xref: /aosp_15_r20/external/armnn/src/backends/backendsCommon/test/layerTests/PreluTestImpl.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include <armnnTestUtils/LayerTestResult.hpp>
9 
10 #include <armnnUtils/QuantizeHelper.hpp>
11 #include <ResolveType.hpp>
12 
13 
14 #include <armnn/backends/IBackendInternal.hpp>
15 #include <armnn/backends/WorkloadFactory.hpp>
16 
17 #include <armnnTestUtils/TensorCopyUtils.hpp>
18 #include <backendsCommon/test/WorkloadFactoryHelper.hpp>
19 #include <armnnTestUtils/WorkloadTestUtils.hpp>
20 
21 #include <armnnTestUtils/TensorHelpers.hpp>
22 
23 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
PreluTest(armnn::IWorkloadFactory & workloadFactory,const armnn::IBackendInternal::IMemoryManagerSharedPtr & memoryManager,const armnn::ITensorHandleFactory & tensorHandleFactory)24 LayerTestResult<T, 4> PreluTest(
25         armnn::IWorkloadFactory& workloadFactory,
26         const armnn::IBackendInternal::IMemoryManagerSharedPtr& memoryManager,
27         const armnn::ITensorHandleFactory& tensorHandleFactory)
28 {
29     IgnoreUnused(memoryManager);
30 
31     armnn::TensorInfo inputTensorInfo ({ 1, 2, 2, 3 }, ArmnnType);
32     armnn::TensorInfo alphaTensorInfo ({ 1, 1, 1, 3 }, ArmnnType);
33     armnn::TensorInfo outputTensorInfo({ 1, 2, 2, 3 }, ArmnnType);
34 
35     if (armnn::IsQuantizedType<T>())
36     {
37         inputTensorInfo.SetQuantizationScale(0.25f);
38         inputTensorInfo.SetQuantizationOffset(128);
39         alphaTensorInfo.SetQuantizationScale(0.25f);
40         alphaTensorInfo.SetQuantizationOffset(50);
41         outputTensorInfo.SetQuantizationScale(0.5f);
42         outputTensorInfo.SetQuantizationOffset(120);
43     }
44 
45     std::vector<float> inputData
46     {
47         // Expected quantized values:
48         // 128, 128, 128, 132, 132, 132, 124, 124, 124, 120, 120, 120
49         0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -2.0f, -2.0f, -2.0f
50     };
51     std::vector<float> alphaData
52     {
53         // Expected quantized values:
54         // 50, 54, 58
55         0.0f, 1.0f, 2.0f
56     };
57     std::vector<float> outputExpectedData =
58     {
59         // Expected quantized values:
60         // 20, 120, 120, 122, 122, 122, 120, 118, 116, 120, 116, 112
61        0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, -1.0f, -2.0f, 0.0f, -2.0f, -4.0f
62     };
63 
64     std::vector<T> input = armnnUtils::QuantizedVector<T>(inputData,
65                                                           inputTensorInfo.GetQuantizationScale(),
66                                                           inputTensorInfo.GetQuantizationOffset());
67 
68     std::vector<T> alpha = armnnUtils::QuantizedVector<T>(alphaData,
69                                                                  alphaTensorInfo.GetQuantizationScale(),
70                                                                  alphaTensorInfo.GetQuantizationOffset());
71 
72     std::vector<T> actualOutput(outputTensorInfo.GetNumElements());
73     std::vector<T> expectedOutput = armnnUtils::QuantizedVector<T>(outputExpectedData,
74                                                                    outputTensorInfo.GetQuantizationScale(),
75                                                                    outputTensorInfo.GetQuantizationOffset());
76 
77     std::unique_ptr <armnn::ITensorHandle> inputHandle  = tensorHandleFactory.CreateTensorHandle(inputTensorInfo);
78     std::unique_ptr <armnn::ITensorHandle> alphaHandle  = tensorHandleFactory.CreateTensorHandle(alphaTensorInfo);
79     std::unique_ptr <armnn::ITensorHandle> outputHandle = tensorHandleFactory.CreateTensorHandle(outputTensorInfo);
80 
81     armnn::PreluQueueDescriptor descriptor;
82     armnn::WorkloadInfo info;
83     AddInputToWorkload (descriptor, info, inputTensorInfo,  inputHandle.get());
84     AddInputToWorkload (descriptor, info, alphaTensorInfo,  alphaHandle.get());
85     AddOutputToWorkload(descriptor, info, outputTensorInfo, outputHandle.get());
86 
87     std::unique_ptr<armnn::IWorkload> workload = workloadFactory.CreateWorkload(armnn::LayerType::Prelu,
88                                                                                 descriptor,
89                                                                                 info);
90 
91     inputHandle->Allocate();
92     alphaHandle->Allocate();
93     outputHandle->Allocate();
94 
95     CopyDataToITensorHandle(inputHandle.get(), input.data());
96     CopyDataToITensorHandle(alphaHandle.get(), alpha.data());
97 
98     workload->Execute();
99 
100     CopyDataFromITensorHandle(actualOutput.data(), outputHandle.get());
101 
102     return LayerTestResult<T, 4>(actualOutput,
103                                  expectedOutput,
104                                  outputHandle->GetShape(),
105                                  outputTensorInfo.GetShape());
106 }
107