xref: /aosp_15_r20/external/boringssl/src/crypto/fipsmodule/aes/asm/vpaes-armv7.pl (revision 8fb009dc861624b67b6cdb62ea21f0f22d0c584b)
1#! /usr/bin/env perl
2# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10######################################################################
11## Constant-time SSSE3 AES core implementation.
12## version 0.1
13##
14## By Mike Hamburg (Stanford University), 2009
15## Public domain.
16##
17## For details see http://shiftleft.org/papers/vector_aes/ and
18## http://crypto.stanford.edu/vpaes/.
19##
20######################################################################
21# Adapted from the original x86_64 version and <[email protected]>'s ARMv8
22# version.
23#
24# armv7, aarch64, and x86_64 differ in several ways:
25#
26# * x86_64 SSSE3 instructions are two-address (destination operand is also a
27#   source), while NEON is three-address (destination operand is separate from
28#   two sources).
29#
30# * aarch64 has 32 SIMD registers available, while x86_64 and armv7 have 16.
31#
32# * x86_64 instructions can take memory references, while ARM is a load/store
33#   architecture. This means we sometimes need a spare register.
34#
35# * aarch64 and x86_64 have 128-bit byte shuffle instructions (tbl and pshufb),
36#   while armv7 only has a 64-bit byte shuffle (vtbl).
37#
38# This means this armv7 version must be a mix of both aarch64 and x86_64
39# implementations. armv7 and aarch64 have analogous SIMD instructions, so we
40# base the instructions on aarch64. However, we cannot use aarch64's register
41# allocation. x86_64's register count matches, but x86_64 is two-address.
42# vpaes-armv8.pl already accounts for this in the comments, which use
43# three-address AVX instructions instead of the original SSSE3 ones. We base
44# register usage on these comments, which are preserved in this file.
45#
46# This means we do not use separate input and output registers as in aarch64 and
47# cannot pin as many constants in the preheat functions. However, the load/store
48# architecture means we must still deviate from x86_64 in places.
49#
50# Next, we account for the byte shuffle instructions. vtbl takes 64-bit source
51# and destination and 128-bit table. Fortunately, armv7 also allows addressing
52# upper and lower halves of each 128-bit register. The lower half of q{N} is
53# d{2*N}. The upper half is d{2*N+1}. Instead of the following non-existent
54# instruction,
55#
56#     vtbl.8 q0, q1, q2   @ Index each of q2's 16 bytes into q1. Store in q0.
57#
58# we write:
59#
60#     vtbl.8 d0, q1, d4   @ Index each of d4's 8 bytes into q1. Store in d0.
61#     vtbl.8 d1, q1, d5   @ Index each of d5's 8 bytes into q1. Store in d1.
62#
63# For readability, we write d0 and d1 as q0#lo and q0#hi, respectively and
64# post-process before outputting. (This is adapted from ghash-armv4.pl.) Note,
65# however, that destination (q0) and table (q1) registers may no longer match.
66# We adjust the register usage from x86_64 to avoid this. (Unfortunately, the
67# two-address pshufb always matched these operands, so this is common.)
68#
69# This file also runs against the limit of ARMv7's ADR pseudo-instruction. ADR
70# expands to an ADD or SUB of the pc register to find an address. That immediate
71# must fit in ARM's encoding scheme: 8 bits of constant and 4 bits of rotation.
72# This means larger values must be more aligned.
73#
74# ARM additionally has two encodings, ARM and Thumb mode. Our assembly files may
75# use either encoding (do we actually need to support this?). In ARM mode, the
76# distances get large enough to require 16-byte alignment. Moving constants
77# closer to their use resolves most of this, but common constants in
78# _vpaes_consts are used by the whole file. Affected ADR instructions must be
79# placed at 8 mod 16 (the pc register is 8 ahead). Instructions with this
80# constraint have been commented.
81#
82# For details on ARM's immediate value encoding scheme, see
83# https://alisdair.mcdiarmid.org/arm-immediate-value-encoding/
84#
85# Finally, a summary of armv7 and aarch64 SIMD syntax differences:
86#
87# * armv7 prefixes SIMD instructions with 'v', while aarch64 does not.
88#
89# * armv7 SIMD registers are named like q0 (and d0 for the half-width ones).
90#   aarch64 names registers like v0, and denotes half-width operations in an
91#   instruction suffix (see below).
92#
93# * aarch64 embeds size and lane information in register suffixes. v0.16b is
94#   16 bytes, v0.8h is eight u16s, v0.4s is four u32s, and v0.2d is two u64s.
95#   armv7 embeds the total size in the register name (see above) and the size of
96#   each element in an instruction suffix, which may look like vmov.i8,
97#   vshr.u8, or vtbl.8, depending on instruction.
98
99use strict;
100
101my $flavour = shift;
102my $output;
103while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
104
105$0 =~ m/(.*[\/\\])[^\/\\]+$/;
106my $dir=$1;
107my $xlate;
108( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
109( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
110die "can't locate arm-xlate.pl";
111
112open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
113*STDOUT=*OUT;
114
115my $code = "";
116
117$code.=<<___;
118.syntax	unified
119
120.arch	armv7-a
121.fpu	neon
122
123#if defined(__thumb2__)
124.thumb
125#else
126.code	32
127#endif
128
129.text
130
131.type	_vpaes_consts,%object
132.align	7	@ totally strategic alignment
133_vpaes_consts:
134.Lk_mc_forward:	@ mc_forward
135	.quad	0x0407060500030201, 0x0C0F0E0D080B0A09
136	.quad	0x080B0A0904070605, 0x000302010C0F0E0D
137	.quad	0x0C0F0E0D080B0A09, 0x0407060500030201
138	.quad	0x000302010C0F0E0D, 0x080B0A0904070605
139.Lk_mc_backward:@ mc_backward
140	.quad	0x0605040702010003, 0x0E0D0C0F0A09080B
141	.quad	0x020100030E0D0C0F, 0x0A09080B06050407
142	.quad	0x0E0D0C0F0A09080B, 0x0605040702010003
143	.quad	0x0A09080B06050407, 0x020100030E0D0C0F
144.Lk_sr:		@ sr
145	.quad	0x0706050403020100, 0x0F0E0D0C0B0A0908
146	.quad	0x030E09040F0A0500, 0x0B06010C07020D08
147	.quad	0x0F060D040B020900, 0x070E050C030A0108
148	.quad	0x0B0E0104070A0D00, 0x0306090C0F020508
149
150@
151@ "Hot" constants
152@
153.Lk_inv:	@ inv, inva
154	.quad	0x0E05060F0D080180, 0x040703090A0B0C02
155	.quad	0x01040A060F0B0780, 0x030D0E0C02050809
156.Lk_ipt:	@ input transform (lo, hi)
157	.quad	0xC2B2E8985A2A7000, 0xCABAE09052227808
158	.quad	0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
159.Lk_sbo:	@ sbou, sbot
160	.quad	0xD0D26D176FBDC700, 0x15AABF7AC502A878
161	.quad	0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
162.Lk_sb1:	@ sb1u, sb1t
163	.quad	0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
164	.quad	0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
165.Lk_sb2:	@ sb2u, sb2t
166	.quad	0x69EB88400AE12900, 0xC2A163C8AB82234A
167	.quad	0xE27A93C60B712400, 0x5EB7E955BC982FCD
168
169.asciz  "Vector Permutation AES for ARMv7 NEON, Mike Hamburg (Stanford University)"
170.size	_vpaes_consts,.-_vpaes_consts
171.align	6
172___
173
174{
175my ($inp,$out,$key) = map("r$_", (0..2));
176
177my ($invlo,$invhi) = map("q$_", (10..11));
178my ($sb1u,$sb1t,$sb2u,$sb2t) = map("q$_", (12..15));
179
180$code.=<<___;
181@@
182@@  _aes_preheat
183@@
184@@  Fills q9-q15 as specified below.
185@@
186.type	_vpaes_preheat,%function
187.align	4
188_vpaes_preheat:
189	adr	r10, .Lk_inv
190	vmov.i8	q9, #0x0f		@ .Lk_s0F
191	vld1.64	{q10,q11}, [r10]!	@ .Lk_inv
192	add	r10, r10, #64		@ Skip .Lk_ipt, .Lk_sbo
193	vld1.64	{q12,q13}, [r10]!	@ .Lk_sb1
194	vld1.64	{q14,q15}, [r10]	@ .Lk_sb2
195	bx	lr
196
197@@
198@@  _aes_encrypt_core
199@@
200@@  AES-encrypt q0.
201@@
202@@  Inputs:
203@@     q0 = input
204@@     q9-q15 as in _vpaes_preheat
205@@    [$key] = scheduled keys
206@@
207@@  Output in q0
208@@  Clobbers  q1-q5, r8-r11
209@@  Preserves q6-q8 so you get some local vectors
210@@
211@@
212.type	_vpaes_encrypt_core,%function
213.align 4
214_vpaes_encrypt_core:
215	mov	r9, $key
216	ldr	r8, [$key,#240]		@ pull rounds
217	adr	r11, .Lk_ipt
218	@ vmovdqa	.Lk_ipt(%rip),	%xmm2	# iptlo
219	@ vmovdqa	.Lk_ipt+16(%rip), %xmm3	# ipthi
220	vld1.64	{q2, q3}, [r11]
221	adr	r11, .Lk_mc_forward+16
222	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5		# round0 key
223	vand	q1, q0, q9		@ vpand	%xmm9,	%xmm0,	%xmm1
224	vshr.u8	q0, q0, #4		@ vpsrlb	\$4,	%xmm0,	%xmm0
225	vtbl.8	q1#lo, {q2}, q1#lo	@ vpshufb	%xmm1,	%xmm2,	%xmm1
226	vtbl.8	q1#hi, {q2}, q1#hi
227	vtbl.8	q2#lo, {q3}, q0#lo	@ vpshufb	%xmm0,	%xmm3,	%xmm2
228	vtbl.8	q2#hi, {q3}, q0#hi
229	veor	q0, q1, q5		@ vpxor	%xmm5,	%xmm1,	%xmm0
230	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0
231
232	@ .Lenc_entry ends with a bnz instruction which is normally paired with
233	@ subs in .Lenc_loop.
234	tst	r8, r8
235	b	.Lenc_entry
236
237.align 4
238.Lenc_loop:
239	@ middle of middle round
240	add	r10, r11, #0x40
241	vtbl.8	q4#lo, {$sb1t}, q2#lo	@ vpshufb	%xmm2,	%xmm13,	%xmm4	# 4 = sb1u
242	vtbl.8	q4#hi, {$sb1t}, q2#hi
243	vld1.64	{q1}, [r11]!		@ vmovdqa	-0x40(%r11,%r10), %xmm1	# .Lk_mc_forward[]
244	vtbl.8	q0#lo, {$sb1u}, q3#lo	@ vpshufb	%xmm3,	%xmm12,	%xmm0	# 0 = sb1t
245	vtbl.8	q0#hi, {$sb1u}, q3#hi
246	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
247	vtbl.8	q5#lo, {$sb2t}, q2#lo	@ vpshufb	%xmm2,	%xmm15,	%xmm5	# 4 = sb2u
248	vtbl.8	q5#hi, {$sb2t}, q2#hi
249	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0	# 0 = A
250	vtbl.8	q2#lo, {$sb2u}, q3#lo	@ vpshufb	%xmm3,	%xmm14,	%xmm2	# 2 = sb2t
251	vtbl.8	q2#hi, {$sb2u}, q3#hi
252	vld1.64	{q4}, [r10]		@ vmovdqa	(%r11,%r10), %xmm4	# .Lk_mc_backward[]
253	vtbl.8	q3#lo, {q0}, q1#lo	@ vpshufb	%xmm1,	%xmm0,	%xmm3	# 0 = B
254	vtbl.8	q3#hi, {q0}, q1#hi
255	veor	q2, q2, q5		@ vpxor		%xmm5,	%xmm2,	%xmm2	# 2 = 2A
256	@ Write to q5 instead of q0, so the table and destination registers do
257	@ not overlap.
258	vtbl.8	q5#lo, {q0}, q4#lo	@ vpshufb	%xmm4,	%xmm0,	%xmm0	# 3 = D
259	vtbl.8	q5#hi, {q0}, q4#hi
260	veor	q3, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3	# 0 = 2A+B
261	vtbl.8	q4#lo, {q3}, q1#lo	@ vpshufb	%xmm1,	%xmm3,	%xmm4	# 0 = 2B+C
262	vtbl.8	q4#hi, {q3}, q1#hi
263	@ Here we restore the original q0/q5 usage.
264	veor	q0, q5, q3		@ vpxor		%xmm3,	%xmm0,	%xmm0	# 3 = 2A+B+D
265	and	r11, r11, #~(1<<6)	@ and		\$0x30,	%r11		# ... mod 4
266	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0, %xmm0	# 0 = 2A+3B+C+D
267	subs	r8, r8, #1		@ nr--
268
269.Lenc_entry:
270	@ top of round
271	vand	q1, q0, q9		@ vpand		%xmm0,	%xmm9,	%xmm1   # 0 = k
272	vshr.u8	q0, q0, #4		@ vpsrlb	\$4,	%xmm0,	%xmm0	# 1 = i
273	vtbl.8	q5#lo, {$invhi}, q1#lo	@ vpshufb	%xmm1,	%xmm11,	%xmm5	# 2 = a/k
274	vtbl.8	q5#hi, {$invhi}, q1#hi
275	veor	q1, q1, q0		@ vpxor		%xmm0,	%xmm1,	%xmm1	# 0 = j
276	vtbl.8	q3#lo, {$invlo}, q0#lo	@ vpshufb	%xmm0, 	%xmm10,	%xmm3  	# 3 = 1/i
277	vtbl.8	q3#hi, {$invlo}, q0#hi
278	vtbl.8	q4#lo, {$invlo}, q1#lo	@ vpshufb	%xmm1, 	%xmm10,	%xmm4  	# 4 = 1/j
279	vtbl.8	q4#hi, {$invlo}, q1#hi
280	veor	q3, q3, q5		@ vpxor		%xmm5,	%xmm3,	%xmm3	# 3 = iak = 1/i + a/k
281	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4  	# 4 = jak = 1/j + a/k
282	vtbl.8	q2#lo, {$invlo}, q3#lo	@ vpshufb	%xmm3,	%xmm10,	%xmm2  	# 2 = 1/iak
283	vtbl.8	q2#hi, {$invlo}, q3#hi
284	vtbl.8	q3#lo, {$invlo}, q4#lo	@ vpshufb	%xmm4,	%xmm10,	%xmm3	# 3 = 1/jak
285	vtbl.8	q3#hi, {$invlo}, q4#hi
286	veor	q2, q2, q1		@ vpxor		%xmm1,	%xmm2,	%xmm2  	# 2 = io
287	veor	q3, q3, q0		@ vpxor		%xmm0,	%xmm3,	%xmm3	# 3 = jo
288	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5
289	bne	.Lenc_loop
290
291	@ middle of last round
292	add	r10, r11, #0x80
293
294	adr	r11, .Lk_sbo
295	@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
296	@ overlap table and destination registers.
297	vld1.64 {q1}, [r11]!		@ vmovdqa	-0x60(%r10), %xmm4	# 3 : sbou
298	vld1.64 {q0}, [r11]		@ vmovdqa	-0x50(%r10), %xmm0	# 0 : sbot	.Lk_sbo+16
299	vtbl.8	q4#lo, {q1}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4	# 4 = sbou
300	vtbl.8	q4#hi, {q1}, q2#hi
301	vld1.64	{q1}, [r10]		@ vmovdqa	0x40(%r11,%r10), %xmm1	# .Lk_sr[]
302	@ Write to q2 instead of q0 below, to avoid overlapping table and
303	@ destination registers.
304	vtbl.8	q2#lo, {q0}, q3#lo	@ vpshufb	%xmm3,	%xmm0,	%xmm0	# 0 = sb1t
305	vtbl.8	q2#hi, {q0}, q3#hi
306	veor	q4, q4, q5		@ vpxor	%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
307	veor	q2, q2, q4		@ vpxor	%xmm4,	%xmm0,	%xmm0	# 0 = A
308	@ Here we restore the original q0/q2 usage.
309	vtbl.8	q0#lo, {q2}, q1#lo	@ vpshufb	%xmm1,	%xmm0,	%xmm0
310	vtbl.8	q0#hi, {q2}, q1#hi
311	bx	lr
312.size	_vpaes_encrypt_core,.-_vpaes_encrypt_core
313
314.globl	vpaes_encrypt
315.type	vpaes_encrypt,%function
316.align	4
317vpaes_encrypt:
318	@ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
319	@ alignment.
320	stmdb	sp!, {r7-r11,lr}
321	@ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
322	vstmdb	sp!, {d8-d11}
323
324	vld1.64	{q0}, [$inp]
325	bl	_vpaes_preheat
326	bl	_vpaes_encrypt_core
327	vst1.64	{q0}, [$out]
328
329	vldmia	sp!, {d8-d11}
330	ldmia	sp!, {r7-r11, pc}	@ return
331.size	vpaes_encrypt,.-vpaes_encrypt
332
333@
334@  Decryption stuff
335@
336.type	_vpaes_decrypt_consts,%object
337.align	4
338_vpaes_decrypt_consts:
339.Lk_dipt:	@ decryption input transform
340	.quad	0x0F505B040B545F00, 0x154A411E114E451A
341	.quad	0x86E383E660056500, 0x12771772F491F194
342.Lk_dsbo:	@ decryption sbox final output
343	.quad	0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
344	.quad	0x12D7560F93441D00, 0xCA4B8159D8C58E9C
345.Lk_dsb9:	@ decryption sbox output *9*u, *9*t
346	.quad	0x851C03539A86D600, 0xCAD51F504F994CC9
347	.quad	0xC03B1789ECD74900, 0x725E2C9EB2FBA565
348.Lk_dsbd:	@ decryption sbox output *D*u, *D*t
349	.quad	0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
350	.quad	0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
351.Lk_dsbb:	@ decryption sbox output *B*u, *B*t
352	.quad	0xD022649296B44200, 0x602646F6B0F2D404
353	.quad	0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
354.Lk_dsbe:	@ decryption sbox output *E*u, *E*t
355	.quad	0x46F2929626D4D000, 0x2242600464B4F6B0
356	.quad	0x0C55A6CDFFAAC100, 0x9467F36B98593E32
357.size	_vpaes_decrypt_consts,.-_vpaes_decrypt_consts
358
359@@
360@@  Decryption core
361@@
362@@  Same API as encryption core, except it clobbers q12-q15 rather than using
363@@  the values from _vpaes_preheat. q9-q11 must still be set from
364@@  _vpaes_preheat.
365@@
366.type	_vpaes_decrypt_core,%function
367.align	4
368_vpaes_decrypt_core:
369	mov	r9, $key
370	ldr	r8, [$key,#240]		@ pull rounds
371
372	@ This function performs shuffles with various constants. The x86_64
373	@ version loads them on-demand into %xmm0-%xmm5. This does not work well
374	@ for ARMv7 because those registers are shuffle destinations. The ARMv8
375	@ version preloads those constants into registers, but ARMv7 has half
376	@ the registers to work with. Instead, we load them on-demand into
377	@ q12-q15, registers normally use for preloaded constants. This is fine
378	@ because decryption doesn't use those constants. The values are
379	@ constant, so this does not interfere with potential 2x optimizations.
380	adr	r7, .Lk_dipt
381
382	vld1.64	{q12,q13}, [r7]		@ vmovdqa	.Lk_dipt(%rip), %xmm2	# iptlo
383	lsl	r11, r8, #4		@ mov		%rax,	%r11;	shl	\$4, %r11
384	eor	r11, r11, #0x30		@ xor		\$0x30,	%r11
385	adr	r10, .Lk_sr
386	and	r11, r11, #0x30		@ and		\$0x30,	%r11
387	add	r11, r11, r10
388	adr	r10, .Lk_mc_forward+48
389
390	vld1.64	{q4}, [r9]!		@ vmovdqu	(%r9),	%xmm4		# round0 key
391	vand	q1, q0, q9		@ vpand		%xmm9,	%xmm0,	%xmm1
392	vshr.u8	q0, q0, #4		@ vpsrlb	\$4,	%xmm0,	%xmm0
393	vtbl.8	q2#lo, {q12}, q1#lo	@ vpshufb	%xmm1,	%xmm2,	%xmm2
394	vtbl.8	q2#hi, {q12}, q1#hi
395	vld1.64	{q5}, [r10]		@ vmovdqa	.Lk_mc_forward+48(%rip), %xmm5
396					@ vmovdqa	.Lk_dipt+16(%rip), %xmm1 # ipthi
397	vtbl.8	q0#lo, {q13}, q0#lo	@ vpshufb	%xmm0,	%xmm1,	%xmm0
398	vtbl.8	q0#hi, {q13}, q0#hi
399	veor	q2, q2, q4		@ vpxor		%xmm4,	%xmm2,	%xmm2
400	veor	q0, q0, q2		@ vpxor		%xmm2,	%xmm0,	%xmm0
401
402	@ .Ldec_entry ends with a bnz instruction which is normally paired with
403	@ subs in .Ldec_loop.
404	tst	r8, r8
405	b	.Ldec_entry
406
407.align 4
408.Ldec_loop:
409@
410@  Inverse mix columns
411@
412
413	@ We load .Lk_dsb* into q12-q15 on-demand. See the comment at the top of
414	@ the function.
415	adr	r10, .Lk_dsb9
416	vld1.64	{q12,q13}, [r10]!	@ vmovdqa	-0x20(%r10),%xmm4		# 4 : sb9u
417					@ vmovdqa	-0x10(%r10),%xmm1		# 0 : sb9t
418	@ Load sbd* ahead of time.
419	vld1.64	{q14,q15}, [r10]!	@ vmovdqa	0x00(%r10),%xmm4		# 4 : sbdu
420					@ vmovdqa	0x10(%r10),%xmm1		# 0 : sbdt
421	vtbl.8	q4#lo, {q12}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4		# 4 = sb9u
422	vtbl.8	q4#hi, {q12}, q2#hi
423	vtbl.8	q1#lo, {q13}, q3#lo	@ vpshufb	%xmm3,	%xmm1,	%xmm1		# 0 = sb9t
424	vtbl.8	q1#hi, {q13}, q3#hi
425	veor	q0, q4, q0		@ vpxor		%xmm4,	%xmm0,	%xmm0
426
427	veor	q0, q0, q1		@ vpxor		%xmm1,	%xmm0,	%xmm0		# 0 = ch
428
429	@ Load sbb* ahead of time.
430	vld1.64	{q12,q13}, [r10]!	@ vmovdqa	0x20(%r10),%xmm4		# 4 : sbbu
431					@ vmovdqa	0x30(%r10),%xmm1		# 0 : sbbt
432
433	vtbl.8	q4#lo, {q14}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4		# 4 = sbdu
434	vtbl.8	q4#hi, {q14}, q2#hi
435	@ Write to q1 instead of q0, so the table and destination registers do
436	@ not overlap.
437	vtbl.8	q1#lo, {q0}, q5#lo	@ vpshufb	%xmm5,	%xmm0,	%xmm0		# MC ch
438	vtbl.8	q1#hi, {q0}, q5#hi
439	@ Here we restore the original q0/q1 usage. This instruction is
440	@ reordered from the ARMv8 version so we do not clobber the vtbl.8
441	@ below.
442	veor	q0, q1, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0		# 4 = ch
443	vtbl.8	q1#lo, {q15}, q3#lo	@ vpshufb	%xmm3,	%xmm1,	%xmm1		# 0 = sbdt
444	vtbl.8	q1#hi, {q15}, q3#hi
445					@ vmovdqa	0x20(%r10),	%xmm4		# 4 : sbbu
446	veor	q0, q0, q1		@ vpxor		%xmm1,	%xmm0,	%xmm0		# 0 = ch
447					@ vmovdqa	0x30(%r10),	%xmm1		# 0 : sbbt
448
449	@ Load sbd* ahead of time.
450	vld1.64	{q14,q15}, [r10]!	@ vmovdqa	0x40(%r10),%xmm4		# 4 : sbeu
451					@ vmovdqa	0x50(%r10),%xmm1		# 0 : sbet
452
453	vtbl.8	q4#lo, {q12}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4		# 4 = sbbu
454	vtbl.8	q4#hi, {q12}, q2#hi
455	@ Write to q1 instead of q0, so the table and destination registers do
456	@ not overlap.
457	vtbl.8	q1#lo, {q0}, q5#lo	@ vpshufb	%xmm5,	%xmm0,	%xmm0		# MC ch
458	vtbl.8	q1#hi, {q0}, q5#hi
459	@ Here we restore the original q0/q1 usage. This instruction is
460	@ reordered from the ARMv8 version so we do not clobber the vtbl.8
461	@ below.
462	veor	q0, q1, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0		# 4 = ch
463	vtbl.8	q1#lo, {q13}, q3#lo	@ vpshufb	%xmm3,	%xmm1,	%xmm1		# 0 = sbbt
464	vtbl.8	q1#hi, {q13}, q3#hi
465	veor	q0, q0, q1		@ vpxor		%xmm1,	%xmm0,	%xmm0		# 0 = ch
466
467	vtbl.8	q4#lo, {q14}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4		# 4 = sbeu
468	vtbl.8	q4#hi, {q14}, q2#hi
469	@ Write to q1 instead of q0, so the table and destination registers do
470	@ not overlap.
471	vtbl.8	q1#lo, {q0}, q5#lo	@ vpshufb	%xmm5,	%xmm0,	%xmm0		# MC ch
472	vtbl.8	q1#hi, {q0}, q5#hi
473	@ Here we restore the original q0/q1 usage. This instruction is
474	@ reordered from the ARMv8 version so we do not clobber the vtbl.8
475	@ below.
476	veor	q0, q1, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0		# 4 = ch
477	vtbl.8	q1#lo, {q15}, q3#lo	@ vpshufb	%xmm3,	%xmm1,	%xmm1		# 0 = sbet
478	vtbl.8	q1#hi, {q15}, q3#hi
479	vext.8	q5, q5, q5, #12		@ vpalignr 	\$12,	%xmm5,	%xmm5,	%xmm5
480	veor	q0, q0, q1		@ vpxor		%xmm1,	%xmm0,	%xmm0		# 0 = ch
481	subs	r8, r8, #1		@ sub		\$1,%rax			# nr--
482
483.Ldec_entry:
484	@ top of round
485	vand	q1, q0, q9		@ vpand		%xmm9,	%xmm0,	%xmm1	# 0 = k
486	vshr.u8	q0, q0, #4		@ vpsrlb	\$4,	%xmm0,	%xmm0	# 1 = i
487	vtbl.8	q2#lo, {$invhi}, q1#lo	@ vpshufb	%xmm1,	%xmm11,	%xmm2	# 2 = a/k
488	vtbl.8	q2#hi, {$invhi}, q1#hi
489	veor	q1, q1, q0		@ vpxor		%xmm0,	%xmm1,	%xmm1	# 0 = j
490	vtbl.8	q3#lo, {$invlo}, q0#lo	@ vpshufb	%xmm0, 	%xmm10,	%xmm3	# 3 = 1/i
491	vtbl.8	q3#hi, {$invlo}, q0#hi
492	vtbl.8	q4#lo, {$invlo}, q1#lo	@ vpshufb	%xmm1,	%xmm10,	%xmm4	# 4 = 1/j
493	vtbl.8	q4#hi, {$invlo}, q1#hi
494	veor	q3, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3	# 3 = iak = 1/i + a/k
495	veor	q4, q4, q2		@ vpxor		%xmm2, 	%xmm4,	%xmm4	# 4 = jak = 1/j + a/k
496	vtbl.8	q2#lo, {$invlo}, q3#lo	@ vpshufb	%xmm3,	%xmm10,	%xmm2	# 2 = 1/iak
497	vtbl.8	q2#hi, {$invlo}, q3#hi
498	vtbl.8	q3#lo, {$invlo}, q4#lo	@ vpshufb	%xmm4,  %xmm10,	%xmm3	# 3 = 1/jak
499	vtbl.8	q3#hi, {$invlo}, q4#hi
500	veor	q2, q2, q1		@ vpxor		%xmm1,	%xmm2,	%xmm2	# 2 = io
501	veor	q3, q3, q0		@ vpxor		%xmm0,  %xmm3,	%xmm3	# 3 = jo
502	vld1.64	{q0}, [r9]!		@ vmovdqu	(%r9),	%xmm0
503	bne	.Ldec_loop
504
505	@ middle of last round
506
507	adr	r10, .Lk_dsbo
508
509	@ Write to q1 rather than q4 to avoid overlapping table and destination.
510	vld1.64	{q1}, [r10]!		@ vmovdqa	0x60(%r10),	%xmm4	# 3 : sbou
511	vtbl.8	q4#lo, {q1}, q2#lo	@ vpshufb	%xmm2,	%xmm4,	%xmm4	# 4 = sbou
512	vtbl.8	q4#hi, {q1}, q2#hi
513	@ Write to q2 rather than q1 to avoid overlapping table and destination.
514	vld1.64	{q2}, [r10]		@ vmovdqa	0x70(%r10),	%xmm1	# 0 : sbot
515	vtbl.8	q1#lo, {q2}, q3#lo	@ vpshufb	%xmm3,	%xmm1,	%xmm1	# 0 = sb1t
516	vtbl.8	q1#hi, {q2}, q3#hi
517	vld1.64	{q2}, [r11]		@ vmovdqa	-0x160(%r11),	%xmm2	# .Lk_sr-.Lk_dsbd=-0x160
518	veor	q4, q4, q0		@ vpxor		%xmm0,	%xmm4,	%xmm4	# 4 = sb1u + k
519	@ Write to q1 rather than q0 so the table and destination registers
520	@ below do not overlap.
521	veor	q1, q1, q4		@ vpxor		%xmm4,	%xmm1,	%xmm0	# 0 = A
522	vtbl.8	q0#lo, {q1}, q2#lo	@ vpshufb	%xmm2,	%xmm0,	%xmm0
523	vtbl.8	q0#hi, {q1}, q2#hi
524	bx	lr
525.size	_vpaes_decrypt_core,.-_vpaes_decrypt_core
526
527.globl	vpaes_decrypt
528.type	vpaes_decrypt,%function
529.align	4
530vpaes_decrypt:
531	@ _vpaes_decrypt_core uses r7-r11.
532	stmdb	sp!, {r7-r11,lr}
533	@ _vpaes_decrypt_core uses q4-q5 (d8-d11), which are callee-saved.
534	vstmdb	sp!, {d8-d11}
535
536	vld1.64	{q0}, [$inp]
537	bl	_vpaes_preheat
538	bl	_vpaes_decrypt_core
539	vst1.64	{q0}, [$out]
540
541	vldmia	sp!, {d8-d11}
542	ldmia	sp!, {r7-r11, pc}	@ return
543.size	vpaes_decrypt,.-vpaes_decrypt
544___
545}
546{
547my ($inp,$bits,$out,$dir)=("r0","r1","r2","r3");
548my ($rcon,$s0F,$invlo,$invhi,$s63) = map("q$_",(8..12));
549
550$code.=<<___;
551@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
552@@                                                    @@
553@@                  AES key schedule                  @@
554@@                                                    @@
555@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
556
557@ This function diverges from both x86_64 and armv7 in which constants are
558@ pinned. x86_64 has a common preheat function for all operations. aarch64
559@ separates them because it has enough registers to pin nearly all constants.
560@ armv7 does not have enough registers, but needing explicit loads and stores
561@ also complicates using x86_64's register allocation directly.
562@
563@ We pin some constants for convenience and leave q14 and q15 free to load
564@ others on demand.
565
566@
567@  Key schedule constants
568@
569.type	_vpaes_key_consts,%object
570.align	4
571_vpaes_key_consts:
572.Lk_dksd:	@ decryption key schedule: invskew x*D
573	.quad	0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
574	.quad	0x41C277F4B5368300, 0x5FDC69EAAB289D1E
575.Lk_dksb:	@ decryption key schedule: invskew x*B
576	.quad	0x9A4FCA1F8550D500, 0x03D653861CC94C99
577	.quad	0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
578.Lk_dkse:	@ decryption key schedule: invskew x*E + 0x63
579	.quad	0xD5031CCA1FC9D600, 0x53859A4C994F5086
580	.quad	0xA23196054FDC7BE8, 0xCD5EF96A20B31487
581.Lk_dks9:	@ decryption key schedule: invskew x*9
582	.quad	0xB6116FC87ED9A700, 0x4AED933482255BFC
583	.quad	0x4576516227143300, 0x8BB89FACE9DAFDCE
584
585.Lk_rcon:	@ rcon
586	.quad	0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
587
588.Lk_opt:	@ output transform
589	.quad	0xFF9F4929D6B66000, 0xF7974121DEBE6808
590	.quad	0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
591.Lk_deskew:	@ deskew tables: inverts the sbox's "skew"
592	.quad	0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
593	.quad	0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
594.size	_vpaes_key_consts,.-_vpaes_key_consts
595
596.type	_vpaes_key_preheat,%function
597.align	4
598_vpaes_key_preheat:
599	adr	r11, .Lk_rcon
600	vmov.i8	$s63, #0x5b			@ .Lk_s63
601	adr	r10, .Lk_inv			@ Must be aligned to 8 mod 16.
602	vmov.i8	$s0F, #0x0f			@ .Lk_s0F
603	vld1.64	{$invlo,$invhi}, [r10]		@ .Lk_inv
604	vld1.64	{$rcon}, [r11]			@ .Lk_rcon
605	bx	lr
606.size	_vpaes_key_preheat,.-_vpaes_key_preheat
607
608.type	_vpaes_schedule_core,%function
609.align	4
610_vpaes_schedule_core:
611	@ We only need to save lr, but ARM requires an 8-byte stack alignment,
612	@ so save an extra register.
613	stmdb	sp!, {r3,lr}
614
615	bl	_vpaes_key_preheat	@ load the tables
616
617	adr	r11, .Lk_ipt		@ Must be aligned to 8 mod 16.
618	vld1.64	{q0}, [$inp]!		@ vmovdqu	(%rdi),	%xmm0		# load key (unaligned)
619
620	@ input transform
621	@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
622	@ overlap table and destination.
623	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm3
624	bl	_vpaes_schedule_transform
625	adr	r10, .Lk_sr		@ Must be aligned to 8 mod 16.
626	vmov	q7, q0			@ vmovdqa	%xmm0,	%xmm7
627
628	add	r8, r8, r10
629	tst	$dir, $dir
630	bne	.Lschedule_am_decrypting
631
632	@ encrypting, output zeroth round key after transform
633	vst1.64	{q0}, [$out]		@ vmovdqu	%xmm0,	(%rdx)
634	b	.Lschedule_go
635
636.Lschedule_am_decrypting:
637	@ decrypting, output zeroth round key after shiftrows
638	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),	%xmm1
639	vtbl.8	q3#lo, {q4}, q1#lo	@ vpshufb  	%xmm1,	%xmm3,	%xmm3
640	vtbl.8	q3#hi, {q4}, q1#hi
641	vst1.64	{q3}, [$out]		@ vmovdqu	%xmm3,	(%rdx)
642	eor	r8, r8, #0x30		@ xor	\$0x30, %r8
643
644.Lschedule_go:
645	cmp	$bits, #192		@ cmp	\$192,	%esi
646	bhi	.Lschedule_256
647	beq	.Lschedule_192
648	@ 128: fall though
649
650@@
651@@  .schedule_128
652@@
653@@  128-bit specific part of key schedule.
654@@
655@@  This schedule is really simple, because all its parts
656@@  are accomplished by the subroutines.
657@@
658.Lschedule_128:
659	mov	$inp, #10		@ mov	\$10, %esi
660
661.Loop_schedule_128:
662	bl 	_vpaes_schedule_round
663	subs	$inp, $inp, #1		@ dec	%esi
664	beq 	.Lschedule_mangle_last
665	bl	_vpaes_schedule_mangle	@ write output
666	b 	.Loop_schedule_128
667
668@@
669@@  .aes_schedule_192
670@@
671@@  192-bit specific part of key schedule.
672@@
673@@  The main body of this schedule is the same as the 128-bit
674@@  schedule, but with more smearing.  The long, high side is
675@@  stored in q7 as before, and the short, low side is in
676@@  the high bits of q6.
677@@
678@@  This schedule is somewhat nastier, however, because each
679@@  round produces 192 bits of key material, or 1.5 round keys.
680@@  Therefore, on each cycle we do 2 rounds and produce 3 round
681@@  keys.
682@@
683.align	4
684.Lschedule_192:
685	sub	$inp, $inp, #8
686	vld1.64	{q0}, [$inp]			@ vmovdqu	8(%rdi),%xmm0		# load key part 2 (very unaligned)
687	bl	_vpaes_schedule_transform	@ input transform
688	vmov	q6, q0				@ vmovdqa	%xmm0,	%xmm6		# save short part
689	vmov.i8	q6#lo, #0			@ vpxor	%xmm4,	%xmm4, %xmm4	# clear 4
690						@ vmovhlps	%xmm4,	%xmm6,	%xmm6		# clobber low side with zeros
691	mov	$inp, #4			@ mov	\$4,	%esi
692
693.Loop_schedule_192:
694	bl	_vpaes_schedule_round
695	vext.8	q0, q6, q0, #8			@ vpalignr	\$8,%xmm6,%xmm0,%xmm0
696	bl	_vpaes_schedule_mangle		@ save key n
697	bl	_vpaes_schedule_192_smear
698	bl	_vpaes_schedule_mangle		@ save key n+1
699	bl	_vpaes_schedule_round
700	subs	$inp, $inp, #1			@ dec	%esi
701	beq	.Lschedule_mangle_last
702	bl	_vpaes_schedule_mangle		@ save key n+2
703	bl	_vpaes_schedule_192_smear
704	b	.Loop_schedule_192
705
706@@
707@@  .aes_schedule_256
708@@
709@@  256-bit specific part of key schedule.
710@@
711@@  The structure here is very similar to the 128-bit
712@@  schedule, but with an additional "low side" in
713@@  q6.  The low side's rounds are the same as the
714@@  high side's, except no rcon and no rotation.
715@@
716.align	4
717.Lschedule_256:
718	vld1.64	{q0}, [$inp]			@ vmovdqu	16(%rdi),%xmm0		# load key part 2 (unaligned)
719	bl	_vpaes_schedule_transform	@ input transform
720	mov	$inp, #7			@ mov	\$7, %esi
721
722.Loop_schedule_256:
723	bl	_vpaes_schedule_mangle		@ output low result
724	vmov	q6, q0				@ vmovdqa	%xmm0,	%xmm6		# save cur_lo in xmm6
725
726	@ high round
727	bl	_vpaes_schedule_round
728	subs	$inp, $inp, #1			@ dec	%esi
729	beq 	.Lschedule_mangle_last
730	bl	_vpaes_schedule_mangle
731
732	@ low round. swap xmm7 and xmm6
733	vdup.32	q0, q0#hi[1]		@ vpshufd	\$0xFF,	%xmm0,	%xmm0
734	vmov.i8	q4, #0
735	vmov	q5, q7			@ vmovdqa	%xmm7,	%xmm5
736	vmov	q7, q6			@ vmovdqa	%xmm6,	%xmm7
737	bl	_vpaes_schedule_low_round
738	vmov	q7, q5			@ vmovdqa	%xmm5,	%xmm7
739
740	b	.Loop_schedule_256
741
742@@
743@@  .aes_schedule_mangle_last
744@@
745@@  Mangler for last round of key schedule
746@@  Mangles q0
747@@    when encrypting, outputs out(q0) ^ 63
748@@    when decrypting, outputs unskew(q0)
749@@
750@@  Always called right before return... jumps to cleanup and exits
751@@
752.align	4
753.Lschedule_mangle_last:
754	@ schedule last round key from xmm0
755	adr	r11, .Lk_deskew			@ lea	.Lk_deskew(%rip),%r11	# prepare to deskew
756	tst	$dir, $dir
757	bne	.Lschedule_mangle_last_dec
758
759	@ encrypting
760	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),%xmm1
761	adr	r11, .Lk_opt		@ lea		.Lk_opt(%rip),	%r11		# prepare to output transform
762	add	$out, $out, #32		@ add		\$32,	%rdx
763	vmov	q2, q0
764	vtbl.8	q0#lo, {q2}, q1#lo	@ vpshufb	%xmm1,	%xmm0,	%xmm0		# output permute
765	vtbl.8	q0#hi, {q2}, q1#hi
766
767.Lschedule_mangle_last_dec:
768	sub	$out, $out, #16			@ add	\$-16,	%rdx
769	veor	q0, q0, $s63			@ vpxor	.Lk_s63(%rip),	%xmm0,	%xmm0
770	bl	_vpaes_schedule_transform	@ output transform
771	vst1.64	{q0}, [$out]			@ vmovdqu	%xmm0,	(%rdx)		# save last key
772
773	@ cleanup
774	veor	q0, q0, q0		@ vpxor	%xmm0,	%xmm0,	%xmm0
775	veor	q1, q1, q1		@ vpxor	%xmm1,	%xmm1,	%xmm1
776	veor	q2, q2, q2		@ vpxor	%xmm2,	%xmm2,	%xmm2
777	veor	q3, q3, q3		@ vpxor	%xmm3,	%xmm3,	%xmm3
778	veor	q4, q4, q4		@ vpxor	%xmm4,	%xmm4,	%xmm4
779	veor	q5, q5, q5		@ vpxor	%xmm5,	%xmm5,	%xmm5
780	veor	q6, q6, q6		@ vpxor	%xmm6,	%xmm6,	%xmm6
781	veor	q7, q7, q7		@ vpxor	%xmm7,	%xmm7,	%xmm7
782	ldmia	sp!, {r3,pc}		@ return
783.size	_vpaes_schedule_core,.-_vpaes_schedule_core
784
785@@
786@@  .aes_schedule_192_smear
787@@
788@@  Smear the short, low side in the 192-bit key schedule.
789@@
790@@  Inputs:
791@@    q7: high side, b  a  x  y
792@@    q6:  low side, d  c  0  0
793@@
794@@  Outputs:
795@@    q6: b+c+d  b+c  0  0
796@@    q0: b+c+d  b+c  b  a
797@@
798.type	_vpaes_schedule_192_smear,%function
799.align	4
800_vpaes_schedule_192_smear:
801	vmov.i8	q1, #0
802	vdup.32	q0, q7#hi[1]
803	vshl.i64 q1, q6, #32		@ vpshufd	\$0x80,	%xmm6,	%xmm1	# d c 0 0 -> c 0 0 0
804	vmov	q0#lo, q7#hi		@ vpshufd	\$0xFE,	%xmm7,	%xmm0	# b a _ _ -> b b b a
805	veor	q6, q6, q1		@ vpxor	%xmm1,	%xmm6,	%xmm6	# -> c+d c 0 0
806	veor	q1, q1, q1		@ vpxor	%xmm1,	%xmm1,	%xmm1
807	veor	q6, q6, q0		@ vpxor	%xmm0,	%xmm6,	%xmm6	# -> b+c+d b+c b a
808	vmov	q0, q6			@ vmovdqa	%xmm6,	%xmm0
809	vmov	q6#lo, q1#lo		@ vmovhlps	%xmm1,	%xmm6,	%xmm6	# clobber low side with zeros
810	bx	lr
811.size	_vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear
812
813@@
814@@  .aes_schedule_round
815@@
816@@  Runs one main round of the key schedule on q0, q7
817@@
818@@  Specifically, runs subbytes on the high dword of q0
819@@  then rotates it by one byte and xors into the low dword of
820@@  q7.
821@@
822@@  Adds rcon from low byte of q8, then rotates q8 for
823@@  next rcon.
824@@
825@@  Smears the dwords of q7 by xoring the low into the
826@@  second low, result into third, result into highest.
827@@
828@@  Returns results in q7 = q0.
829@@  Clobbers q1-q4, r11.
830@@
831.type	_vpaes_schedule_round,%function
832.align	4
833_vpaes_schedule_round:
834	@ extract rcon from xmm8
835	vmov.i8	q4, #0				@ vpxor		%xmm4,	%xmm4,	%xmm4
836	vext.8	q1, $rcon, q4, #15		@ vpalignr	\$15,	%xmm8,	%xmm4,	%xmm1
837	vext.8	$rcon, $rcon, $rcon, #15	@ vpalignr	\$15,	%xmm8,	%xmm8,	%xmm8
838	veor	q7, q7, q1			@ vpxor		%xmm1,	%xmm7,	%xmm7
839
840	@ rotate
841	vdup.32	q0, q0#hi[1]			@ vpshufd	\$0xFF,	%xmm0,	%xmm0
842	vext.8	q0, q0, q0, #1			@ vpalignr	\$1,	%xmm0,	%xmm0,	%xmm0
843
844	@ fall through...
845
846	@ low round: same as high round, but no rotation and no rcon.
847_vpaes_schedule_low_round:
848	@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
849	@ We pin other values in _vpaes_key_preheat, so load them now.
850	adr	r11, .Lk_sb1
851	vld1.64	{q14,q15}, [r11]
852
853	@ smear xmm7
854	vext.8	q1, q4, q7, #12			@ vpslldq	\$4,	%xmm7,	%xmm1
855	veor	q7, q7, q1			@ vpxor	%xmm1,	%xmm7,	%xmm7
856	vext.8	q4, q4, q7, #8			@ vpslldq	\$8,	%xmm7,	%xmm4
857
858	@ subbytes
859	vand	q1, q0, $s0F			@ vpand		%xmm9,	%xmm0,	%xmm1		# 0 = k
860	vshr.u8	q0, q0, #4			@ vpsrlb	\$4,	%xmm0,	%xmm0		# 1 = i
861	 veor	q7, q7, q4			@ vpxor		%xmm4,	%xmm7,	%xmm7
862	vtbl.8	q2#lo, {$invhi}, q1#lo		@ vpshufb	%xmm1,	%xmm11,	%xmm2		# 2 = a/k
863	vtbl.8	q2#hi, {$invhi}, q1#hi
864	veor	q1, q1, q0			@ vpxor		%xmm0,	%xmm1,	%xmm1		# 0 = j
865	vtbl.8	q3#lo, {$invlo}, q0#lo		@ vpshufb	%xmm0, 	%xmm10,	%xmm3		# 3 = 1/i
866	vtbl.8	q3#hi, {$invlo}, q0#hi
867	veor	q3, q3, q2			@ vpxor		%xmm2,	%xmm3,	%xmm3		# 3 = iak = 1/i + a/k
868	vtbl.8	q4#lo, {$invlo}, q1#lo		@ vpshufb	%xmm1,	%xmm10,	%xmm4		# 4 = 1/j
869	vtbl.8	q4#hi, {$invlo}, q1#hi
870	 veor	q7, q7, $s63			@ vpxor		.Lk_s63(%rip),	%xmm7,	%xmm7
871	vtbl.8	q3#lo, {$invlo}, q3#lo		@ vpshufb	%xmm3,	%xmm10,	%xmm3		# 2 = 1/iak
872	vtbl.8	q3#hi, {$invlo}, q3#hi
873	veor	q4, q4, q2			@ vpxor		%xmm2,	%xmm4,	%xmm4		# 4 = jak = 1/j + a/k
874	vtbl.8	q2#lo, {$invlo}, q4#lo		@ vpshufb	%xmm4,	%xmm10,	%xmm2		# 3 = 1/jak
875	vtbl.8	q2#hi, {$invlo}, q4#hi
876	veor	q3, q3, q1			@ vpxor		%xmm1,	%xmm3,	%xmm3		# 2 = io
877	veor	q2, q2, q0			@ vpxor		%xmm0,	%xmm2,	%xmm2		# 3 = jo
878	vtbl.8	q4#lo, {q15}, q3#lo		@ vpshufb	%xmm3,	%xmm13,	%xmm4		# 4 = sbou
879	vtbl.8	q4#hi, {q15}, q3#hi
880	vtbl.8	q1#lo, {q14}, q2#lo		@ vpshufb	%xmm2,	%xmm12,	%xmm1		# 0 = sb1t
881	vtbl.8	q1#hi, {q14}, q2#hi
882	veor	q1, q1, q4			@ vpxor		%xmm4,	%xmm1,	%xmm1		# 0 = sbox output
883
884	@ add in smeared stuff
885	veor	q0, q1, q7			@ vpxor	%xmm7,	%xmm1,	%xmm0
886	veor	q7, q1, q7			@ vmovdqa	%xmm0,	%xmm7
887	bx	lr
888.size	_vpaes_schedule_round,.-_vpaes_schedule_round
889
890@@
891@@  .aes_schedule_transform
892@@
893@@  Linear-transform q0 according to tables at [r11]
894@@
895@@  Requires that q9 = 0x0F0F... as in preheat
896@@  Output in q0
897@@  Clobbers q1, q2, q14, q15
898@@
899.type	_vpaes_schedule_transform,%function
900.align	4
901_vpaes_schedule_transform:
902	vld1.64	{q14,q15}, [r11]	@ vmovdqa	(%r11),	%xmm2 	# lo
903					@ vmovdqa	16(%r11),	%xmm1 # hi
904	vand	q1, q0, $s0F		@ vpand	%xmm9,	%xmm0,	%xmm1
905	vshr.u8	q0, q0, #4		@ vpsrlb	\$4,	%xmm0,	%xmm0
906	vtbl.8	q2#lo, {q14}, q1#lo	@ vpshufb	%xmm1,	%xmm2,	%xmm2
907	vtbl.8	q2#hi, {q14}, q1#hi
908	vtbl.8	q0#lo, {q15}, q0#lo	@ vpshufb	%xmm0,	%xmm1,	%xmm0
909	vtbl.8	q0#hi, {q15}, q0#hi
910	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0
911	bx	lr
912.size	_vpaes_schedule_transform,.-_vpaes_schedule_transform
913
914@@
915@@  .aes_schedule_mangle
916@@
917@@  Mangles q0 from (basis-transformed) standard version
918@@  to our version.
919@@
920@@  On encrypt,
921@@    xor with 0x63
922@@    multiply by circulant 0,1,1,1
923@@    apply shiftrows transform
924@@
925@@  On decrypt,
926@@    xor with 0x63
927@@    multiply by "inverse mixcolumns" circulant E,B,D,9
928@@    deskew
929@@    apply shiftrows transform
930@@
931@@
932@@  Writes out to [r2], and increments or decrements it
933@@  Keeps track of round number mod 4 in r8
934@@  Preserves q0
935@@  Clobbers q1-q5
936@@
937.type	_vpaes_schedule_mangle,%function
938.align	4
939_vpaes_schedule_mangle:
940	tst	$dir, $dir
941	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm4	# save xmm0 for later
942	adr	r11, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
943	vld1.64	{q5}, [r11]		@ vmovdqa	.Lk_mc_forward(%rip),%xmm5
944	bne	.Lschedule_mangle_dec
945
946	@ encrypting
947	@ Write to q2 so we do not overlap table and destination below.
948	veor	q2, q0, $s63		@ vpxor		.Lk_s63(%rip),	%xmm0,	%xmm4
949	add	$out, $out, #16		@ add		\$16,	%rdx
950	vtbl.8	q4#lo, {q2}, q5#lo	@ vpshufb	%xmm5,	%xmm4,	%xmm4
951	vtbl.8	q4#hi, {q2}, q5#hi
952	vtbl.8	q1#lo, {q4}, q5#lo	@ vpshufb	%xmm5,	%xmm4,	%xmm1
953	vtbl.8	q1#hi, {q4}, q5#hi
954	vtbl.8	q3#lo, {q1}, q5#lo	@ vpshufb	%xmm5,	%xmm1,	%xmm3
955	vtbl.8	q3#hi, {q1}, q5#hi
956	veor	q4, q4, q1		@ vpxor		%xmm1,	%xmm4,	%xmm4
957	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),	%xmm1
958	veor	q3, q3, q4		@ vpxor		%xmm4,	%xmm3,	%xmm3
959
960	b	.Lschedule_mangle_both
961.align	4
962.Lschedule_mangle_dec:
963	@ inverse mix columns
964	adr	r11, .Lk_dksd 		@ lea		.Lk_dksd(%rip),%r11
965	vshr.u8	q1, q4, #4		@ vpsrlb	\$4,	%xmm4,	%xmm1	# 1 = hi
966	vand	q4, q4, $s0F		@ vpand		%xmm9,	%xmm4,	%xmm4	# 4 = lo
967
968	vld1.64	{q14,q15}, [r11]! 	@ vmovdqa	0x00(%r11),	%xmm2
969					@ vmovdqa	0x10(%r11),	%xmm3
970	vtbl.8	q2#lo, {q14}, q4#lo	@ vpshufb	%xmm4,	%xmm2,	%xmm2
971	vtbl.8	q2#hi, {q14}, q4#hi
972	vtbl.8	q3#lo, {q15}, q1#lo	@ vpshufb	%xmm1,	%xmm3,	%xmm3
973	vtbl.8	q3#hi, {q15}, q1#hi
974	@ Load .Lk_dksb ahead of time.
975	vld1.64	{q14,q15}, [r11]! 	@ vmovdqa	0x20(%r11),	%xmm2
976					@ vmovdqa	0x30(%r11),	%xmm3
977	@ Write to q13 so we do not overlap table and destination.
978	veor	q13, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3
979	vtbl.8	q3#lo, {q13}, q5#lo	@ vpshufb	%xmm5,	%xmm3,	%xmm3
980	vtbl.8	q3#hi, {q13}, q5#hi
981
982	vtbl.8	q2#lo, {q14}, q4#lo	@ vpshufb	%xmm4,	%xmm2,	%xmm2
983	vtbl.8	q2#hi, {q14}, q4#hi
984	veor	q2, q2, q3		@ vpxor		%xmm3,	%xmm2,	%xmm2
985	vtbl.8	q3#lo, {q15}, q1#lo	@ vpshufb	%xmm1,	%xmm3,	%xmm3
986	vtbl.8	q3#hi, {q15}, q1#hi
987	@ Load .Lk_dkse ahead of time.
988	vld1.64	{q14,q15}, [r11]! 	@ vmovdqa	0x40(%r11),	%xmm2
989					@ vmovdqa	0x50(%r11),	%xmm3
990	@ Write to q13 so we do not overlap table and destination.
991	veor	q13, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3
992	vtbl.8	q3#lo, {q13}, q5#lo	@ vpshufb	%xmm5,	%xmm3,	%xmm3
993	vtbl.8	q3#hi, {q13}, q5#hi
994
995	vtbl.8	q2#lo, {q14}, q4#lo	@ vpshufb	%xmm4,	%xmm2,	%xmm2
996	vtbl.8	q2#hi, {q14}, q4#hi
997	veor	q2, q2, q3		@ vpxor		%xmm3,	%xmm2,	%xmm2
998	vtbl.8	q3#lo, {q15}, q1#lo	@ vpshufb	%xmm1,	%xmm3,	%xmm3
999	vtbl.8	q3#hi, {q15}, q1#hi
1000	@ Load .Lk_dkse ahead of time.
1001	vld1.64	{q14,q15}, [r11]! 	@ vmovdqa	0x60(%r11),	%xmm2
1002					@ vmovdqa	0x70(%r11),	%xmm4
1003	@ Write to q13 so we do not overlap table and destination.
1004	veor	q13, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3
1005
1006	vtbl.8	q2#lo, {q14}, q4#lo	@ vpshufb	%xmm4,	%xmm2,	%xmm2
1007	vtbl.8	q2#hi, {q14}, q4#hi
1008	vtbl.8	q3#lo, {q13}, q5#lo	@ vpshufb	%xmm5,	%xmm3,	%xmm3
1009	vtbl.8	q3#hi, {q13}, q5#hi
1010	vtbl.8	q4#lo, {q15}, q1#lo	@ vpshufb	%xmm1,	%xmm4,	%xmm4
1011	vtbl.8	q4#hi, {q15}, q1#hi
1012	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),	%xmm1
1013	veor	q2, q2, q3		@ vpxor	%xmm3,	%xmm2,	%xmm2
1014	veor	q3, q4, q2		@ vpxor	%xmm2,	%xmm4,	%xmm3
1015
1016	sub	$out, $out, #16		@ add	\$-16,	%rdx
1017
1018.Lschedule_mangle_both:
1019	@ Write to q2 so table and destination do not overlap.
1020	vtbl.8	q2#lo, {q3}, q1#lo	@ vpshufb	%xmm1,	%xmm3,	%xmm3
1021	vtbl.8	q2#hi, {q3}, q1#hi
1022	add	r8, r8, #64-16		@ add	\$-16,	%r8
1023	and	r8, r8, #~(1<<6)	@ and	\$0x30,	%r8
1024	vst1.64	{q2}, [$out]		@ vmovdqu	%xmm3,	(%rdx)
1025	bx	lr
1026.size	_vpaes_schedule_mangle,.-_vpaes_schedule_mangle
1027
1028.globl	vpaes_set_encrypt_key
1029.type	vpaes_set_encrypt_key,%function
1030.align	4
1031vpaes_set_encrypt_key:
1032	stmdb	sp!, {r7-r11, lr}
1033	vstmdb	sp!, {d8-d15}
1034
1035	lsr	r9, $bits, #5		@ shr	\$5,%eax
1036	add	r9, r9, #5		@ \$5,%eax
1037	str	r9, [$out,#240]		@ mov	%eax,240(%rdx)	# AES_KEY->rounds = nbits/32+5;
1038
1039	mov	$dir, #0		@ mov	\$0,%ecx
1040	mov	r8, #0x30		@ mov	\$0x30,%r8d
1041	bl	_vpaes_schedule_core
1042	eor	r0, r0, r0
1043
1044	vldmia	sp!, {d8-d15}
1045	ldmia	sp!, {r7-r11, pc}	@ return
1046.size	vpaes_set_encrypt_key,.-vpaes_set_encrypt_key
1047
1048.globl	vpaes_set_decrypt_key
1049.type	vpaes_set_decrypt_key,%function
1050.align	4
1051vpaes_set_decrypt_key:
1052	stmdb	sp!, {r7-r11, lr}
1053	vstmdb	sp!, {d8-d15}
1054
1055	lsr	r9, $bits, #5		@ shr	\$5,%eax
1056	add	r9, r9, #5		@ \$5,%eax
1057	str	r9, [$out,#240]		@ mov	%eax,240(%rdx)	# AES_KEY->rounds = nbits/32+5;
1058	lsl	r9, r9, #4		@ shl	\$4,%eax
1059	add	$out, $out, #16		@ lea	16(%rdx,%rax),%rdx
1060	add	$out, $out, r9
1061
1062	mov	$dir, #1		@ mov	\$1,%ecx
1063	lsr	r8, $bits, #1		@ shr	\$1,%r8d
1064	and	r8, r8, #32		@ and	\$32,%r8d
1065	eor	r8, r8, #32		@ xor	\$32,%r8d	# nbits==192?0:32
1066	bl	_vpaes_schedule_core
1067
1068	vldmia	sp!, {d8-d15}
1069	ldmia	sp!, {r7-r11, pc}	@ return
1070.size	vpaes_set_decrypt_key,.-vpaes_set_decrypt_key
1071___
1072}
1073
1074{
1075my ($out, $inp) = map("r$_", (0..1));
1076my ($s0F, $s63, $s63_raw, $mc_forward) = map("q$_", (9..12));
1077
1078$code .= <<___;
1079
1080@ Additional constants for converting to bsaes.
1081.type	_vpaes_convert_consts,%object
1082.align	4
1083_vpaes_convert_consts:
1084@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
1085@ transform in the AES S-box. 0x63 is incorporated into the low half of the
1086@ table. This was computed with the following script:
1087@
1088@   def u64s_to_u128(x, y):
1089@       return x | (y << 64)
1090@   def u128_to_u64s(w):
1091@       return w & ((1<<64)-1), w >> 64
1092@   def get_byte(w, i):
1093@       return (w >> (i*8)) & 0xff
1094@   def apply_table(table, b):
1095@       lo = b & 0xf
1096@       hi = b >> 4
1097@       return get_byte(table[0], lo) ^ get_byte(table[1], hi)
1098@   def opt(b):
1099@       table = [
1100@           u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
1101@           u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
1102@       ]
1103@       return apply_table(table, b)
1104@   def rot_byte(b, n):
1105@       return 0xff & ((b << n) | (b >> (8-n)))
1106@   def skew(x):
1107@       return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
1108@               rot_byte(x, 4))
1109@   table = [0, 0]
1110@   for i in range(16):
1111@       table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
1112@       table[1] |= skew(opt(i<<4)) << (i*8)
1113@   print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[0]))
1114@   print("\t.quad\t0x%016x, 0x%016x" % u128_to_u64s(table[1]))
1115.Lk_opt_then_skew:
1116	.quad	0x9cb8436798bc4763, 0x6440bb9f6044bf9b
1117	.quad	0x1f30062936192f00, 0xb49bad829db284ab
1118
1119@ .Lk_decrypt_transform is a permutation which performs an 8-bit left-rotation
1120@ followed by a byte-swap on each 32-bit word of a vector. E.g., 0x11223344
1121@ becomes 0x22334411 and then 0x11443322.
1122.Lk_decrypt_transform:
1123	.quad	0x0704050603000102, 0x0f0c0d0e0b08090a
1124.size	_vpaes_convert_consts,.-_vpaes_convert_consts
1125
1126@ void vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
1127.globl	vpaes_encrypt_key_to_bsaes
1128.type	vpaes_encrypt_key_to_bsaes,%function
1129.align	4
1130vpaes_encrypt_key_to_bsaes:
1131	stmdb	sp!, {r11, lr}
1132
1133	@ See _vpaes_schedule_core for the key schedule logic. In particular,
1134	@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
1135	@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
1136	@ contain the transformations not in the bsaes representation. This
1137	@ function inverts those transforms.
1138	@
1139	@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
1140	@ representation, which does not match the other aes_nohw_*
1141	@ implementations. The ARM aes_nohw_* stores each 32-bit word
1142	@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
1143	@ cost of extra REV and VREV32 operations in little-endian ARM.
1144
1145	vmov.i8	$s0F, #0x0f		@ Required by _vpaes_schedule_transform
1146	adr	r2, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
1147	add	r3, r2, 0x90		@ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
1148
1149	vld1.64	{$mc_forward}, [r2]
1150	vmov.i8	$s63, #0x5b		@ .Lk_s63 from vpaes-x86_64
1151	adr	r11, .Lk_opt		@ Must be aligned to 8 mod 16.
1152	vmov.i8	$s63_raw, #0x63		@ .LK_s63 without .Lk_ipt applied
1153
1154	@ vpaes stores one fewer round count than bsaes, but the number of keys
1155	@ is the same.
1156	ldr	r2, [$inp,#240]
1157	add	r2, r2, #1
1158	str	r2, [$out,#240]
1159
1160	@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
1161	@ Invert this with .Lk_opt.
1162	vld1.64	{q0}, [$inp]!
1163	bl	_vpaes_schedule_transform
1164	vrev32.8	q0, q0
1165	vst1.64	{q0}, [$out]!
1166
1167	@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
1168	@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
1169	@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
1170.Loop_enc_key_to_bsaes:
1171	vld1.64	{q0}, [$inp]!
1172
1173	@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
1174	@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
1175	@ We use r3 rather than r8 to avoid a callee-saved register.
1176	vld1.64	{q1}, [r3]
1177	vtbl.8  q2#lo, {q0}, q1#lo
1178	vtbl.8  q2#hi, {q0}, q1#hi
1179	add	r3, r3, #16
1180	and	r3, r3, #~(1<<6)
1181	vmov	q0, q2
1182
1183	@ Handle the last key differently.
1184	subs	r2, r2, #1
1185	beq	.Loop_enc_key_to_bsaes_last
1186
1187	@ Multiply by the circulant. This is its own inverse.
1188	vtbl.8	q1#lo, {q0}, $mc_forward#lo
1189	vtbl.8	q1#hi, {q0}, $mc_forward#hi
1190	vmov	q0, q1
1191	vtbl.8	q2#lo, {q1}, $mc_forward#lo
1192	vtbl.8	q2#hi, {q1}, $mc_forward#hi
1193	veor	q0, q0, q2
1194	vtbl.8	q1#lo, {q2}, $mc_forward#lo
1195	vtbl.8	q1#hi, {q2}, $mc_forward#hi
1196	veor	q0, q0, q1
1197
1198	@ XOR and finish.
1199	veor	q0, q0, $s63
1200	bl	_vpaes_schedule_transform
1201	vrev32.8	q0, q0
1202	vst1.64	{q0}, [$out]!
1203	b	.Loop_enc_key_to_bsaes
1204
1205.Loop_enc_key_to_bsaes_last:
1206	@ The final key does not have a basis transform (note
1207	@ .Lschedule_mangle_last inverts the original transform). It only XORs
1208	@ 0x63 and applies ShiftRows. The latter was already inverted in the
1209	@ loop. Note that, because we act on the original representation, we use
1210	@ $s63_raw, not $s63.
1211	veor	q0, q0, $s63_raw
1212	vrev32.8	q0, q0
1213	vst1.64	{q0}, [$out]
1214
1215	@ Wipe registers which contained key material.
1216	veor	q0, q0, q0
1217	veor	q1, q1, q1
1218	veor	q2, q2, q2
1219
1220	ldmia	sp!, {r11, pc}	@ return
1221.size	vpaes_encrypt_key_to_bsaes,.-vpaes_encrypt_key_to_bsaes
1222
1223@ void vpaes_decrypt_key_to_bsaes(AES_KEY *vpaes, const AES_KEY *bsaes);
1224.globl	vpaes_decrypt_key_to_bsaes
1225.type	vpaes_decrypt_key_to_bsaes,%function
1226.align	4
1227vpaes_decrypt_key_to_bsaes:
1228	stmdb	sp!, {r11, lr}
1229
1230	@ See _vpaes_schedule_core for the key schedule logic. Note vpaes
1231	@ computes the decryption key schedule in reverse. Additionally,
1232	@ aes-x86_64.pl shares some transformations, so we must only partially
1233	@ invert vpaes's transformations. In general, vpaes computes in a
1234	@ different basis (.Lk_ipt and .Lk_opt) and applies the inverses of
1235	@ MixColumns, ShiftRows, and the affine part of the AES S-box (which is
1236	@ split into a linear skew and XOR of 0x63). We undo all but MixColumns.
1237	@
1238	@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
1239	@ representation, which does not match the other aes_nohw_*
1240	@ implementations. The ARM aes_nohw_* stores each 32-bit word
1241	@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
1242	@ cost of extra REV and VREV32 operations in little-endian ARM.
1243
1244	adr	r2, .Lk_decrypt_transform
1245	adr	r3, .Lk_sr+0x30
1246	adr	r11, .Lk_opt_then_skew	@ Input to _vpaes_schedule_transform.
1247	vld1.64	{$mc_forward}, [r2]	@ Reuse $mc_forward from encryption.
1248	vmov.i8	$s0F, #0x0f		@ Required by _vpaes_schedule_transform
1249
1250	@ vpaes stores one fewer round count than bsaes, but the number of keys
1251	@ is the same.
1252	ldr	r2, [$inp,#240]
1253	add	r2, r2, #1
1254	str	r2, [$out,#240]
1255
1256	@ Undo the basis change and reapply the S-box affine transform. See
1257	@ .Lschedule_mangle_last.
1258	vld1.64	{q0}, [$inp]!
1259	bl	_vpaes_schedule_transform
1260	vrev32.8	q0, q0
1261	vst1.64	{q0}, [$out]!
1262
1263	@ See _vpaes_schedule_mangle for the transform on the middle keys. Note
1264	@ it simultaneously inverts MixColumns and the S-box affine transform.
1265	@ See .Lk_dksd through .Lk_dks9.
1266.Loop_dec_key_to_bsaes:
1267	vld1.64	{q0}, [$inp]!
1268
1269	@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note going
1270	@ forwards cancels inverting for which direction we cycle r3. We use r3
1271	@ rather than r8 to avoid a callee-saved register.
1272	vld1.64	{q1}, [r3]
1273	vtbl.8  q2#lo, {q0}, q1#lo
1274	vtbl.8  q2#hi, {q0}, q1#hi
1275	add	r3, r3, #64-16
1276	and	r3, r3, #~(1<<6)
1277	vmov	q0, q2
1278
1279	@ Handle the last key differently.
1280	subs	r2, r2, #1
1281	beq	.Loop_dec_key_to_bsaes_last
1282
1283	@ Undo the basis change and reapply the S-box affine transform.
1284	bl	_vpaes_schedule_transform
1285
1286	@ Rotate each word by 8 bytes (cycle the rows) and then byte-swap. We
1287	@ combine the two operations in .Lk_decrypt_transform.
1288	@
1289	@ TODO(davidben): Where does the rotation come from?
1290	vtbl.8	q1#lo, {q0}, $mc_forward#lo
1291	vtbl.8	q1#hi, {q0}, $mc_forward#hi
1292
1293	vst1.64	{q1}, [$out]!
1294	b	.Loop_dec_key_to_bsaes
1295
1296.Loop_dec_key_to_bsaes_last:
1297	@ The final key only inverts ShiftRows (already done in the loop). See
1298	@ .Lschedule_am_decrypting. Its basis is not transformed.
1299	vrev32.8	q0, q0
1300	vst1.64	{q0}, [$out]!
1301
1302	@ Wipe registers which contained key material.
1303	veor	q0, q0, q0
1304	veor	q1, q1, q1
1305	veor	q2, q2, q2
1306
1307	ldmia	sp!, {r11, pc}	@ return
1308.size	vpaes_decrypt_key_to_bsaes,.-vpaes_decrypt_key_to_bsaes
1309___
1310}
1311
1312{
1313# Register-passed parameters.
1314my ($inp, $out, $len, $key) = map("r$_", 0..3);
1315# Temporaries. _vpaes_encrypt_core already uses r8..r11, so overlap $ivec and
1316# $tmp. $ctr is r7 because it must be preserved across calls.
1317my ($ctr, $ivec, $tmp) = map("r$_", 7..9);
1318
1319# void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
1320#                                 const AES_KEY *key, const uint8_t ivec[16]);
1321$code .= <<___;
1322.globl	vpaes_ctr32_encrypt_blocks
1323.type	vpaes_ctr32_encrypt_blocks,%function
1324.align	4
1325vpaes_ctr32_encrypt_blocks:
1326	mov	ip, sp
1327	stmdb	sp!, {r7-r11, lr}
1328	@ This function uses q4-q7 (d8-d15), which are callee-saved.
1329	vstmdb	sp!, {d8-d15}
1330
1331	cmp	$len, #0
1332	@ $ivec is passed on the stack.
1333	ldr	$ivec, [ip]
1334	beq	.Lctr32_done
1335
1336	@ _vpaes_encrypt_core expects the key in r2, so swap $len and $key.
1337	mov	$tmp, $key
1338	mov	$key, $len
1339	mov	$len, $tmp
1340___
1341my ($len, $key) = ($key, $len);
1342$code .= <<___;
1343
1344	@ Load the IV and counter portion.
1345	ldr	$ctr, [$ivec, #12]
1346	vld1.8	{q7}, [$ivec]
1347
1348	bl	_vpaes_preheat
1349	rev	$ctr, $ctr		@ The counter is big-endian.
1350
1351.Lctr32_loop:
1352	vmov	q0, q7
1353	vld1.8	{q6}, [$inp]!		@ Load input ahead of time
1354	bl	_vpaes_encrypt_core
1355	veor	q0, q0, q6		@ XOR input and result
1356	vst1.8	{q0}, [$out]!
1357	subs	$len, $len, #1
1358	@ Update the counter.
1359	add	$ctr, $ctr, #1
1360	rev	$tmp, $ctr
1361	vmov.32	q7#hi[1], $tmp
1362	bne	.Lctr32_loop
1363
1364.Lctr32_done:
1365	vldmia	sp!, {d8-d15}
1366	ldmia	sp!, {r7-r11, pc}	@ return
1367.size	vpaes_ctr32_encrypt_blocks,.-vpaes_ctr32_encrypt_blocks
1368___
1369}
1370
1371foreach (split("\n",$code)) {
1372	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo;
1373	print $_,"\n";
1374}
1375
1376close STDOUT or die "error closing STDOUT: $!";
1377