xref: /aosp_15_r20/external/armnn/third-party/fmt/core.h (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 // Formatting library for C++ - the core API
2 //
3 // Copyright (c) 2012 - present, Victor Zverovich
4 // All rights reserved.
5 // SPDX-License-Identifier: MIT
6 //
7 // For the license information refer to format.h.
8 
9 #ifndef FMT_CORE_H_
10 #define FMT_CORE_H_
11 
12 #include <cstdio>  // std::FILE
13 #include <cstring>
14 #include <functional>
15 #include <iterator>
16 #include <memory>
17 #include <string>
18 #include <type_traits>
19 #include <vector>
20 
21 // The fmt library version in the form major * 10000 + minor * 100 + patch.
22 #define FMT_VERSION 70001
23 
24 #ifdef __clang__
25 #  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
26 #else
27 #  define FMT_CLANG_VERSION 0
28 #endif
29 
30 #if defined(__GNUC__) && !defined(__clang__)
31 #  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
32 #else
33 #  define FMT_GCC_VERSION 0
34 #endif
35 
36 #if defined(__INTEL_COMPILER)
37 #  define FMT_ICC_VERSION __INTEL_COMPILER
38 #else
39 #  define FMT_ICC_VERSION 0
40 #endif
41 
42 #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
43 #  define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
44 #else
45 #  define FMT_HAS_GXX_CXX11 0
46 #endif
47 
48 #ifdef __NVCC__
49 #  define FMT_NVCC __NVCC__
50 #else
51 #  define FMT_NVCC 0
52 #endif
53 
54 #ifdef _MSC_VER
55 #  define FMT_MSC_VER _MSC_VER
56 #  define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
57 #else
58 #  define FMT_MSC_VER 0
59 #  define FMT_SUPPRESS_MSC_WARNING(n)
60 #endif
61 #ifdef __has_feature
62 #  define FMT_HAS_FEATURE(x) __has_feature(x)
63 #else
64 #  define FMT_HAS_FEATURE(x) 0
65 #endif
66 
67 #if defined(__has_include) && !defined(__INTELLISENSE__) && \
68     !(FMT_ICC_VERSION && FMT_ICC_VERSION < 1600)
69 #  define FMT_HAS_INCLUDE(x) __has_include(x)
70 #else
71 #  define FMT_HAS_INCLUDE(x) 0
72 #endif
73 
74 #ifdef __has_cpp_attribute
75 #  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
76 #else
77 #  define FMT_HAS_CPP_ATTRIBUTE(x) 0
78 #endif
79 
80 #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
81   (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
82 
83 #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
84   (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
85 
86 // Check if relaxed C++14 constexpr is supported.
87 // GCC doesn't allow throw in constexpr until version 6 (bug 67371).
88 #ifndef FMT_USE_CONSTEXPR
89 #  define FMT_USE_CONSTEXPR                                           \
90     (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
91      (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) &&           \
92         !FMT_NVCC && !FMT_ICC_VERSION
93 #endif
94 #if FMT_USE_CONSTEXPR
95 #  define FMT_CONSTEXPR constexpr
96 #  define FMT_CONSTEXPR_DECL constexpr
97 #else
98 #  define FMT_CONSTEXPR inline
99 #  define FMT_CONSTEXPR_DECL
100 #endif
101 
102 #ifndef FMT_OVERRIDE
103 #  if FMT_HAS_FEATURE(cxx_override) || \
104       (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
105 #    define FMT_OVERRIDE override
106 #  else
107 #    define FMT_OVERRIDE
108 #  endif
109 #endif
110 
111 // Check if exceptions are disabled.
112 #ifndef FMT_EXCEPTIONS
113 #  if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
114       FMT_MSC_VER && !_HAS_EXCEPTIONS
115 #    define FMT_EXCEPTIONS 0
116 #  else
117 #    define FMT_EXCEPTIONS 1
118 #  endif
119 #endif
120 
121 // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
122 #ifndef FMT_USE_NOEXCEPT
123 #  define FMT_USE_NOEXCEPT 0
124 #endif
125 
126 #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
127     (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
128 #  define FMT_DETECTED_NOEXCEPT noexcept
129 #  define FMT_HAS_CXX11_NOEXCEPT 1
130 #else
131 #  define FMT_DETECTED_NOEXCEPT throw()
132 #  define FMT_HAS_CXX11_NOEXCEPT 0
133 #endif
134 
135 #ifndef FMT_NOEXCEPT
136 #  if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
137 #    define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
138 #  else
139 #    define FMT_NOEXCEPT
140 #  endif
141 #endif
142 
143 // [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
144 // warnings.
145 #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
146     !FMT_NVCC
147 #  define FMT_NORETURN [[noreturn]]
148 #else
149 #  define FMT_NORETURN
150 #endif
151 
152 #ifndef FMT_DEPRECATED
153 #  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
154 #    define FMT_DEPRECATED [[deprecated]]
155 #  else
156 #    if defined(__GNUC__) || defined(__clang__)
157 #      define FMT_DEPRECATED __attribute__((deprecated))
158 #    elif FMT_MSC_VER
159 #      define FMT_DEPRECATED __declspec(deprecated)
160 #    else
161 #      define FMT_DEPRECATED /* deprecated */
162 #    endif
163 #  endif
164 #endif
165 
166 // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
167 #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
168 #  define FMT_DEPRECATED_ALIAS
169 #else
170 #  define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
171 #endif
172 
173 #ifndef FMT_INLINE
174 #  if FMT_GCC_VERSION || FMT_CLANG_VERSION
175 #    define FMT_INLINE inline __attribute__((always_inline))
176 #  else
177 #    define FMT_INLINE inline
178 #  endif
179 #endif
180 
181 #ifndef FMT_BEGIN_NAMESPACE
182 #  if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
183       FMT_MSC_VER >= 1900
184 #    define FMT_INLINE_NAMESPACE inline namespace
185 #    define FMT_END_NAMESPACE \
186       }                       \
187       }
188 #  else
189 #    define FMT_INLINE_NAMESPACE namespace
190 #    define FMT_END_NAMESPACE \
191       }                       \
192       using namespace v7;     \
193       }
194 #  endif
195 #  define FMT_BEGIN_NAMESPACE \
196     namespace fmt {           \
197     FMT_INLINE_NAMESPACE v7 {
198 #endif
199 
200 #if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
201 #  define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
202 #  ifdef FMT_EXPORT
203 #    define FMT_API __declspec(dllexport)
204 #    define FMT_EXTERN_TEMPLATE_API FMT_API
205 #    define FMT_EXPORTED
206 #  elif defined(FMT_SHARED)
207 #    define FMT_API __declspec(dllimport)
208 #    define FMT_EXTERN_TEMPLATE_API FMT_API
209 #  endif
210 #else
211 #  define FMT_CLASS_API
212 #endif
213 #ifndef FMT_API
214 #  define FMT_API
215 #endif
216 #ifndef FMT_EXTERN_TEMPLATE_API
217 #  define FMT_EXTERN_TEMPLATE_API
218 #endif
219 #ifndef FMT_INSTANTIATION_DEF_API
220 #  define FMT_INSTANTIATION_DEF_API FMT_API
221 #endif
222 
223 #ifndef FMT_HEADER_ONLY
224 #  define FMT_EXTERN extern
225 #else
226 #  define FMT_EXTERN
227 #endif
228 
229 // libc++ supports string_view in pre-c++17.
230 #if (FMT_HAS_INCLUDE(<string_view>) &&                       \
231      (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
232     (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
233 #  include <string_view>
234 #  define FMT_USE_STRING_VIEW
235 #elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
236 #  include <experimental/string_view>
237 #  define FMT_USE_EXPERIMENTAL_STRING_VIEW
238 #endif
239 
240 #ifndef FMT_UNICODE
241 #  define FMT_UNICODE !FMT_MSC_VER
242 #endif
243 #if FMT_UNICODE && FMT_MSC_VER
244 #  pragma execution_character_set("utf-8")
245 #endif
246 
247 FMT_BEGIN_NAMESPACE
248 
249 // Implementations of enable_if_t and other metafunctions for older systems.
250 template <bool B, class T = void>
251 using enable_if_t = typename std::enable_if<B, T>::type;
252 template <bool B, class T, class F>
253 using conditional_t = typename std::conditional<B, T, F>::type;
254 template <bool B> using bool_constant = std::integral_constant<bool, B>;
255 template <typename T>
256 using remove_reference_t = typename std::remove_reference<T>::type;
257 template <typename T>
258 using remove_const_t = typename std::remove_const<T>::type;
259 template <typename T>
260 using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
261 template <typename T> struct type_identity { using type = T; };
262 template <typename T> using type_identity_t = typename type_identity<T>::type;
263 
264 struct monostate {};
265 
266 // An enable_if helper to be used in template parameters which results in much
267 // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
268 // to workaround a bug in MSVC 2019 (see #1140 and #1186).
269 #define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
270 
271 namespace detail {
272 
273 // A helper function to suppress bogus "conditional expression is constant"
274 // warnings.
const_check(T value)275 template <typename T> constexpr T const_check(T value) { return value; }
276 
277 FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
278                                       const char* message);
279 
280 #ifndef FMT_ASSERT
281 #  ifdef NDEBUG
282 // FMT_ASSERT is not empty to avoid -Werror=empty-body.
283 #    define FMT_ASSERT(condition, message) ((void)0)
284 #  else
285 #    define FMT_ASSERT(condition, message)                                    \
286       ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
287            ? (void)0                                                          \
288            : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
289 #  endif
290 #endif
291 
292 #if defined(FMT_USE_STRING_VIEW)
293 template <typename Char> using std_string_view = std::basic_string_view<Char>;
294 #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
295 template <typename Char>
296 using std_string_view = std::experimental::basic_string_view<Char>;
297 #else
298 template <typename T> struct std_string_view {};
299 #endif
300 
301 #ifdef FMT_USE_INT128
302 // Do nothing.
303 #elif defined(__SIZEOF_INT128__) && !FMT_NVCC
304 #  define FMT_USE_INT128 1
305 using int128_t = __int128_t;
306 using uint128_t = __uint128_t;
307 #else
308 #  define FMT_USE_INT128 0
309 #endif
310 #if !FMT_USE_INT128
311 struct int128_t {};
312 struct uint128_t {};
313 #endif
314 
315 // Casts a nonnegative integer to unsigned.
316 template <typename Int>
to_unsigned(Int value)317 FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
318   FMT_ASSERT(value >= 0, "negative value");
319   return static_cast<typename std::make_unsigned<Int>::type>(value);
320 }
321 
322 FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";
323 
is_unicode()324 template <typename Char> constexpr bool is_unicode() {
325   return FMT_UNICODE || sizeof(Char) != 1 ||
326          (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
327 }
328 
329 #ifdef __cpp_char8_t
330 using char8_type = char8_t;
331 #else
332 enum char8_type : unsigned char {};
333 #endif
334 }  // namespace detail
335 
336 #ifdef FMT_USE_INTERNAL
337 namespace internal = detail;  // DEPRECATED
338 #endif
339 
340 /**
341   An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
342   subset of the API. ``fmt::basic_string_view`` is used for format strings even
343   if ``std::string_view`` is available to prevent issues when a library is
344   compiled with a different ``-std`` option than the client code (which is not
345   recommended).
346  */
347 template <typename Char> class basic_string_view {
348  private:
349   const Char* data_;
350   size_t size_;
351 
352  public:
353   using value_type = Char;
354   using iterator = const Char*;
355 
basic_string_view()356   constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
357 
358   /** Constructs a string reference object from a C string and a size. */
basic_string_view(const Char * s,size_t count)359   constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
360       : data_(s),
361         size_(count) {}
362 
363   /**
364     \rst
365     Constructs a string reference object from a C string computing
366     the size with ``std::char_traits<Char>::length``.
367     \endrst
368    */
369 #if __cplusplus >= 201703L  // C++17's char_traits::length() is constexpr.
370   FMT_CONSTEXPR
371 #endif
basic_string_view(const Char * s)372   basic_string_view(const Char* s)
373       : data_(s), size_(std::char_traits<Char>::length(s)) {}
374 
375   /** Constructs a string reference from a ``std::basic_string`` object. */
376   template <typename Traits, typename Alloc>
basic_string_view(const std::basic_string<Char,Traits,Alloc> & s)377   FMT_CONSTEXPR basic_string_view(
378       const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
379       : data_(s.data()),
380         size_(s.size()) {}
381 
382   template <typename S, FMT_ENABLE_IF(std::is_same<
383                                       S, detail::std_string_view<Char>>::value)>
basic_string_view(S s)384   FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
385                                                       size_(s.size()) {}
386 
387   /** Returns a pointer to the string data. */
data()388   constexpr const Char* data() const { return data_; }
389 
390   /** Returns the string size. */
size()391   constexpr size_t size() const { return size_; }
392 
begin()393   constexpr iterator begin() const { return data_; }
end()394   constexpr iterator end() const { return data_ + size_; }
395 
396   constexpr const Char& operator[](size_t pos) const { return data_[pos]; }
397 
remove_prefix(size_t n)398   FMT_CONSTEXPR void remove_prefix(size_t n) {
399     data_ += n;
400     size_ -= n;
401   }
402 
403   // Lexicographically compare this string reference to other.
compare(basic_string_view other)404   int compare(basic_string_view other) const {
405     size_t str_size = size_ < other.size_ ? size_ : other.size_;
406     int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
407     if (result == 0)
408       result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
409     return result;
410   }
411 
412   friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
413     return lhs.compare(rhs) == 0;
414   }
415   friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
416     return lhs.compare(rhs) != 0;
417   }
418   friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
419     return lhs.compare(rhs) < 0;
420   }
421   friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
422     return lhs.compare(rhs) <= 0;
423   }
424   friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
425     return lhs.compare(rhs) > 0;
426   }
427   friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
428     return lhs.compare(rhs) >= 0;
429   }
430 };
431 
432 using string_view = basic_string_view<char>;
433 using wstring_view = basic_string_view<wchar_t>;
434 
435 /** Specifies if ``T`` is a character type. Can be specialized by users. */
436 template <typename T> struct is_char : std::false_type {};
437 template <> struct is_char<char> : std::true_type {};
438 template <> struct is_char<wchar_t> : std::true_type {};
439 template <> struct is_char<detail::char8_type> : std::true_type {};
440 template <> struct is_char<char16_t> : std::true_type {};
441 template <> struct is_char<char32_t> : std::true_type {};
442 
443 /**
444   \rst
445   Returns a string view of `s`. In order to add custom string type support to
446   {fmt} provide an overload of `to_string_view` for it in the same namespace as
447   the type for the argument-dependent lookup to work.
448 
449   **Example**::
450 
451     namespace my_ns {
452     inline string_view to_string_view(const my_string& s) {
453       return {s.data(), s.length()};
454     }
455     }
456     std::string message = fmt::format(my_string("The answer is {}"), 42);
457   \endrst
458  */
459 template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
460 inline basic_string_view<Char> to_string_view(const Char* s) {
461   return s;
462 }
463 
464 template <typename Char, typename Traits, typename Alloc>
465 inline basic_string_view<Char> to_string_view(
466     const std::basic_string<Char, Traits, Alloc>& s) {
467   return s;
468 }
469 
470 template <typename Char>
471 inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
472   return s;
473 }
474 
475 template <typename Char,
476           FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
477 inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
478   return s;
479 }
480 
481 // A base class for compile-time strings. It is defined in the fmt namespace to
482 // make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
483 struct compile_string {};
484 
485 template <typename S>
486 struct is_compile_string : std::is_base_of<compile_string, S> {};
487 
488 template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
489 constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
490   return s;
491 }
492 
493 namespace detail {
494 void to_string_view(...);
495 using fmt::v7::to_string_view;
496 
497 // Specifies whether S is a string type convertible to fmt::basic_string_view.
498 // It should be a constexpr function but MSVC 2017 fails to compile it in
499 // enable_if and MSVC 2015 fails to compile it as an alias template.
500 template <typename S>
501 struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
502 };
503 
504 template <typename S, typename = void> struct char_t_impl {};
505 template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
506   using result = decltype(to_string_view(std::declval<S>()));
507   using type = typename result::value_type;
508 };
509 
510 // Reports a compile-time error if S is not a valid format string.
511 template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
512 FMT_INLINE void check_format_string(const S&) {
513 #ifdef FMT_ENFORCE_COMPILE_STRING
514   static_assert(is_compile_string<S>::value,
515                 "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
516                 "FMT_STRING.");
517 #endif
518 }
519 template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
520 void check_format_string(S);
521 
522 struct error_handler {
523   constexpr error_handler() = default;
524   constexpr error_handler(const error_handler&) = default;
525 
526   // This function is intentionally not constexpr to give a compile-time error.
527   FMT_NORETURN FMT_API void on_error(const char* message);
528 };
529 }  // namespace detail
530 
531 /** String's character type. */
532 template <typename S> using char_t = typename detail::char_t_impl<S>::type;
533 
534 /**
535   \rst
536   Parsing context consisting of a format string range being parsed and an
537   argument counter for automatic indexing.
538 
539   You can use one of the following type aliases for common character types:
540 
541   +-----------------------+-------------------------------------+
542   | Type                  | Definition                          |
543   +=======================+=====================================+
544   | format_parse_context  | basic_format_parse_context<char>    |
545   +-----------------------+-------------------------------------+
546   | wformat_parse_context | basic_format_parse_context<wchar_t> |
547   +-----------------------+-------------------------------------+
548   \endrst
549  */
550 template <typename Char, typename ErrorHandler = detail::error_handler>
551 class basic_format_parse_context : private ErrorHandler {
552  private:
553   basic_string_view<Char> format_str_;
554   int next_arg_id_;
555 
556  public:
557   using char_type = Char;
558   using iterator = typename basic_string_view<Char>::iterator;
559 
560   explicit constexpr basic_format_parse_context(
561       basic_string_view<Char> format_str, ErrorHandler eh = {})
562       : ErrorHandler(eh), format_str_(format_str), next_arg_id_(0) {}
563 
564   /**
565     Returns an iterator to the beginning of the format string range being
566     parsed.
567    */
568   constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
569 
570   /**
571     Returns an iterator past the end of the format string range being parsed.
572    */
573   constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
574 
575   /** Advances the begin iterator to ``it``. */
576   FMT_CONSTEXPR void advance_to(iterator it) {
577     format_str_.remove_prefix(detail::to_unsigned(it - begin()));
578   }
579 
580   /**
581     Reports an error if using the manual argument indexing; otherwise returns
582     the next argument index and switches to the automatic indexing.
583    */
584   FMT_CONSTEXPR int next_arg_id() {
585     // Don't check if the argument id is valid to avoid overhead and because it
586     // will be checked during formatting anyway.
587     if (next_arg_id_ >= 0) return next_arg_id_++;
588     on_error("cannot switch from manual to automatic argument indexing");
589     return 0;
590   }
591 
592   /**
593     Reports an error if using the automatic argument indexing; otherwise
594     switches to the manual indexing.
595    */
596   FMT_CONSTEXPR void check_arg_id(int) {
597     if (next_arg_id_ > 0)
598       on_error("cannot switch from automatic to manual argument indexing");
599     else
600       next_arg_id_ = -1;
601   }
602 
603   FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
604 
605   FMT_CONSTEXPR void on_error(const char* message) {
606     ErrorHandler::on_error(message);
607   }
608 
609   constexpr ErrorHandler error_handler() const { return *this; }
610 };
611 
612 using format_parse_context = basic_format_parse_context<char>;
613 using wformat_parse_context = basic_format_parse_context<wchar_t>;
614 
615 template <typename Context> class basic_format_arg;
616 template <typename Context> class basic_format_args;
617 template <typename Context> class dynamic_format_arg_store;
618 
619 // A formatter for objects of type T.
620 template <typename T, typename Char = char, typename Enable = void>
621 struct formatter {
622   // A deleted default constructor indicates a disabled formatter.
623   formatter() = delete;
624 };
625 
626 // Specifies if T has an enabled formatter specialization. A type can be
627 // formattable even if it doesn't have a formatter e.g. via a conversion.
628 template <typename T, typename Context>
629 using has_formatter =
630     std::is_constructible<typename Context::template formatter_type<T>>;
631 
632 // Checks whether T is a container with contiguous storage.
633 template <typename T> struct is_contiguous : std::false_type {};
634 template <typename Char>
635 struct is_contiguous<std::basic_string<Char>> : std::true_type {};
636 
637 namespace detail {
638 
639 // Extracts a reference to the container from back_insert_iterator.
640 template <typename Container>
641 inline Container& get_container(std::back_insert_iterator<Container> it) {
642   using bi_iterator = std::back_insert_iterator<Container>;
643   struct accessor : bi_iterator {
644     accessor(bi_iterator iter) : bi_iterator(iter) {}
645     using bi_iterator::container;
646   };
647   return *accessor(it).container;
648 }
649 
650 /**
651   \rst
652   A contiguous memory buffer with an optional growing ability. It is an internal
653   class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
654   \endrst
655  */
656 template <typename T> class buffer {
657  private:
658   T* ptr_;
659   size_t size_;
660   size_t capacity_;
661 
662  protected:
663   // Don't initialize ptr_ since it is not accessed to save a few cycles.
664   FMT_SUPPRESS_MSC_WARNING(26495)
665   buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
666 
667   buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
668       : ptr_(p),
669         size_(sz),
670         capacity_(cap) {}
671 
672   virtual ~buffer() = default;
673 
674   /** Sets the buffer data and capacity. */
675   void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
676     ptr_ = buf_data;
677     capacity_ = buf_capacity;
678   }
679 
680   /** Increases the buffer capacity to hold at least *capacity* elements. */
681   virtual void grow(size_t capacity) = 0;
682 
683  public:
684   using value_type = T;
685   using const_reference = const T&;
686 
687   buffer(const buffer&) = delete;
688   void operator=(const buffer&) = delete;
689 
690   T* begin() FMT_NOEXCEPT { return ptr_; }
691   T* end() FMT_NOEXCEPT { return ptr_ + size_; }
692 
693   const T* begin() const FMT_NOEXCEPT { return ptr_; }
694   const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }
695 
696   /** Returns the size of this buffer. */
697   size_t size() const FMT_NOEXCEPT { return size_; }
698 
699   /** Returns the capacity of this buffer. */
700   size_t capacity() const FMT_NOEXCEPT { return capacity_; }
701 
702   /** Returns a pointer to the buffer data. */
703   T* data() FMT_NOEXCEPT { return ptr_; }
704 
705   /** Returns a pointer to the buffer data. */
706   const T* data() const FMT_NOEXCEPT { return ptr_; }
707 
708   /** Clears this buffer. */
709   void clear() { size_ = 0; }
710 
711   // Tries resizing the buffer to contain *count* elements. If T is a POD type
712   // the new elements may not be initialized.
713   void try_resize(size_t count) {
714     try_reserve(count);
715     size_ = count <= capacity_ ? count : capacity_;
716   }
717 
718   // Tries increasing the buffer capacity to *new_capacity*. It can increase the
719   // capacity by a smaller amount than requested but guarantees there is space
720   // for at least one additional element either by increasing the capacity or by
721   // flushing the buffer if it is full.
722   void try_reserve(size_t new_capacity) {
723     if (new_capacity > capacity_) grow(new_capacity);
724   }
725 
726   void push_back(const T& value) {
727     try_reserve(size_ + 1);
728     ptr_[size_++] = value;
729   }
730 
731   /** Appends data to the end of the buffer. */
732   template <typename U> void append(const U* begin, const U* end);
733 
734   template <typename I> T& operator[](I index) { return ptr_[index]; }
735   template <typename I> const T& operator[](I index) const {
736     return ptr_[index];
737   }
738 };
739 
740 // A buffer that writes to an output iterator when flushed.
741 template <typename OutputIt, typename T>
742 class iterator_buffer : public buffer<T> {
743  private:
744   enum { buffer_size = 256 };
745 
746   OutputIt out_;
747   T data_[buffer_size];
748 
749  protected:
750   void grow(size_t) final {
751     if (this->size() == buffer_size) flush();
752   }
753   void flush();
754 
755  public:
756   explicit iterator_buffer(OutputIt out)
757       : buffer<T>(data_, 0, buffer_size), out_(out) {}
758   ~iterator_buffer() { flush(); }
759 
760   OutputIt out() {
761     flush();
762     return out_;
763   }
764 };
765 
766 template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
767  protected:
768   void grow(size_t) final {}
769 
770  public:
771   explicit iterator_buffer(T* out) : buffer<T>(out, 0, ~size_t()) {}
772 
773   T* out() { return &*this->end(); }
774 };
775 
776 // A buffer that writes to a container with the contiguous storage.
777 template <typename Container>
778 class iterator_buffer<std::back_insert_iterator<Container>,
779                       enable_if_t<is_contiguous<Container>::value,
780                                   typename Container::value_type>>
781     : public buffer<typename Container::value_type> {
782  private:
783   Container& container_;
784 
785  protected:
786   void grow(size_t capacity) FMT_OVERRIDE {
787     container_.resize(capacity);
788     this->set(&container_[0], capacity);
789   }
790 
791  public:
792   explicit iterator_buffer(Container& c)
793       : buffer<typename Container::value_type>(c.size()), container_(c) {}
794   explicit iterator_buffer(std::back_insert_iterator<Container> out)
795       : iterator_buffer(get_container(out)) {}
796   std::back_insert_iterator<Container> out() {
797     return std::back_inserter(container_);
798   }
799 };
800 
801 template <typename Container>
802 using container_buffer = iterator_buffer<std::back_insert_iterator<Container>,
803                                          typename Container::value_type>;
804 
805 // An output iterator that appends to the buffer.
806 // It is used to reduce symbol sizes for the common case.
807 template <typename T>
808 class buffer_appender : public std::back_insert_iterator<buffer<T>> {
809  public:
810   explicit buffer_appender(buffer<T>& buf)
811       : std::back_insert_iterator<buffer<T>>(buf) {}
812   buffer_appender(std::back_insert_iterator<buffer<T>> it)
813       : std::back_insert_iterator<buffer<T>>(it) {}
814 };
815 
816 // Maps an output iterator into a buffer.
817 template <typename T, typename OutputIt>
818 iterator_buffer<OutputIt, T> get_buffer(OutputIt);
819 template <typename T> buffer<T>& get_buffer(buffer_appender<T>);
820 
821 template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
822   return out;
823 }
824 template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
825   return get_container(out);
826 }
827 
828 template <typename Buffer>
829 auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
830   return buf.out();
831 }
832 template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
833   return buffer_appender<T>(buf);
834 }
835 
836 template <typename T, typename Char = char, typename Enable = void>
837 struct fallback_formatter {
838   fallback_formatter() = delete;
839 };
840 
841 // Specifies if T has an enabled fallback_formatter specialization.
842 template <typename T, typename Context>
843 using has_fallback_formatter =
844     std::is_constructible<fallback_formatter<T, typename Context::char_type>>;
845 
846 struct view {};
847 
848 template <typename Char, typename T> struct named_arg : view {
849   const Char* name;
850   const T& value;
851   named_arg(const Char* n, const T& v) : name(n), value(v) {}
852 };
853 
854 template <typename Char> struct named_arg_info {
855   const Char* name;
856   int id;
857 };
858 
859 template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
860 struct arg_data {
861   // args_[0].named_args points to named_args_ to avoid bloating format_args.
862   T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : 1)];
863   named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
864 
865   template <typename... U>
866   arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
867   arg_data(const arg_data& other) = delete;
868   const T* args() const { return args_ + 1; }
869   named_arg_info<Char>* named_args() { return named_args_; }
870 };
871 
872 template <typename T, typename Char, size_t NUM_ARGS>
873 struct arg_data<T, Char, NUM_ARGS, 0> {
874   T args_[NUM_ARGS != 0 ? NUM_ARGS : 1];
875 
876   template <typename... U>
877   FMT_INLINE arg_data(const U&... init) : args_{init...} {}
878   FMT_INLINE const T* args() const { return args_; }
879   FMT_INLINE std::nullptr_t named_args() { return nullptr; }
880 };
881 
882 template <typename Char>
883 inline void init_named_args(named_arg_info<Char>*, int, int) {}
884 
885 template <typename Char, typename T, typename... Tail>
886 void init_named_args(named_arg_info<Char>* named_args, int arg_count,
887                      int named_arg_count, const T&, const Tail&... args) {
888   init_named_args(named_args, arg_count + 1, named_arg_count, args...);
889 }
890 
891 template <typename Char, typename T, typename... Tail>
892 void init_named_args(named_arg_info<Char>* named_args, int arg_count,
893                      int named_arg_count, const named_arg<Char, T>& arg,
894                      const Tail&... args) {
895   named_args[named_arg_count++] = {arg.name, arg_count};
896   init_named_args(named_args, arg_count + 1, named_arg_count, args...);
897 }
898 
899 template <typename... Args>
900 FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}
901 
902 template <typename T> struct is_named_arg : std::false_type {};
903 
904 template <typename T, typename Char>
905 struct is_named_arg<named_arg<Char, T>> : std::true_type {};
906 
907 template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
908 template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
909   return (B1 ? 1 : 0) + count<B2, Tail...>();
910 }
911 
912 template <typename... Args> constexpr size_t count_named_args() {
913   return count<is_named_arg<Args>::value...>();
914 }
915 
916 enum class type {
917   none_type,
918   // Integer types should go first,
919   int_type,
920   uint_type,
921   long_long_type,
922   ulong_long_type,
923   int128_type,
924   uint128_type,
925   bool_type,
926   char_type,
927   last_integer_type = char_type,
928   // followed by floating-point types.
929   float_type,
930   double_type,
931   long_double_type,
932   last_numeric_type = long_double_type,
933   cstring_type,
934   string_type,
935   pointer_type,
936   custom_type
937 };
938 
939 // Maps core type T to the corresponding type enum constant.
940 template <typename T, typename Char>
941 struct type_constant : std::integral_constant<type, type::custom_type> {};
942 
943 #define FMT_TYPE_CONSTANT(Type, constant) \
944   template <typename Char>                \
945   struct type_constant<Type, Char>        \
946       : std::integral_constant<type, type::constant> {}
947 
948 FMT_TYPE_CONSTANT(int, int_type);
949 FMT_TYPE_CONSTANT(unsigned, uint_type);
950 FMT_TYPE_CONSTANT(long long, long_long_type);
951 FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
952 FMT_TYPE_CONSTANT(int128_t, int128_type);
953 FMT_TYPE_CONSTANT(uint128_t, uint128_type);
954 FMT_TYPE_CONSTANT(bool, bool_type);
955 FMT_TYPE_CONSTANT(Char, char_type);
956 FMT_TYPE_CONSTANT(float, float_type);
957 FMT_TYPE_CONSTANT(double, double_type);
958 FMT_TYPE_CONSTANT(long double, long_double_type);
959 FMT_TYPE_CONSTANT(const Char*, cstring_type);
960 FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
961 FMT_TYPE_CONSTANT(const void*, pointer_type);
962 
963 constexpr bool is_integral_type(type t) {
964   return t > type::none_type && t <= type::last_integer_type;
965 }
966 
967 constexpr bool is_arithmetic_type(type t) {
968   return t > type::none_type && t <= type::last_numeric_type;
969 }
970 
971 template <typename Char> struct string_value {
972   const Char* data;
973   size_t size;
974 };
975 
976 template <typename Char> struct named_arg_value {
977   const named_arg_info<Char>* data;
978   size_t size;
979 };
980 
981 template <typename Context> struct custom_value {
982   using parse_context = typename Context::parse_context_type;
983   const void* value;
984   void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
985 };
986 
987 // A formatting argument value.
988 template <typename Context> class value {
989  public:
990   using char_type = typename Context::char_type;
991 
992   union {
993     int int_value;
994     unsigned uint_value;
995     long long long_long_value;
996     unsigned long long ulong_long_value;
997     int128_t int128_value;
998     uint128_t uint128_value;
999     bool bool_value;
1000     char_type char_value;
1001     float float_value;
1002     double double_value;
1003     long double long_double_value;
1004     const void* pointer;
1005     string_value<char_type> string;
1006     custom_value<Context> custom;
1007     named_arg_value<char_type> named_args;
1008   };
1009 
1010   constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
1011   constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
1012   FMT_INLINE value(long long val) : long_long_value(val) {}
1013   FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
1014   FMT_INLINE value(int128_t val) : int128_value(val) {}
1015   FMT_INLINE value(uint128_t val) : uint128_value(val) {}
1016   FMT_INLINE value(float val) : float_value(val) {}
1017   FMT_INLINE value(double val) : double_value(val) {}
1018   FMT_INLINE value(long double val) : long_double_value(val) {}
1019   FMT_INLINE value(bool val) : bool_value(val) {}
1020   FMT_INLINE value(char_type val) : char_value(val) {}
1021   FMT_INLINE value(const char_type* val) { string.data = val; }
1022   FMT_INLINE value(basic_string_view<char_type> val) {
1023     string.data = val.data();
1024     string.size = val.size();
1025   }
1026   FMT_INLINE value(const void* val) : pointer(val) {}
1027   FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
1028       : named_args{args, size} {}
1029 
1030   template <typename T> FMT_INLINE value(const T& val) {
1031     custom.value = &val;
1032     // Get the formatter type through the context to allow different contexts
1033     // have different extension points, e.g. `formatter<T>` for `format` and
1034     // `printf_formatter<T>` for `printf`.
1035     custom.format = format_custom_arg<
1036         T, conditional_t<has_formatter<T, Context>::value,
1037                          typename Context::template formatter_type<T>,
1038                          fallback_formatter<T, char_type>>>;
1039   }
1040 
1041  private:
1042   // Formats an argument of a custom type, such as a user-defined class.
1043   template <typename T, typename Formatter>
1044   static void format_custom_arg(const void* arg,
1045                                 typename Context::parse_context_type& parse_ctx,
1046                                 Context& ctx) {
1047     Formatter f;
1048     parse_ctx.advance_to(f.parse(parse_ctx));
1049     ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
1050   }
1051 };
1052 
1053 template <typename Context, typename T>
1054 FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);
1055 
1056 // To minimize the number of types we need to deal with, long is translated
1057 // either to int or to long long depending on its size.
1058 enum { long_short = sizeof(long) == sizeof(int) };
1059 using long_type = conditional_t<long_short, int, long long>;
1060 using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
1061 
1062 struct unformattable {};
1063 
1064 // Maps formatting arguments to core types.
1065 template <typename Context> struct arg_mapper {
1066   using char_type = typename Context::char_type;
1067 
1068   FMT_CONSTEXPR int map(signed char val) { return val; }
1069   FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
1070   FMT_CONSTEXPR int map(short val) { return val; }
1071   FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
1072   FMT_CONSTEXPR int map(int val) { return val; }
1073   FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
1074   FMT_CONSTEXPR long_type map(long val) { return val; }
1075   FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
1076   FMT_CONSTEXPR long long map(long long val) { return val; }
1077   FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
1078   FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
1079   FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
1080   FMT_CONSTEXPR bool map(bool val) { return val; }
1081 
1082   template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
1083   FMT_CONSTEXPR char_type map(T val) {
1084     static_assert(
1085         std::is_same<T, char>::value || std::is_same<T, char_type>::value,
1086         "mixing character types is disallowed");
1087     return val;
1088   }
1089 
1090   FMT_CONSTEXPR float map(float val) { return val; }
1091   FMT_CONSTEXPR double map(double val) { return val; }
1092   FMT_CONSTEXPR long double map(long double val) { return val; }
1093 
1094   FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
1095   FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
1096   template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
1097   FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1098     static_assert(std::is_same<char_type, char_t<T>>::value,
1099                   "mixing character types is disallowed");
1100     return to_string_view(val);
1101   }
1102   template <typename T,
1103             FMT_ENABLE_IF(
1104                 std::is_constructible<basic_string_view<char_type>, T>::value &&
1105                 !is_string<T>::value && !has_formatter<T, Context>::value &&
1106                 !has_fallback_formatter<T, Context>::value)>
1107   FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1108     return basic_string_view<char_type>(val);
1109   }
1110   template <
1111       typename T,
1112       FMT_ENABLE_IF(
1113           std::is_constructible<std_string_view<char_type>, T>::value &&
1114           !std::is_constructible<basic_string_view<char_type>, T>::value &&
1115           !is_string<T>::value && !has_formatter<T, Context>::value &&
1116           !has_fallback_formatter<T, Context>::value)>
1117   FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1118     return std_string_view<char_type>(val);
1119   }
1120   FMT_CONSTEXPR const char* map(const signed char* val) {
1121     static_assert(std::is_same<char_type, char>::value, "invalid string type");
1122     return reinterpret_cast<const char*>(val);
1123   }
1124   FMT_CONSTEXPR const char* map(const unsigned char* val) {
1125     static_assert(std::is_same<char_type, char>::value, "invalid string type");
1126     return reinterpret_cast<const char*>(val);
1127   }
1128   FMT_CONSTEXPR const char* map(signed char* val) {
1129     const auto* const_val = val;
1130     return map(const_val);
1131   }
1132   FMT_CONSTEXPR const char* map(unsigned char* val) {
1133     const auto* const_val = val;
1134     return map(const_val);
1135   }
1136 
1137   FMT_CONSTEXPR const void* map(void* val) { return val; }
1138   FMT_CONSTEXPR const void* map(const void* val) { return val; }
1139   FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
1140   template <typename T> FMT_CONSTEXPR int map(const T*) {
1141     // Formatting of arbitrary pointers is disallowed. If you want to output
1142     // a pointer cast it to "void *" or "const void *". In particular, this
1143     // forbids formatting of "[const] volatile char *" which is printed as bool
1144     // by iostreams.
1145     static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
1146     return 0;
1147   }
1148 
1149   template <typename T,
1150             FMT_ENABLE_IF(std::is_enum<T>::value &&
1151                           !has_formatter<T, Context>::value &&
1152                           !has_fallback_formatter<T, Context>::value)>
1153   FMT_CONSTEXPR auto map(const T& val)
1154       -> decltype(std::declval<arg_mapper>().map(
1155           static_cast<typename std::underlying_type<T>::type>(val))) {
1156     return map(static_cast<typename std::underlying_type<T>::type>(val));
1157   }
1158   template <typename T,
1159             FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
1160                           (has_formatter<T, Context>::value ||
1161                            has_fallback_formatter<T, Context>::value))>
1162   FMT_CONSTEXPR const T& map(const T& val) {
1163     return val;
1164   }
1165 
1166   template <typename T>
1167   FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
1168       -> decltype(std::declval<arg_mapper>().map(val.value)) {
1169     return map(val.value);
1170   }
1171 
1172   unformattable map(...) { return {}; }
1173 };
1174 
1175 // A type constant after applying arg_mapper<Context>.
1176 template <typename T, typename Context>
1177 using mapped_type_constant =
1178     type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
1179                   typename Context::char_type>;
1180 
1181 enum { packed_arg_bits = 4 };
1182 // Maximum number of arguments with packed types.
1183 enum { max_packed_args = 62 / packed_arg_bits };
1184 enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
1185 enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
1186 }  // namespace detail
1187 
1188 // A formatting argument. It is a trivially copyable/constructible type to
1189 // allow storage in basic_memory_buffer.
1190 template <typename Context> class basic_format_arg {
1191  private:
1192   detail::value<Context> value_;
1193   detail::type type_;
1194 
1195   template <typename ContextType, typename T>
1196   friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
1197       const T& value);
1198 
1199   template <typename Visitor, typename Ctx>
1200   friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
1201                                              const basic_format_arg<Ctx>& arg)
1202       -> decltype(vis(0));
1203 
1204   friend class basic_format_args<Context>;
1205   friend class dynamic_format_arg_store<Context>;
1206 
1207   using char_type = typename Context::char_type;
1208 
1209   template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
1210   friend struct detail::arg_data;
1211 
1212   basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
1213       : value_(args, size) {}
1214 
1215  public:
1216   class handle {
1217    public:
1218     explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
1219 
1220     void format(typename Context::parse_context_type& parse_ctx,
1221                 Context& ctx) const {
1222       custom_.format(custom_.value, parse_ctx, ctx);
1223     }
1224 
1225    private:
1226     detail::custom_value<Context> custom_;
1227   };
1228 
1229   constexpr basic_format_arg() : type_(detail::type::none_type) {}
1230 
1231   constexpr explicit operator bool() const FMT_NOEXCEPT {
1232     return type_ != detail::type::none_type;
1233   }
1234 
1235   detail::type type() const { return type_; }
1236 
1237   bool is_integral() const { return detail::is_integral_type(type_); }
1238   bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
1239 };
1240 
1241 /**
1242   \rst
1243   Visits an argument dispatching to the appropriate visit method based on
1244   the argument type. For example, if the argument type is ``double`` then
1245   ``vis(value)`` will be called with the value of type ``double``.
1246   \endrst
1247  */
1248 template <typename Visitor, typename Context>
1249 FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
1250     Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
1251   using char_type = typename Context::char_type;
1252   switch (arg.type_) {
1253   case detail::type::none_type:
1254     break;
1255   case detail::type::int_type:
1256     return vis(arg.value_.int_value);
1257   case detail::type::uint_type:
1258     return vis(arg.value_.uint_value);
1259   case detail::type::long_long_type:
1260     return vis(arg.value_.long_long_value);
1261   case detail::type::ulong_long_type:
1262     return vis(arg.value_.ulong_long_value);
1263 #if FMT_USE_INT128
1264   case detail::type::int128_type:
1265     return vis(arg.value_.int128_value);
1266   case detail::type::uint128_type:
1267     return vis(arg.value_.uint128_value);
1268 #else
1269   case detail::type::int128_type:
1270   case detail::type::uint128_type:
1271     break;
1272 #endif
1273   case detail::type::bool_type:
1274     return vis(arg.value_.bool_value);
1275   case detail::type::char_type:
1276     return vis(arg.value_.char_value);
1277   case detail::type::float_type:
1278     return vis(arg.value_.float_value);
1279   case detail::type::double_type:
1280     return vis(arg.value_.double_value);
1281   case detail::type::long_double_type:
1282     return vis(arg.value_.long_double_value);
1283   case detail::type::cstring_type:
1284     return vis(arg.value_.string.data);
1285   case detail::type::string_type:
1286     return vis(basic_string_view<char_type>(arg.value_.string.data,
1287                                             arg.value_.string.size));
1288   case detail::type::pointer_type:
1289     return vis(arg.value_.pointer);
1290   case detail::type::custom_type:
1291     return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
1292   }
1293   return vis(monostate());
1294 }
1295 
1296 template <typename T> struct formattable : std::false_type {};
1297 
1298 namespace detail {
1299 
1300 // A workaround for gcc 4.8 to make void_t work in a SFINAE context.
1301 template <typename... Ts> struct void_t_impl { using type = void; };
1302 
1303 template <typename... Ts>
1304 using void_t = typename detail::void_t_impl<Ts...>::type;
1305 
1306 // Detect the iterator category of *any* given type in a SFINAE-friendly way.
1307 // Unfortunately, older implementations of std::iterator_traits are not safe
1308 // for use in a SFINAE-context.
1309 template <typename It, typename Enable = void>
1310 struct iterator_category : std::false_type {};
1311 
1312 template <typename T> struct iterator_category<T*> {
1313   using type = std::random_access_iterator_tag;
1314 };
1315 
1316 template <typename It>
1317 struct iterator_category<It, void_t<typename It::iterator_category>> {
1318   using type = typename It::iterator_category;
1319 };
1320 
1321 // Detect if *any* given type models the OutputIterator concept.
1322 template <typename It> class is_output_iterator {
1323   // Check for mutability because all iterator categories derived from
1324   // std::input_iterator_tag *may* also meet the requirements of an
1325   // OutputIterator, thereby falling into the category of 'mutable iterators'
1326   // [iterator.requirements.general] clause 4. The compiler reveals this
1327   // property only at the point of *actually dereferencing* the iterator!
1328   template <typename U>
1329   static decltype(*(std::declval<U>())) test(std::input_iterator_tag);
1330   template <typename U> static char& test(std::output_iterator_tag);
1331   template <typename U> static const char& test(...);
1332 
1333   using type = decltype(test<It>(typename iterator_category<It>::type{}));
1334 
1335  public:
1336   enum { value = !std::is_const<remove_reference_t<type>>::value };
1337 };
1338 
1339 template <typename OutputIt>
1340 struct is_back_insert_iterator : std::false_type {};
1341 template <typename Container>
1342 struct is_back_insert_iterator<std::back_insert_iterator<Container>>
1343     : std::true_type {};
1344 
1345 template <typename OutputIt>
1346 struct is_contiguous_back_insert_iterator : std::false_type {};
1347 template <typename Container>
1348 struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
1349     : is_contiguous<Container> {};
1350 template <typename Char>
1351 struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
1352     : std::true_type {};
1353 
1354 // A type-erased reference to an std::locale to avoid heavy <locale> include.
1355 class locale_ref {
1356  private:
1357   const void* locale_;  // A type-erased pointer to std::locale.
1358 
1359  public:
1360   locale_ref() : locale_(nullptr) {}
1361   template <typename Locale> explicit locale_ref(const Locale& loc);
1362 
1363   explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
1364 
1365   template <typename Locale> Locale get() const;
1366 };
1367 
1368 template <typename> constexpr unsigned long long encode_types() { return 0; }
1369 
1370 template <typename Context, typename Arg, typename... Args>
1371 constexpr unsigned long long encode_types() {
1372   return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
1373          (encode_types<Context, Args...>() << packed_arg_bits);
1374 }
1375 
1376 template <typename Context, typename T>
1377 FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
1378   basic_format_arg<Context> arg;
1379   arg.type_ = mapped_type_constant<T, Context>::value;
1380   arg.value_ = arg_mapper<Context>().map(value);
1381   return arg;
1382 }
1383 
1384 template <typename T> int check(unformattable) {
1385   static_assert(
1386       formattable<T>(),
1387       "Cannot format an argument. To make type T formattable provide a "
1388       "formatter<T> specialization: https://fmt.dev/dev/api.html#udt");
1389   return 0;
1390 }
1391 template <typename T, typename U> inline const U& check(const U& val) {
1392   return val;
1393 }
1394 
1395 // The type template parameter is there to avoid an ODR violation when using
1396 // a fallback formatter in one translation unit and an implicit conversion in
1397 // another (not recommended).
1398 template <bool IS_PACKED, typename Context, type, typename T,
1399           FMT_ENABLE_IF(IS_PACKED)>
1400 inline value<Context> make_arg(const T& val) {
1401   return check<T>(arg_mapper<Context>().map(val));
1402 }
1403 
1404 template <bool IS_PACKED, typename Context, type, typename T,
1405           FMT_ENABLE_IF(!IS_PACKED)>
1406 inline basic_format_arg<Context> make_arg(const T& value) {
1407   return make_arg<Context>(value);
1408 }
1409 
1410 template <typename T> struct is_reference_wrapper : std::false_type {};
1411 template <typename T>
1412 struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
1413 
1414 template <typename T> const T& unwrap(const T& v) { return v; }
1415 template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
1416   return static_cast<const T&>(v);
1417 }
1418 
1419 class dynamic_arg_list {
1420   // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
1421   // templates it doesn't complain about inability to deduce single translation
1422   // unit for placing vtable. So storage_node_base is made a fake template.
1423   template <typename = void> struct node {
1424     virtual ~node() = default;
1425     std::unique_ptr<node<>> next;
1426   };
1427 
1428   template <typename T> struct typed_node : node<> {
1429     T value;
1430 
1431     template <typename Arg>
1432     FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
1433 
1434     template <typename Char>
1435     FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
1436         : value(arg.data(), arg.size()) {}
1437   };
1438 
1439   std::unique_ptr<node<>> head_;
1440 
1441  public:
1442   template <typename T, typename Arg> const T& push(const Arg& arg) {
1443     auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
1444     auto& value = new_node->value;
1445     new_node->next = std::move(head_);
1446     head_ = std::move(new_node);
1447     return value;
1448   }
1449 };
1450 }  // namespace detail
1451 
1452 // Formatting context.
1453 template <typename OutputIt, typename Char> class basic_format_context {
1454  public:
1455   /** The character type for the output. */
1456   using char_type = Char;
1457 
1458  private:
1459   OutputIt out_;
1460   basic_format_args<basic_format_context> args_;
1461   detail::locale_ref loc_;
1462 
1463  public:
1464   using iterator = OutputIt;
1465   using format_arg = basic_format_arg<basic_format_context>;
1466   using parse_context_type = basic_format_parse_context<Char>;
1467   template <typename T> using formatter_type = formatter<T, char_type>;
1468 
1469   basic_format_context(const basic_format_context&) = delete;
1470   void operator=(const basic_format_context&) = delete;
1471   /**
1472    Constructs a ``basic_format_context`` object. References to the arguments are
1473    stored in the object so make sure they have appropriate lifetimes.
1474    */
1475   basic_format_context(OutputIt out,
1476                        basic_format_args<basic_format_context> ctx_args,
1477                        detail::locale_ref loc = detail::locale_ref())
1478       : out_(out), args_(ctx_args), loc_(loc) {}
1479 
1480   format_arg arg(int id) const { return args_.get(id); }
1481   format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
1482   int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
1483   const basic_format_args<basic_format_context>& args() const { return args_; }
1484 
1485   detail::error_handler error_handler() { return {}; }
1486   void on_error(const char* message) { error_handler().on_error(message); }
1487 
1488   // Returns an iterator to the beginning of the output range.
1489   iterator out() { return out_; }
1490 
1491   // Advances the begin iterator to ``it``.
1492   void advance_to(iterator it) {
1493     if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
1494   }
1495 
1496   detail::locale_ref locale() { return loc_; }
1497 };
1498 
1499 template <typename Char>
1500 using buffer_context =
1501     basic_format_context<detail::buffer_appender<Char>, Char>;
1502 using format_context = buffer_context<char>;
1503 using wformat_context = buffer_context<wchar_t>;
1504 
1505 // Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
1506 #define FMT_BUFFER_CONTEXT(Char) \
1507   basic_format_context<detail::buffer_appender<Char>, Char>
1508 
1509 /**
1510   \rst
1511   An array of references to arguments. It can be implicitly converted into
1512   `~fmt::basic_format_args` for passing into type-erased formatting functions
1513   such as `~fmt::vformat`.
1514   \endrst
1515  */
1516 template <typename Context, typename... Args>
1517 class format_arg_store
1518 #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1519     // Workaround a GCC template argument substitution bug.
1520     : public basic_format_args<Context>
1521 #endif
1522 {
1523  private:
1524   static const size_t num_args = sizeof...(Args);
1525   static const size_t num_named_args = detail::count_named_args<Args...>();
1526   static const bool is_packed = num_args <= detail::max_packed_args;
1527 
1528   using value_type = conditional_t<is_packed, detail::value<Context>,
1529                                    basic_format_arg<Context>>;
1530 
1531   detail::arg_data<value_type, typename Context::char_type, num_args,
1532                    num_named_args>
1533       data_;
1534 
1535   friend class basic_format_args<Context>;
1536 
1537   static constexpr unsigned long long desc =
1538       (is_packed ? detail::encode_types<Context, Args...>()
1539                  : detail::is_unpacked_bit | num_args) |
1540       (num_named_args != 0
1541            ? static_cast<unsigned long long>(detail::has_named_args_bit)
1542            : 0);
1543 
1544  public:
1545   format_arg_store(const Args&... args)
1546       :
1547 #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1548         basic_format_args<Context>(*this),
1549 #endif
1550         data_{detail::make_arg<
1551             is_packed, Context,
1552             detail::mapped_type_constant<Args, Context>::value>(args)...} {
1553     detail::init_named_args(data_.named_args(), 0, 0, args...);
1554   }
1555 };
1556 
1557 /**
1558   \rst
1559   Constructs a `~fmt::format_arg_store` object that contains references to
1560   arguments and can be implicitly converted to `~fmt::format_args`. `Context`
1561   can be omitted in which case it defaults to `~fmt::context`.
1562   See `~fmt::arg` for lifetime considerations.
1563   \endrst
1564  */
1565 template <typename Context = format_context, typename... Args>
1566 inline format_arg_store<Context, Args...> make_format_args(
1567     const Args&... args) {
1568   return {args...};
1569 }
1570 
1571 /**
1572   \rst
1573   Constructs a `~fmt::format_arg_store` object that contains references
1574   to arguments and can be implicitly converted to `~fmt::format_args`.
1575   If ``format_str`` is a compile-time string then `make_args_checked` checks
1576   its validity at compile time.
1577   \endrst
1578  */
1579 template <typename... Args, typename S, typename Char = char_t<S>>
1580 inline auto make_args_checked(const S& format_str,
1581                               const remove_reference_t<Args>&... args)
1582     -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
1583   static_assert(
1584       detail::count<(
1585               std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
1586               std::is_reference<Args>::value)...>() == 0,
1587       "passing views as lvalues is disallowed");
1588   detail::check_format_string<Args...>(format_str);
1589   return {args...};
1590 }
1591 
1592 /**
1593   \rst
1594   Returns a named argument to be used in a formatting function. It should only
1595   be used in a call to a formatting function.
1596 
1597   **Example**::
1598 
1599     fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
1600   \endrst
1601  */
1602 template <typename Char, typename T>
1603 inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
1604   static_assert(!detail::is_named_arg<T>(), "nested named arguments");
1605   return {name, arg};
1606 }
1607 
1608 /**
1609   \rst
1610   A dynamic version of `fmt::format_arg_store`.
1611   It's equipped with a storage to potentially temporary objects which lifetimes
1612   could be shorter than the format arguments object.
1613 
1614   It can be implicitly converted into `~fmt::basic_format_args` for passing
1615   into type-erased formatting functions such as `~fmt::vformat`.
1616   \endrst
1617  */
1618 template <typename Context>
1619 class dynamic_format_arg_store
1620 #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1621     // Workaround a GCC template argument substitution bug.
1622     : public basic_format_args<Context>
1623 #endif
1624 {
1625  private:
1626   using char_type = typename Context::char_type;
1627 
1628   template <typename T> struct need_copy {
1629     static constexpr detail::type mapped_type =
1630         detail::mapped_type_constant<T, Context>::value;
1631 
1632     enum {
1633       value = !(detail::is_reference_wrapper<T>::value ||
1634                 std::is_same<T, basic_string_view<char_type>>::value ||
1635                 std::is_same<T, detail::std_string_view<char_type>>::value ||
1636                 (mapped_type != detail::type::cstring_type &&
1637                  mapped_type != detail::type::string_type &&
1638                  mapped_type != detail::type::custom_type))
1639     };
1640   };
1641 
1642   template <typename T>
1643   using stored_type = conditional_t<detail::is_string<T>::value,
1644                                     std::basic_string<char_type>, T>;
1645 
1646   // Storage of basic_format_arg must be contiguous.
1647   std::vector<basic_format_arg<Context>> data_;
1648   std::vector<detail::named_arg_info<char_type>> named_info_;
1649 
1650   // Storage of arguments not fitting into basic_format_arg must grow
1651   // without relocation because items in data_ refer to it.
1652   detail::dynamic_arg_list dynamic_args_;
1653 
1654   friend class basic_format_args<Context>;
1655 
1656   unsigned long long get_types() const {
1657     return detail::is_unpacked_bit | data_.size() |
1658            (named_info_.empty()
1659                 ? 0ULL
1660                 : static_cast<unsigned long long>(detail::has_named_args_bit));
1661   }
1662 
1663   const basic_format_arg<Context>* data() const {
1664     return named_info_.empty() ? data_.data() : data_.data() + 1;
1665   }
1666 
1667   template <typename T> void emplace_arg(const T& arg) {
1668     data_.emplace_back(detail::make_arg<Context>(arg));
1669   }
1670 
1671   template <typename T>
1672   void emplace_arg(const detail::named_arg<char_type, T>& arg) {
1673     if (named_info_.empty()) {
1674       constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
1675       data_.insert(data_.begin(), {zero_ptr, 0});
1676     }
1677     data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
1678     auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
1679       data->pop_back();
1680     };
1681     std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
1682         guard{&data_, pop_one};
1683     named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
1684     data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
1685     guard.release();
1686   }
1687 
1688  public:
1689   /**
1690     \rst
1691     Adds an argument into the dynamic store for later passing to a formatting
1692     function.
1693 
1694     Note that custom types and string types (but not string views) are copied
1695     into the store dynamically allocating memory if necessary.
1696 
1697     **Example**::
1698 
1699       fmt::dynamic_format_arg_store<fmt::format_context> store;
1700       store.push_back(42);
1701       store.push_back("abc");
1702       store.push_back(1.5f);
1703       std::string result = fmt::vformat("{} and {} and {}", store);
1704     \endrst
1705   */
1706   template <typename T> void push_back(const T& arg) {
1707     if (detail::const_check(need_copy<T>::value))
1708       emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
1709     else
1710       emplace_arg(detail::unwrap(arg));
1711   }
1712 
1713   /**
1714     \rst
1715     Adds a reference to the argument into the dynamic store for later passing to
1716     a formatting function. Supports named arguments wrapped in
1717     ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.
1718 
1719     **Example**::
1720 
1721       fmt::dynamic_format_arg_store<fmt::format_context> store;
1722       char str[] = "1234567890";
1723       store.push_back(std::cref(str));
1724       int a1_val{42};
1725       auto a1 = fmt::arg("a1_", a1_val);
1726       store.push_back(std::cref(a1));
1727 
1728       // Changing str affects the output but only for string and custom types.
1729       str[0] = 'X';
1730 
1731       std::string result = fmt::vformat("{} and {a1_}");
1732       assert(result == "X234567890 and 42");
1733     \endrst
1734   */
1735   template <typename T> void push_back(std::reference_wrapper<T> arg) {
1736     static_assert(
1737         detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
1738             need_copy<T>::value,
1739         "objects of built-in types and string views are always copied");
1740     emplace_arg(arg.get());
1741   }
1742 
1743   /**
1744     Adds named argument into the dynamic store for later passing to a formatting
1745     function. ``std::reference_wrapper`` is supported to avoid copying of the
1746     argument.
1747   */
1748   template <typename T>
1749   void push_back(const detail::named_arg<char_type, T>& arg) {
1750     const char_type* arg_name =
1751         dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
1752     if (detail::const_check(need_copy<T>::value)) {
1753       emplace_arg(
1754           fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
1755     } else {
1756       emplace_arg(fmt::arg(arg_name, arg.value));
1757     }
1758   }
1759 
1760   /** Erase all elements from the store */
1761   void clear() {
1762     data_.clear();
1763     named_info_.clear();
1764     dynamic_args_ = detail::dynamic_arg_list();
1765   }
1766 
1767   /**
1768     \rst
1769     Reserves space to store at least *new_cap* arguments including
1770     *new_cap_named* named arguments.
1771     \endrst
1772   */
1773   void reserve(size_t new_cap, size_t new_cap_named) {
1774     FMT_ASSERT(new_cap >= new_cap_named,
1775                "Set of arguments includes set of named arguments");
1776     data_.reserve(new_cap);
1777     named_info_.reserve(new_cap_named);
1778   }
1779 };
1780 
1781 /**
1782   \rst
1783   A view of a collection of formatting arguments. To avoid lifetime issues it
1784   should only be used as a parameter type in type-erased functions such as
1785   ``vformat``::
1786 
1787     void vlog(string_view format_str, format_args args);  // OK
1788     format_args args = make_format_args(42);  // Error: dangling reference
1789   \endrst
1790  */
1791 template <typename Context> class basic_format_args {
1792  public:
1793   using size_type = int;
1794   using format_arg = basic_format_arg<Context>;
1795 
1796  private:
1797   // A descriptor that contains information about formatting arguments.
1798   // If the number of arguments is less or equal to max_packed_args then
1799   // argument types are passed in the descriptor. This reduces binary code size
1800   // per formatting function call.
1801   unsigned long long desc_;
1802   union {
1803     // If is_packed() returns true then argument values are stored in values_;
1804     // otherwise they are stored in args_. This is done to improve cache
1805     // locality and reduce compiled code size since storing larger objects
1806     // may require more code (at least on x86-64) even if the same amount of
1807     // data is actually copied to stack. It saves ~10% on the bloat test.
1808     const detail::value<Context>* values_;
1809     const format_arg* args_;
1810   };
1811 
1812   bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
1813   bool has_named_args() const {
1814     return (desc_ & detail::has_named_args_bit) != 0;
1815   }
1816 
1817   detail::type type(int index) const {
1818     int shift = index * detail::packed_arg_bits;
1819     unsigned int mask = (1 << detail::packed_arg_bits) - 1;
1820     return static_cast<detail::type>((desc_ >> shift) & mask);
1821   }
1822 
1823   basic_format_args(unsigned long long desc,
1824                     const detail::value<Context>* values)
1825       : desc_(desc), values_(values) {}
1826   basic_format_args(unsigned long long desc, const format_arg* args)
1827       : desc_(desc), args_(args) {}
1828 
1829  public:
1830   basic_format_args() : desc_(0) {}
1831 
1832   /**
1833    \rst
1834    Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
1835    \endrst
1836    */
1837   template <typename... Args>
1838   FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
1839       : basic_format_args(store.desc, store.data_.args()) {}
1840 
1841   /**
1842    \rst
1843    Constructs a `basic_format_args` object from
1844    `~fmt::dynamic_format_arg_store`.
1845    \endrst
1846    */
1847   FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
1848       : basic_format_args(store.get_types(), store.data()) {}
1849 
1850   /**
1851    \rst
1852    Constructs a `basic_format_args` object from a dynamic set of arguments.
1853    \endrst
1854    */
1855   basic_format_args(const format_arg* args, int count)
1856       : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
1857                           args) {}
1858 
1859   /** Returns the argument with the specified id. */
1860   format_arg get(int id) const {
1861     format_arg arg;
1862     if (!is_packed()) {
1863       if (id < max_size()) arg = args_[id];
1864       return arg;
1865     }
1866     if (id >= detail::max_packed_args) return arg;
1867     arg.type_ = type(id);
1868     if (arg.type_ == detail::type::none_type) return arg;
1869     arg.value_ = values_[id];
1870     return arg;
1871   }
1872 
1873   template <typename Char> format_arg get(basic_string_view<Char> name) const {
1874     int id = get_id(name);
1875     return id >= 0 ? get(id) : format_arg();
1876   }
1877 
1878   template <typename Char> int get_id(basic_string_view<Char> name) const {
1879     if (!has_named_args()) return {};
1880     const auto& named_args =
1881         (is_packed() ? values_[-1] : args_[-1].value_).named_args;
1882     for (size_t i = 0; i < named_args.size; ++i) {
1883       if (named_args.data[i].name == name) return named_args.data[i].id;
1884     }
1885     return -1;
1886   }
1887 
1888   int max_size() const {
1889     unsigned long long max_packed = detail::max_packed_args;
1890     return static_cast<int>(is_packed() ? max_packed
1891                                         : desc_ & ~detail::is_unpacked_bit);
1892   }
1893 };
1894 
1895 /** An alias to ``basic_format_args<context>``. */
1896 // It is a separate type rather than an alias to make symbols readable.
1897 struct format_args : basic_format_args<format_context> {
1898   template <typename... Args>
1899   FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
1900 };
1901 struct wformat_args : basic_format_args<wformat_context> {
1902   using basic_format_args::basic_format_args;
1903 };
1904 
1905 namespace detail {
1906 
1907 template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1908 std::basic_string<Char> vformat(
1909     basic_string_view<Char> format_str,
1910     basic_format_args<buffer_context<type_identity_t<Char>>> args);
1911 
1912 FMT_API std::string vformat(string_view format_str, format_args args);
1913 
1914 template <typename Char>
1915 buffer_appender<Char> vformat_to(
1916     buffer<Char>& buf, basic_string_view<Char> format_str,
1917     basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args);
1918 
1919 template <typename Char, typename Args,
1920           FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1921 inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}
1922 
1923 FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
1924 #ifndef _WIN32
1925 inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
1926 #endif
1927 }  // namespace detail
1928 
1929 /** Formats a string and writes the output to ``out``. */
1930 // GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
1931 // vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
1932 template <typename OutputIt, typename S, typename Char = char_t<S>,
1933           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value)>
1934 OutputIt vformat_to(
1935     OutputIt out, const S& format_str,
1936     basic_format_args<buffer_context<type_identity_t<Char>>> args) {
1937   decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
1938   detail::vformat_to(buf, to_string_view(format_str), args);
1939   return detail::get_iterator(buf);
1940 }
1941 
1942 /**
1943  \rst
1944  Formats arguments, writes the result to the output iterator ``out`` and returns
1945  the iterator past the end of the output range.
1946 
1947  **Example**::
1948 
1949    std::vector<char> out;
1950    fmt::format_to(std::back_inserter(out), "{}", 42);
1951  \endrst
1952  */
1953 template <typename OutputIt, typename S, typename... Args,
1954           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt>::value&&
1955                             detail::is_string<S>::value)>
1956 inline OutputIt format_to(OutputIt out, const S& format_str, Args&&... args) {
1957   const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
1958   return vformat_to(out, to_string_view(format_str), vargs);
1959 }
1960 
1961 template <typename S, typename Char = char_t<S>>
1962 FMT_INLINE std::basic_string<Char> vformat(
1963     const S& format_str,
1964     basic_format_args<buffer_context<type_identity_t<Char>>> args) {
1965   return detail::vformat(to_string_view(format_str), args);
1966 }
1967 
1968 /**
1969   \rst
1970   Formats arguments and returns the result as a string.
1971 
1972   **Example**::
1973 
1974     #include <fmt/core.h>
1975     std::string message = fmt::format("The answer is {}", 42);
1976   \endrst
1977 */
1978 // Pass char_t as a default template parameter instead of using
1979 // std::basic_string<char_t<S>> to reduce the symbol size.
1980 template <typename S, typename... Args, typename Char = char_t<S>>
1981 FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
1982   const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
1983   return detail::vformat(to_string_view(format_str), vargs);
1984 }
1985 
1986 FMT_API void vprint(string_view, format_args);
1987 FMT_API void vprint(std::FILE*, string_view, format_args);
1988 
1989 /**
1990   \rst
1991   Formats ``args`` according to specifications in ``format_str`` and writes the
1992   output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
1993   ``FMT_UNICODE`` macro is set to 0.
1994 
1995   **Example**::
1996 
1997     fmt::print(stderr, "Don't {}!", "panic");
1998   \endrst
1999  */
2000 template <typename S, typename... Args, typename Char = char_t<S>>
2001 inline void print(std::FILE* f, const S& format_str, Args&&... args) {
2002   const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2003   return detail::is_unicode<Char>()
2004              ? vprint(f, to_string_view(format_str), vargs)
2005              : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
2006 }
2007 
2008 /**
2009   \rst
2010   Formats ``args`` according to specifications in ``format_str`` and writes
2011   the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
2012   the ``FMT_UNICODE`` macro is set to 0.
2013 
2014   **Example**::
2015 
2016     fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
2017   \endrst
2018  */
2019 template <typename S, typename... Args, typename Char = char_t<S>>
2020 inline void print(const S& format_str, Args&&... args) {
2021   const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2022   return detail::is_unicode<Char>()
2023              ? vprint(to_string_view(format_str), vargs)
2024              : detail::vprint_mojibake(stdout, to_string_view(format_str),
2025                                        vargs);
2026 }
2027 FMT_END_NAMESPACE
2028 
2029 #endif  // FMT_CORE_H_
2030