1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include <CommonTestUtils.hpp>
9 
10 #include <armnn/INetwork.hpp>
11 #include <ResolveType.hpp>
12 
13 #include <doctest/doctest.h>
14 
15 namespace{
16 
17 template<typename T>
CreateDetectionPostProcessNetwork(const armnn::TensorInfo & boxEncodingsInfo,const armnn::TensorInfo & scoresInfo,const armnn::TensorInfo & anchorsInfo,const std::vector<T> & anchors,bool useRegularNms)18 armnn::INetworkPtr CreateDetectionPostProcessNetwork(const armnn::TensorInfo& boxEncodingsInfo,
19                                                      const armnn::TensorInfo& scoresInfo,
20                                                      const armnn::TensorInfo& anchorsInfo,
21                                                      const std::vector<T>& anchors,
22                                                      bool useRegularNms)
23 {
24     armnn::TensorInfo detectionBoxesInfo({ 1, 3, 4 }, armnn::DataType::Float32);
25     armnn::TensorInfo detectionScoresInfo({ 1, 3 }, armnn::DataType::Float32);
26     armnn::TensorInfo detectionClassesInfo({ 1, 3 }, armnn::DataType::Float32);
27     armnn::TensorInfo numDetectionInfo({ 1 }, armnn::DataType::Float32);
28 
29     armnn::DetectionPostProcessDescriptor desc;
30     desc.m_UseRegularNms = useRegularNms;
31     desc.m_MaxDetections = 3;
32     desc.m_MaxClassesPerDetection = 1;
33     desc.m_DetectionsPerClass =1;
34     desc.m_NmsScoreThreshold = 0.0;
35     desc.m_NmsIouThreshold = 0.5;
36     desc.m_NumClasses = 2;
37     desc.m_ScaleY = 10.0;
38     desc.m_ScaleX = 10.0;
39     desc.m_ScaleH = 5.0;
40     desc.m_ScaleW = 5.0;
41 
42     armnn::INetworkPtr net(armnn::INetwork::Create());
43 
44     armnn::IConnectableLayer* boxesLayer = net->AddInputLayer(0);
45     armnn::IConnectableLayer* scoresLayer = net->AddInputLayer(1);
46     armnn::ConstTensor anchorsTensor(anchorsInfo, anchors.data());
47     armnn::IConnectableLayer* detectionLayer = net->AddDetectionPostProcessLayer(desc, anchorsTensor,
48                                                                                  "DetectionPostProcess");
49     armnn::IConnectableLayer* detectionBoxesLayer = net->AddOutputLayer(0, "detectionBoxes");
50     armnn::IConnectableLayer* detectionClassesLayer = net->AddOutputLayer(1, "detectionClasses");
51     armnn::IConnectableLayer* detectionScoresLayer = net->AddOutputLayer(2, "detectionScores");
52     armnn::IConnectableLayer* numDetectionLayer = net->AddOutputLayer(3, "numDetection");
53     Connect(boxesLayer, detectionLayer, boxEncodingsInfo, 0, 0);
54     Connect(scoresLayer, detectionLayer, scoresInfo, 0, 1);
55     Connect(detectionLayer, detectionBoxesLayer, detectionBoxesInfo, 0, 0);
56     Connect(detectionLayer, detectionClassesLayer, detectionClassesInfo, 1, 0);
57     Connect(detectionLayer, detectionScoresLayer, detectionScoresInfo, 2, 0);
58     Connect(detectionLayer, numDetectionLayer, numDetectionInfo, 3, 0);
59 
60     return net;
61 }
62 
63 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
DetectionPostProcessEndToEnd(const std::vector<BackendId> & backends,bool useRegularNms,const std::vector<T> & boxEncodings,const std::vector<T> & scores,const std::vector<T> & anchors,const std::vector<float> & expectedDetectionBoxes,const std::vector<float> & expectedDetectionClasses,const std::vector<float> & expectedDetectionScores,const std::vector<float> & expectedNumDetections,float boxScale=1.0f,int32_t boxOffset=0,float scoreScale=1.0f,int32_t scoreOffset=0,float anchorScale=1.0f,int32_t anchorOffset=0)64 void DetectionPostProcessEndToEnd(const std::vector<BackendId>& backends, bool useRegularNms,
65                                   const std::vector<T>& boxEncodings,
66                                   const std::vector<T>& scores,
67                                   const std::vector<T>& anchors,
68                                   const std::vector<float>& expectedDetectionBoxes,
69                                   const std::vector<float>& expectedDetectionClasses,
70                                   const std::vector<float>& expectedDetectionScores,
71                                   const std::vector<float>& expectedNumDetections,
72                                   float boxScale = 1.0f,
73                                   int32_t boxOffset = 0,
74                                   float scoreScale = 1.0f,
75                                   int32_t scoreOffset = 0,
76                                   float anchorScale = 1.0f,
77                                   int32_t anchorOffset = 0)
78 {
79     armnn::TensorInfo boxEncodingsInfo({ 1, 6, 4 }, ArmnnType);
80     armnn::TensorInfo scoresInfo({ 1, 6, 3}, ArmnnType);
81     armnn::TensorInfo anchorsInfo({ 6, 4 }, ArmnnType);
82 
83     boxEncodingsInfo.SetQuantizationScale(boxScale);
84     boxEncodingsInfo.SetQuantizationOffset(boxOffset);
85     boxEncodingsInfo.SetConstant(true);
86     scoresInfo.SetQuantizationScale(scoreScale);
87     scoresInfo.SetQuantizationOffset(scoreOffset);
88     scoresInfo.SetConstant(true);
89     anchorsInfo.SetQuantizationScale(anchorScale);
90     anchorsInfo.SetQuantizationOffset(anchorOffset);
91     anchorsInfo.SetConstant(true);
92 
93     // Builds up the structure of the network
94     armnn::INetworkPtr net = CreateDetectionPostProcessNetwork<T>(boxEncodingsInfo, scoresInfo,
95                                                                   anchorsInfo, anchors, useRegularNms);
96 
97     CHECK(net);
98 
99     std::map<int, std::vector<T>> inputTensorData = {{ 0, boxEncodings }, { 1, scores }};
100     std::map<int, std::vector<float>> expectedOutputData = {{ 0, expectedDetectionBoxes },
101                                                             { 1, expectedDetectionClasses },
102                                                             { 2, expectedDetectionScores },
103                                                             { 3, expectedNumDetections }};
104 
105     EndToEndLayerTestImpl<ArmnnType, armnn::DataType::Float32>(
106         move(net), inputTensorData, expectedOutputData, backends);
107 }
108 
109 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
DetectionPostProcessRegularNmsEndToEnd(const std::vector<BackendId> & backends,const std::vector<T> & boxEncodings,const std::vector<T> & scores,const std::vector<T> & anchors,float boxScale=1.0f,int32_t boxOffset=0,float scoreScale=1.0f,int32_t scoreOffset=0,float anchorScale=1.0f,int32_t anchorOffset=0)110 void DetectionPostProcessRegularNmsEndToEnd(const std::vector<BackendId>& backends,
111                                             const std::vector<T>& boxEncodings,
112                                             const std::vector<T>& scores,
113                                             const std::vector<T>& anchors,
114                                             float boxScale = 1.0f,
115                                             int32_t boxOffset = 0,
116                                             float scoreScale = 1.0f,
117                                             int32_t scoreOffset = 0,
118                                             float anchorScale = 1.0f,
119                                             int32_t anchorOffset = 0)
120 {
121     std::vector<float> expectedDetectionBoxes({
122         0.0f, 10.0f, 1.0f, 11.0f,
123         0.0f, 10.0f, 1.0f, 11.0f,
124         0.0f, 0.0f, 0.0f, 0.0f
125     });
126     std::vector<float> expectedDetectionScores({ 0.95f, 0.93f, 0.0f });
127     std::vector<float> expectedDetectionClasses({ 1.0f, 0.0f, 0.0f });
128     std::vector<float> expectedNumDetections({ 2.0f });
129 
130     DetectionPostProcessEndToEnd<ArmnnType>(backends, true, boxEncodings, scores, anchors,
131                                             expectedDetectionBoxes, expectedDetectionClasses,
132                                             expectedDetectionScores, expectedNumDetections,
133                                             boxScale, boxOffset, scoreScale, scoreOffset,
134                                             anchorScale, anchorOffset);
135 
136 };
137 
138 
139 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
DetectionPostProcessFastNmsEndToEnd(const std::vector<BackendId> & backends,const std::vector<T> & boxEncodings,const std::vector<T> & scores,const std::vector<T> & anchors,float boxScale=1.0f,int32_t boxOffset=0,float scoreScale=1.0f,int32_t scoreOffset=0,float anchorScale=1.0f,int32_t anchorOffset=0)140 void DetectionPostProcessFastNmsEndToEnd(const std::vector<BackendId>& backends,
141                                          const std::vector<T>& boxEncodings,
142                                          const std::vector<T>& scores,
143                                          const std::vector<T>& anchors,
144                                          float boxScale = 1.0f,
145                                          int32_t boxOffset = 0,
146                                          float scoreScale = 1.0f,
147                                           int32_t scoreOffset = 0,
148                                          float anchorScale = 1.0f,
149                                          int32_t anchorOffset = 0)
150 {
151     std::vector<float> expectedDetectionBoxes({
152         0.0f, 10.0f, 1.0f, 11.0f,
153         0.0f, 0.0f, 1.0f, 1.0f,
154         0.0f, 100.0f, 1.0f, 101.0f
155     });
156     std::vector<float> expectedDetectionScores({ 0.95f, 0.9f, 0.3f });
157     std::vector<float> expectedDetectionClasses({ 1.0f, 0.0f, 0.0f });
158     std::vector<float> expectedNumDetections({ 3.0f });
159 
160     DetectionPostProcessEndToEnd<ArmnnType>(backends, false, boxEncodings, scores, anchors,
161                                             expectedDetectionBoxes, expectedDetectionClasses,
162                                             expectedDetectionScores, expectedNumDetections,
163                                             boxScale, boxOffset, scoreScale, scoreOffset,
164                                             anchorScale, anchorOffset);
165 
166 };
167 
168 } // anonymous namespace
169