xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/aes/key_wrap.c (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1 /* ====================================================================
2  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    [email protected].
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/aes.h>
50 
51 #include <assert.h>
52 #include <limits.h>
53 #include <string.h>
54 
55 #include <openssl/mem.h>
56 
57 #include "../../internal.h"
58 #include "../service_indicator/internal.h"
59 
60 
61 // kDefaultIV is the default IV value given in RFC 3394, 2.2.3.1.
62 static const uint8_t kDefaultIV[] = {
63     0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6,
64 };
65 
66 static const unsigned kBound = 6;
67 
AES_wrap_key(const AES_KEY * key,const uint8_t * iv,uint8_t * out,const uint8_t * in,size_t in_len)68 int AES_wrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out,
69                  const uint8_t *in, size_t in_len) {
70   // See RFC 3394, section 2.2.1. Additionally, note that section 2 requires the
71   // plaintext be at least two 8-byte blocks.
72 
73   if (in_len > INT_MAX - 8 || in_len < 16 || in_len % 8 != 0) {
74     return -1;
75   }
76 
77   if (iv == NULL) {
78     iv = kDefaultIV;
79   }
80 
81   OPENSSL_memmove(out + 8, in, in_len);
82   uint8_t A[AES_BLOCK_SIZE];
83   OPENSSL_memcpy(A, iv, 8);
84 
85   size_t n = in_len / 8;
86 
87   for (unsigned j = 0; j < kBound; j++) {
88     for (size_t i = 1; i <= n; i++) {
89       OPENSSL_memcpy(A + 8, out + 8 * i, 8);
90       AES_encrypt(A, A, key);
91 
92       uint32_t t = (uint32_t)(n * j + i);
93       A[7] ^= t & 0xff;
94       A[6] ^= (t >> 8) & 0xff;
95       A[5] ^= (t >> 16) & 0xff;
96       A[4] ^= (t >> 24) & 0xff;
97       OPENSSL_memcpy(out + 8 * i, A + 8, 8);
98     }
99   }
100 
101   OPENSSL_memcpy(out, A, 8);
102   FIPS_service_indicator_update_state();
103   return (int)in_len + 8;
104 }
105 
106 // aes_unwrap_key_inner performs steps one and two from
107 // https://tools.ietf.org/html/rfc3394#section-2.2.2
aes_unwrap_key_inner(const AES_KEY * key,uint8_t * out,uint8_t out_iv[8],const uint8_t * in,size_t in_len)108 static int aes_unwrap_key_inner(const AES_KEY *key, uint8_t *out,
109                                 uint8_t out_iv[8], const uint8_t *in,
110                                 size_t in_len) {
111   // See RFC 3394, section 2.2.2. Additionally, note that section 2 requires the
112   // plaintext be at least two 8-byte blocks, so the ciphertext must be at least
113   // three blocks.
114 
115   if (in_len > INT_MAX || in_len < 24 || in_len % 8 != 0) {
116     return 0;
117   }
118 
119   uint8_t A[AES_BLOCK_SIZE];
120   OPENSSL_memcpy(A, in, 8);
121   OPENSSL_memmove(out, in + 8, in_len - 8);
122 
123   size_t n = (in_len / 8) - 1;
124 
125   for (unsigned j = kBound - 1; j < kBound; j--) {
126     for (size_t i = n; i > 0; i--) {
127       uint32_t t = (uint32_t)(n * j + i);
128       A[7] ^= t & 0xff;
129       A[6] ^= (t >> 8) & 0xff;
130       A[5] ^= (t >> 16) & 0xff;
131       A[4] ^= (t >> 24) & 0xff;
132       OPENSSL_memcpy(A + 8, out + 8 * (i - 1), 8);
133       AES_decrypt(A, A, key);
134       OPENSSL_memcpy(out + 8 * (i - 1), A + 8, 8);
135     }
136   }
137 
138   memcpy(out_iv, A, 8);
139   return 1;
140 }
141 
AES_unwrap_key(const AES_KEY * key,const uint8_t * iv,uint8_t * out,const uint8_t * in,size_t in_len)142 int AES_unwrap_key(const AES_KEY *key, const uint8_t *iv, uint8_t *out,
143                    const uint8_t *in, size_t in_len) {
144   uint8_t calculated_iv[8];
145   if (!aes_unwrap_key_inner(key, out, calculated_iv, in, in_len)) {
146     return -1;
147   }
148 
149   if (iv == NULL) {
150     iv = kDefaultIV;
151   }
152   if (CRYPTO_memcmp(calculated_iv, iv, 8) != 0) {
153     return -1;
154   }
155 
156   FIPS_service_indicator_update_state();
157   return (int)in_len - 8;
158 }
159 
160 // kPaddingConstant is used in Key Wrap with Padding. See
161 // https://tools.ietf.org/html/rfc5649#section-3
162 static const uint8_t kPaddingConstant[4] = {0xa6, 0x59, 0x59, 0xa6};
163 
AES_wrap_key_padded(const AES_KEY * key,uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * in,size_t in_len)164 int AES_wrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len,
165                         size_t max_out, const uint8_t *in, size_t in_len) {
166   // See https://tools.ietf.org/html/rfc5649#section-4.1
167   const uint64_t in_len64 = in_len;
168   const size_t padded_len = (in_len + 7) & ~7;
169   *out_len = 0;
170   if (in_len == 0 || in_len64 > 0xffffffffu || in_len + 7 < in_len ||
171       padded_len + 8 < padded_len || max_out < padded_len + 8) {
172     return 0;
173   }
174 
175   uint8_t block[AES_BLOCK_SIZE];
176   memcpy(block, kPaddingConstant, sizeof(kPaddingConstant));
177   CRYPTO_store_u32_be(block + 4, (uint32_t)in_len);
178 
179   if (in_len <= 8) {
180     memset(block + 8, 0, 8);
181     memcpy(block + 8, in, in_len);
182     AES_encrypt(block, out, key);
183     *out_len = AES_BLOCK_SIZE;
184     return 1;
185   }
186 
187   uint8_t *padded_in = OPENSSL_malloc(padded_len);
188   if (padded_in == NULL) {
189     return 0;
190   }
191   assert(padded_len >= 8);
192   memset(padded_in + padded_len - 8, 0, 8);
193   memcpy(padded_in, in, in_len);
194   FIPS_service_indicator_lock_state();
195   const int ret = AES_wrap_key(key, block, out, padded_in, padded_len);
196   FIPS_service_indicator_unlock_state();
197   OPENSSL_free(padded_in);
198   if (ret < 0) {
199     return 0;
200   }
201   *out_len = ret;
202   FIPS_service_indicator_update_state();
203   return 1;
204 }
205 
AES_unwrap_key_padded(const AES_KEY * key,uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * in,size_t in_len)206 int AES_unwrap_key_padded(const AES_KEY *key, uint8_t *out, size_t *out_len,
207                           size_t max_out, const uint8_t *in, size_t in_len) {
208   *out_len = 0;
209   if (in_len < AES_BLOCK_SIZE || max_out < in_len - 8) {
210     return 0;
211   }
212 
213   uint8_t iv[8];
214   if (in_len == AES_BLOCK_SIZE) {
215     uint8_t block[AES_BLOCK_SIZE];
216     AES_decrypt(in, block, key);
217     memcpy(iv, block, sizeof(iv));
218     memcpy(out, block + 8, 8);
219   } else if (!aes_unwrap_key_inner(key, out, iv, in, in_len)) {
220     return 0;
221   }
222   assert(in_len % 8 == 0);
223 
224   crypto_word_t ok = constant_time_eq_int(
225       CRYPTO_memcmp(iv, kPaddingConstant, sizeof(kPaddingConstant)), 0);
226 
227   const size_t claimed_len = CRYPTO_load_u32_be(iv + 4);
228   ok &= ~constant_time_is_zero_w(claimed_len);
229   ok &= constant_time_eq_w((claimed_len - 1) >> 3, (in_len - 9) >> 3);
230 
231   // Check that padding bytes are all zero.
232   for (size_t i = in_len - 15; i < in_len - 8; i++) {
233     ok &= constant_time_is_zero_w(constant_time_ge_8(i, claimed_len) & out[i]);
234   }
235 
236   *out_len = constant_time_select_w(ok, claimed_len, 0);
237   const int ret = ok & 1;
238   if (ret) {
239     FIPS_service_indicator_update_state();
240   }
241   return ret;
242 }
243