bn->d[1] = (BN_ULONG)(value >> 32);
275   bn->width = 2;
276   return 1;
277 #else
278 #error "BN_BITS2 must be 32 or 64."
279 #endif
280 }
281 
bn_set_words(BIGNUM * bn,const BN_ULONG * words,size_t num)282 int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num) {
283   if (!bn_wexpand(bn, num)) {
284     return 0;
285   }
286   OPENSSL_memmove(bn->d, words, num * sizeof(BN_ULONG));
287   // |bn_wexpand| verified that |num| isn't too large.
288   bn->width = (int)num;
289   bn->neg = 0;
290   return 1;
291 }
292 
bn_set_static_words(BIGNUM * bn,const BN_ULONG * words,size_t num)293 void bn_set_static_words(BIGNUM *bn, const BN_ULONG *words, size_t num) {
294   if ((bn->flags & BN_FLG_STATIC_DATA) == 0) {
295     OPENSSL_free(bn->d);
296   }
297   bn->d = (BN_ULONG *)words;
298 
299   assert(num <= BN_MAX_WORDS);
300   bn->width = (int)num;
301   bn->dmax = (int)num;
302   bn->neg = 0;
303   bn->flags |= BN_FLG_STATIC_DATA;
304 }
305 
bn_fits_in_words(const BIGNUM * bn,size_t num)306 int bn_fits_in_words(const BIGNUM *bn, size_t num) {
307   // All words beyond |num| must be zero.
308   BN_ULONG mask = 0;
309   for (size_t i = num; i < (size_t)bn->width; i++) {
310     mask |= bn->d[i];
311   }
312   return mask == 0;
313 }
314 
bn_copy_words(BN_ULONG * out,size_t num,const BIGNUM * bn)315 int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn) {
316   if (bn->neg) {
317     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
318     return 0;
319   }
320 
321   size_t width = (size_t)bn->width;
322   if (width > num) {
323     if (!bn_fits_in_words(bn, num)) {
324       OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
325       return 0;
326     }
327     width = num;
328   }
329 
330   OPENSSL_memset(out, 0, sizeof(BN_ULONG) * num);
331   OPENSSL_memcpy(out, bn->d, sizeof(BN_ULONG) * width);
332   return 1;
333 }
334 
BN_is_negative(const BIGNUM * bn)335 int BN_is_negative(const BIGNUM *bn) {
336   return bn->neg != 0;
337 }
338 
BN_set_negative(BIGNUM * bn,int sign)339 void BN_set_negative(BIGNUM *bn, int sign) {
340   if (sign && !BN_is_zero(bn)) {
341     bn->neg = 1;
342   } else {
343     bn->neg = 0;
344   }
345 }
346 
bn_wexpand(BIGNUM * bn,size_t words)347 int bn_wexpand(BIGNUM *bn, size_t words) {
348   BN_ULONG *a;
349 
350   if (words <= (size_t)bn->dmax) {
351     return 1;
352   }
353 
354   if (words > BN_MAX_WORDS) {
355     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
356     return 0;
357   }
358 
359   if (bn->flags & BN_FLG_STATIC_DATA) {
360     OPENSSL_PUT_ERROR(BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
361     return 0;
362   }
363 
364   a = OPENSSL_calloc(words, sizeof(BN_ULONG));
365   if (a == NULL) {
366     return 0;
367   }
368 
369   OPENSSL_memcpy(a, bn->d, sizeof(BN_ULONG) * bn->width);
370 
371   OPENSSL_free(bn->d);
372   bn->d = a;
373   bn->dmax = (int)words;
374 
375   return 1;
376 }
377 
bn_expand(BIGNUM * bn,size_t bits)378 int bn_expand(BIGNUM *bn, size_t bits) {
379   if (bits + BN_BITS2 - 1 < bits) {
380     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
381     return 0;
382   }
383   return bn_wexpand(bn, (bits+BN_BITS2-1)/BN_BITS2);
384 }
385 
bn_resize_words(BIGNUM * bn,size_t words)386 int bn_resize_words(BIGNUM *bn, size_t words) {
387   if ((size_t)bn->width <= words) {
388     if (!bn_wexpand(bn, words)) {
389       return 0;
390     }
391     OPENSSL_memset(bn->d + bn->width, 0,
392                    (words - bn->width) * sizeof(BN_ULONG));
393     bn->width = (int)words;
394     return 1;
395   }
396 
397   // All words beyond the new width must be zero.
398   if (!bn_fits_in_words(bn, words)) {
399     OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
400     return 0;
401   }
402   bn->width = (int)words;
403   return 1;
404 }
405 
bn_select_words(BN_ULONG * r,BN_ULONG mask,const BN_ULONG * a,const BN_ULONG * b,size_t num)406 void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
407                      const BN_ULONG *b, size_t num) {
408   for (size_t i = 0; i < num; i++) {
409     static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
410                   "crypto_word_t is too small");
411     r[i] = constant_time_select_w(mask, a[i], b[i]);
412   }
413 }
414 
bn_minimal_width(const BIGNUM * bn)415 int bn_minimal_width(const BIGNUM *bn) {
416   int ret = bn->width;
417   while (ret > 0 && bn->d[ret - 1] == 0) {
418     ret--;
419   }
420   return ret;
421 }
422 
bn_set_minimal_width(BIGNUM * bn)423 void bn_set_minimal_width(BIGNUM *bn) {
424   bn->width = bn_minimal_width(bn);
425   if (bn->width == 0) {
426     bn->neg = 0;
427   }
428 }
429