1 //
2 // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5
6 #pragma once
7
8 #include "CanonicalUtils.hpp"
9
10 #include <armnn/ArmNN.hpp>
11 #include <armnn/BackendHelper.hpp>
12 #include <armnn/utility/Assert.hpp>
13 #include <armnn/utility/IgnoreUnused.hpp>
14 #include <armnn/utility/NumericCast.hpp>
15
16 #include <armnnUtils/DataLayoutIndexed.hpp>
17 #include <armnnUtils/Transpose.hpp>
18
19 #include <ActivationFunctor.h>
20 #include <CpuExecutor.h>
21 #include <OperationsUtils.h>
22
23 #include <armnnUtils/FloatingPointComparison.hpp>
24
25 #include <log/log.h>
26 #include <vector>
27
getMainModel(const android::nn::Model & model)28 inline const android::nn::Model::Subgraph& getMainModel(const android::nn::Model& model) { return model.main; }
29
30 namespace armnn_driver
31 {
32
33 ///
34 /// Helper classes
35 ///
36
37 #include <nnapi/OperandTypes.h>
38 #include <nnapi/Result.h>
39 #include <nnapi/TypeUtils.h>
40 #include <nnapi/Types.h>
41 #include <nnapi/Validation.h>
42
43 using Model = ::android::nn::Model;
44 using Operand = ::android::nn::Operand;
45 using OperandLifeTime = ::android::nn::Operand::LifeTime;
46 using OperandType = ::android::nn::OperandType;
47 using Operation = ::android::nn::Operation;
48 using OperationType = ::android::nn::OperationType;
49 using ErrorStatus = ::android::nn::ErrorStatus;
50
51 struct ConversionData
52 {
ConversionDataarmnn_driver::ConversionData53 ConversionData(const std::vector<armnn::BackendId>& backends)
54 : m_Backends(backends)
55 , m_Network(nullptr, nullptr)
56 , m_DynamicInputsEncountered(false)
57 {}
58
59 const std::vector<armnn::BackendId> m_Backends;
60 armnn::INetworkPtr m_Network;
61 std::vector<armnn::IOutputSlot*> m_OutputSlotForOperand;
62 std::vector<::android::nn::RunTimePoolInfo> m_MemPools;
63 bool m_DynamicInputsEncountered;
64 };
65
66 class LayerInputHandle
67 {
68 public:
69 LayerInputHandle();
70 LayerInputHandle(bool valid, armnn::IOutputSlot* outputSlot, armnn::TensorInfo tensorInfo);
71
72 bool IsValid() const;
73
74 void Connect(armnn::IInputSlot& inputSlot);
75
76 void Disconnect(armnn::IInputSlot& inputSlot);
77
78 const armnn::TensorInfo& GetTensorInfo() const;
79
80 void SanitizeQuantizationScale(LayerInputHandle& weight, LayerInputHandle& input);
81
82 armnn::IOutputSlot* GetOutputSlot() const;
83
84 private:
85 armnn::IOutputSlot* m_OutputSlot;
86 bool m_Valid;
87 armnn::TensorInfo m_TensorInfo;
88 };
89
90 class ConstTensorPin
91 {
92 public:
93 // Creates an invalid tensor pin (can be used to signal errors)
94 // The optional flag can be set to indicate the tensor values were missing, but it was otherwise valid
95 ConstTensorPin(bool optional = false);
96
97 // @param tensorInfo TensorInfo associated with the tensor.
98 // @param valueStart Start address of tensor data. Belongs to one of the memory pools associated with
99 // the model being converted.
100 // @param numBytes Number of bytes for the tensor data.
101 ConstTensorPin(armnn::TensorInfo& tensorInfo, const void* valueStart, uint32_t numBytes,
102 const armnn::PermutationVector& mappings);
103
104 ConstTensorPin(const ConstTensorPin& other) = delete;
105 ConstTensorPin(ConstTensorPin&& other) = default;
106
107 bool IsValid() const;
108 bool IsOptional() const;
109
110 const armnn::ConstTensor& GetConstTensor() const;
111 const armnn::ConstTensor* GetConstTensorPtr() const;
112
113 private:
114 armnn::ConstTensor m_ConstTensor;
115
116 // Owned memory for swizzled tensor data, only required if the tensor needed
117 // swizzling. Otherwise, @ref m_ConstTensor will reference memory from one of
118 // the pools associated with the model being converted.
119 std::vector<uint8_t> m_SwizzledTensorData;
120
121 // optional flag to indicate that an invalid tensor pin is not an error, but the optional values were not given
122 bool m_Optional;
123 };
124
125 enum class ConversionResult
126 {
127 Success,
128 ErrorMappingPools,
129 UnsupportedFeature
130 };
131
132 } // namespace armnn_driver
133
134 ///
135 /// Utility functions
136 ///
137
138 namespace
139 {
140 using namespace armnn_driver;
141
142 // Convenience function to log the reason for failing to convert a model.
143 // @return Always returns false (so that it can be used by callers as a quick way to signal an error and return)
144 template<class... Args>
Fail(const char * formatStr,Args &&...args)145 static bool Fail(const char* formatStr, Args&&... args)
146 {
147 ALOGD(formatStr, std::forward<Args>(args)...);
148 return false;
149 }
150
151 // Convenience macro to call an Is*Supported function and log caller name together with reason for lack of support.
152 // Called as: FORWARD_LAYER_SUPPORT_FUNC(__func__, Is*Supported, backends, a, b, c, d, e)
153 #define FORWARD_LAYER_SUPPORT_FUNC(funcName, func, backends, supported, setBackend, ...) \
154 try \
155 { \
156 for (auto&& backendId : backends) \
157 { \
158 auto layerSupportObject = armnn::GetILayerSupportByBackendId(backendId); \
159 if (layerSupportObject.IsBackendRegistered()) \
160 { \
161 std::string reasonIfUnsupported; \
162 supported = \
163 layerSupportObject.func(__VA_ARGS__, armnn::Optional<std::string&>(reasonIfUnsupported)); \
164 if (supported) \
165 { \
166 setBackend = backendId; \
167 break; \
168 } \
169 else \
170 { \
171 if (reasonIfUnsupported.size() > 0) \
172 { \
173 VLOG(DRIVER) << funcName << ": not supported by armnn: " << reasonIfUnsupported.c_str(); \
174 } \
175 else \
176 { \
177 VLOG(DRIVER) << funcName << ": not supported by armnn"; \
178 } \
179 } \
180 } \
181 else \
182 { \
183 VLOG(DRIVER) << funcName << ": backend not registered: " << backendId.Get().c_str(); \
184 } \
185 } \
186 if (!supported) \
187 { \
188 VLOG(DRIVER) << funcName << ": not supported by any specified backend"; \
189 } \
190 } \
191 catch (const armnn::InvalidArgumentException &e) \
192 { \
193 throw armnn::InvalidArgumentException(e, "Failed to check layer support", CHECK_LOCATION()); \
194 }
195
GetTensorShapeForOperand(const Operand & operand)196 inline armnn::TensorShape GetTensorShapeForOperand(const Operand& operand)
197 {
198 return armnn::TensorShape(operand.dimensions.size(), operand.dimensions.data());
199 }
200
201 // Support within the 1.3 driver for specific tensor data types
IsOperandTypeSupportedForTensors(OperandType type)202 inline bool IsOperandTypeSupportedForTensors(OperandType type)
203 {
204 return type == OperandType::BOOL ||
205 type == OperandType::TENSOR_BOOL8 ||
206 type == OperandType::TENSOR_FLOAT16 ||
207 type == OperandType::TENSOR_FLOAT32 ||
208 type == OperandType::TENSOR_QUANT8_ASYMM ||
209 type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED ||
210 type == OperandType::TENSOR_QUANT8_SYMM ||
211 type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL ||
212 type == OperandType::TENSOR_QUANT16_SYMM ||
213 type == OperandType::TENSOR_INT32;
214 }
215
IsBool(Operand operand)216 inline bool IsBool(Operand operand)
217 {
218 return operand.type == OperandType::BOOL;
219 }
220
Is12OrLaterOperand(Operand)221 inline bool Is12OrLaterOperand(Operand)
222 {
223 return true;
224 }
225
226
227 template<typename LayerHandleType>
AddReshapeLayer(armnn::INetwork & network,LayerHandleType & inputLayer,armnn::TensorInfo reshapeInfo)228 armnn::IConnectableLayer& AddReshapeLayer(armnn::INetwork& network,
229 LayerHandleType& inputLayer,
230 armnn::TensorInfo reshapeInfo)
231 {
232 armnn::ReshapeDescriptor reshapeDescriptor;
233 reshapeDescriptor.m_TargetShape = reshapeInfo.GetShape();
234
235 armnn::IConnectableLayer* reshapeLayer = network.AddReshapeLayer(reshapeDescriptor);
236 ARMNN_ASSERT(reshapeLayer != nullptr);
237
238 // Attach the input layer to the reshape layer
239 inputLayer.Connect(reshapeLayer->GetInputSlot(0));
240 reshapeLayer->GetOutputSlot(0).SetTensorInfo(reshapeInfo);
241
242 return *reshapeLayer;
243 }
244
245
FlattenFullyConnectedInput(const armnn::TensorShape & inputShape,const armnn::TensorShape & weightsShape)246 armnn::TensorShape FlattenFullyConnectedInput(const armnn::TensorShape& inputShape,
247 const armnn::TensorShape& weightsShape)
248 {
249 if (inputShape.GetNumDimensions() > 2U)
250 {
251 unsigned int totalInputElements = inputShape.GetNumElements();
252 unsigned int inputSize = weightsShape[1];
253
254 unsigned int batchSize = totalInputElements / inputSize;
255
256 if(totalInputElements % batchSize != 0)
257 {
258 throw std::runtime_error("Failed to deduce tensor shape");
259 }
260
261 return armnn::TensorShape({batchSize, inputSize});
262 }
263 else
264 {
265 return inputShape;
266 }
267 }
268
VerifyFullyConnectedShapes(const armnn::TensorShape & inputShape,const armnn::TensorShape & weightsShape,const armnn::TensorShape & outputShape,bool transposeWeightMatrix)269 inline bool VerifyFullyConnectedShapes(const armnn::TensorShape& inputShape,
270 const armnn::TensorShape& weightsShape,
271 const armnn::TensorShape& outputShape,
272 bool transposeWeightMatrix)
273 {
274 unsigned int dimIdx = transposeWeightMatrix ? 0 : 1;
275 return (inputShape[0] == outputShape[0] && weightsShape[dimIdx] == outputShape[1]);
276 }
277
BroadcastTensor(LayerInputHandle & input0,LayerInputHandle & input1,armnn::IConnectableLayer * startLayer,ConversionData & data)278 bool BroadcastTensor(LayerInputHandle& input0,
279 LayerInputHandle& input1,
280 armnn::IConnectableLayer* startLayer,
281 ConversionData& data)
282 {
283 ARMNN_ASSERT(startLayer != nullptr);
284
285 const armnn::TensorInfo& inputInfo0 = input0.GetTensorInfo();
286 const armnn::TensorInfo& inputInfo1 = input1.GetTensorInfo();
287
288 unsigned int inputDimensions0 = inputInfo0.GetNumDimensions();
289 unsigned int inputDimensions1 = inputInfo1.GetNumDimensions();
290
291 if (inputDimensions0 == inputDimensions1)
292 {
293 // The inputs have the same number of dimensions, simply connect them to the given layer as they are
294 input0.Connect(startLayer->GetInputSlot(0));
295 input1.Connect(startLayer->GetInputSlot(1));
296
297 return true;
298 }
299
300 // Since the number of dimensions do not match then we need to add degenerate dimensions
301 // to the "smaller" tensor using a reshape, while keeping the order of the inputs.
302
303 unsigned int maxInputDimensions = std::max(inputDimensions0, inputDimensions1);
304 unsigned int sizeDifference = std::abs(armnn::numeric_cast<int>(inputDimensions0) -
305 armnn::numeric_cast<int>(inputDimensions1));
306
307 bool input0IsSmaller = inputDimensions0 < inputDimensions1;
308 LayerInputHandle& smallInputHandle = input0IsSmaller ? input0 : input1;
309 const armnn::TensorInfo& smallInfo = smallInputHandle.GetTensorInfo();
310
311 const armnn::TensorShape& smallShape = smallInfo.GetShape();
312 std::vector<unsigned int> reshapedDimensions(maxInputDimensions, 1);
313 for (unsigned int i = sizeDifference; i < maxInputDimensions; i++)
314 {
315 reshapedDimensions[i] = smallShape[i - sizeDifference];
316 }
317
318 armnn::TensorInfo reshapedInfo = smallInfo;
319 reshapedInfo.SetShape(armnn::TensorShape{ armnn::numeric_cast<unsigned int>(reshapedDimensions.size()),
320 reshapedDimensions.data() });
321
322 // RehsapeDescriptor that is ignored in the IsReshapeSupported function
323 armnn::ReshapeDescriptor reshapeDescriptor;
324
325 bool isSupported = false;
326 armnn::BackendId setBackend;
327 FORWARD_LAYER_SUPPORT_FUNC(__func__,
328 IsReshapeSupported,
329 data.m_Backends,
330 isSupported,
331 setBackend,
332 smallInfo,
333 reshapedInfo,
334 reshapeDescriptor);
335 if (!isSupported)
336 {
337 return false;
338 }
339
340 ARMNN_ASSERT(data.m_Network != nullptr);
341 armnn::IConnectableLayer& reshapeLayer = AddReshapeLayer(*data.m_Network, smallInputHandle, reshapedInfo);
342 reshapeLayer.SetBackendId(setBackend);
343
344 if (input0IsSmaller)
345 {
346 // Input0 is the "smaller" tensor, connect the reshape layer as follows:
347 //
348 // Input0 Input1
349 // | |
350 // Reshape |
351 // \ /
352 // StartLayer
353
354 reshapeLayer.GetOutputSlot(0).Connect(startLayer->GetInputSlot(0));
355 input1.Connect(startLayer->GetInputSlot(1));
356 }
357 else
358 {
359 // Input1 is the "smaller" tensor, connect the reshape layer as follows:
360 //
361 // Input0 Input1
362 // | |
363 // | Reshape
364 // \ /
365 // StartLayer
366
367 input0.Connect(startLayer->GetInputSlot(0));
368 reshapeLayer.GetOutputSlot(0).Connect(startLayer->GetInputSlot(1));
369 }
370
371 return true;
372 }
373
CalcPadding(uint32_t input,uint32_t kernel,uint32_t stride,uint32_t & outPadHead,uint32_t & outPadTail,PaddingScheme scheme)374 void CalcPadding(uint32_t input,
375 uint32_t kernel,
376 uint32_t stride,
377 uint32_t& outPadHead,
378 uint32_t& outPadTail,
379 PaddingScheme scheme)
380 {
381 int32_t padHead;
382 int32_t padTail;
383 calculateExplicitPadding(input, stride, kernel, scheme, &padHead, &padTail);
384 outPadHead = armnn::numeric_cast<uint32_t>(padHead);
385 outPadTail = armnn::numeric_cast<uint32_t>(padTail);
386 }
387
CalcPadding(uint32_t input,uint32_t kernel,uint32_t stride,uint32_t dilation,uint32_t & outPadHead,uint32_t & outPadTail,::android::nn::PaddingScheme scheme)388 void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t dilation, uint32_t& outPadHead,
389 uint32_t& outPadTail, ::android::nn::PaddingScheme scheme)
390 {
391 int32_t padHead;
392 int32_t padTail;
393 calculateExplicitPadding(input, stride, dilation, kernel, scheme, &padHead, &padTail);
394 outPadHead = armnn::numeric_cast<uint32_t>(padHead);
395 outPadTail = armnn::numeric_cast<uint32_t>(padTail);
396 }
397
CalcPaddingTransposeConv(uint32_t output,uint32_t kernel,int32_t stride,int32_t & outPadHead,int32_t & outPadTail,::android::nn::PaddingScheme scheme)398 inline void CalcPaddingTransposeConv(uint32_t output, uint32_t kernel, int32_t stride, int32_t& outPadHead,
399 int32_t& outPadTail, ::android::nn::PaddingScheme scheme)
400 {
401 calculateExplicitPaddingTransposeConv(output, stride, kernel, scheme, &outPadHead, &outPadTail);
402 }
403
GetOperandShape(const Operand & operand)404 Shape GetOperandShape(const Operand& operand)
405 {
406 Shape shape;
407 shape.type = OperandType(operand.type);
408 shape.dimensions = operand.dimensions;
409 shape.scale = operand.scale;
410 shape.offset = operand.zeroPoint;
411 return shape;
412 }
413
414
415 // ArmNN requires the bias scale to be equal to the product of the weight and input scales, which is also
416 // what AndroidNN requires. However for some of the AndroidNN tests the values don't exactly match so
417 // we accept some tolerance. We don't want ArmNN itself to accept these inconsistencies as it is up to the
418 // user (us, in this case) to ensure they match.
SanitizeBiasQuantizationScale(armnn::TensorInfo & biasInfo,const armnn::TensorInfo & weightInfo,const armnn::TensorInfo & inputInfo)419 void SanitizeBiasQuantizationScale(armnn::TensorInfo& biasInfo,
420 const armnn::TensorInfo& weightInfo,
421 const armnn::TensorInfo& inputInfo)
422 {
423 if (weightInfo.HasPerAxisQuantization())
424 {
425 // NOTE: Bias scale is always set to 0 for per-axis quantization and
426 // it needs to be calculated: scale[i] = input_scale * weight_scale[i]
427 auto UpdateBiasScaleValue = [&inputInfo](float biasScale) -> float
428 {
429 return biasScale * inputInfo.GetQuantizationScale();
430 };
431
432 std::vector<float> biasScales(weightInfo.GetQuantizationScales());
433 std::transform(biasScales.begin(), biasScales.end(), biasScales.begin(), UpdateBiasScaleValue);
434
435 biasInfo.SetQuantizationScales(biasScales);
436 // bias is expected to be a 1d tensor, set qdim=0
437 biasInfo.SetQuantizationDim(0);
438
439 VLOG(DRIVER) << "Bias quantization params have been updated for per-axis quantization";
440 }
441 else
442 {
443 const float expectedBiasScale = weightInfo.GetQuantizationScale() * inputInfo.GetQuantizationScale();
444 if (biasInfo.GetQuantizationScale() != expectedBiasScale)
445 {
446 if (armnnUtils::within_percentage_tolerance(biasInfo.GetQuantizationScale(), expectedBiasScale, 1.0f))
447 {
448 VLOG(DRIVER) << "Bias quantization scale has been modified to match input * weights";
449 biasInfo.SetQuantizationScale(expectedBiasScale);
450 }
451 }
452 }
453 }
454
455 // 4D Tensor Permutations
456 const armnn::PermutationVector IdentityPermutation4D({ 0U, 1U, 2U, 3U });
457 const armnn::PermutationVector IdentityPermutation3D({ 0U, 1U, 2U });
458 const armnn::PermutationVector SwapDim2And3({ 0U, 1U, 3U, 2U });
459
460 // 3D Permutation Vectors
461 const armnn::PermutationVector RotateTensorLeft({ 1U, 2U, 0U });
462 const armnn::PermutationVector RotateTensorRight({ 2U, 0U, 1U });
463
464 template<typename OSlot>
AddTransposeLayer(armnn::INetwork & network,OSlot & input,const armnn::PermutationVector & mappings)465 armnn::IConnectableLayer& AddTransposeLayer(armnn::INetwork& network, OSlot& input,
466 const armnn::PermutationVector& mappings)
467 {
468 // Add swizzle layer
469 armnn::IConnectableLayer* const layer = network.AddTransposeLayer(mappings);
470
471 ARMNN_ASSERT(layer != nullptr);
472
473 // Connect input to swizzle layer
474 input.Connect(layer->GetInputSlot(0));
475
476 // Setup swizzled output
477 const armnn::TensorInfo outInfo = armnnUtils::TransposeTensorShape(input.GetTensorInfo(), mappings);
478 layer->GetOutputSlot(0).SetTensorInfo(outInfo);
479
480 return *layer;
481 }
482
ValidateConcatOutputShape(const std::vector<armnn::TensorShape> & inputShapes,const armnn::TensorShape & outputShape,uint32_t concatDim)483 bool ValidateConcatOutputShape(const std::vector<armnn::TensorShape> & inputShapes,
484 const armnn::TensorShape & outputShape,
485 uint32_t concatDim)
486 {
487 // Validate the output shape is correct given the input shapes (which have just been validated)
488 unsigned int numDimensions = inputShapes[0].GetNumDimensions();
489 if (outputShape.GetNumDimensions() != numDimensions)
490 {
491 return Fail("%s: Output shape has wrong number of dimensions", __func__);
492 }
493
494 unsigned int outputSizeAlongConcatenatedDimension = 0;
495 for (unsigned int i = 0; i < inputShapes.size(); i++)
496 {
497 outputSizeAlongConcatenatedDimension += inputShapes[i][concatDim];
498 }
499
500 for (unsigned int i = 0; i < numDimensions; ++i)
501 {
502 if (i == concatDim)
503 {
504 if (outputShape[i] != outputSizeAlongConcatenatedDimension)
505 {
506 return Fail(
507 "%s: Invalid output shape for dimension %d (%d != %d)",
508 __func__,
509 i,
510 outputShape[i],
511 outputSizeAlongConcatenatedDimension);
512 }
513 }
514 else
515 {
516 if (outputShape[i] != inputShapes[0][i])
517 {
518 return Fail("%s: Invalid output shape", __func__);
519 }
520 }
521 }
522
523 return true;
524 }
525
RequiresReshape(armnn::TensorShape & inputShape)526 inline bool RequiresReshape(armnn::TensorShape & inputShape)
527 {
528 return inputShape.GetNumDimensions() < 3;
529 }
530
SwizzleInputs(armnn::INetwork & network,std::vector<LayerInputHandle> & inputs,std::vector<armnn::TensorShape> & inputShapes,const armnn::PermutationVector & mapping,std::vector<armnn::BackendId> & setBackends)531 inline void SwizzleInputs(armnn::INetwork& network,
532 std::vector<LayerInputHandle>& inputs,
533 std::vector<armnn::TensorShape>& inputShapes,
534 const armnn::PermutationVector& mapping,
535 std::vector<armnn::BackendId>& setBackends)
536 {
537 if (!mapping.IsEqual(IdentityPermutation4D))
538 {
539 size_t nInputs = inputs.size();
540 for (size_t i=0; i<nInputs; ++i)
541 {
542 // add swizzle layer
543 armnn::IConnectableLayer& swizzleLayer = AddTransposeLayer(network, inputs[i], mapping);
544 swizzleLayer.SetBackendId(setBackends[i]);
545 auto& outputSlot = swizzleLayer.GetOutputSlot(0);
546 auto& outputInfo = outputSlot.GetTensorInfo();
547 // replace inputs with the swizzled ones
548 inputs[i] = LayerInputHandle(true, &outputSlot, outputInfo);
549 inputShapes[i] = inputs[i].GetTensorInfo().GetShape();
550 }
551 }
552 }
553
TransposeInputTensors(ConversionData & data,std::vector<LayerInputHandle> & inputs,std::vector<armnn::TensorShape> & inputShapes,const armnn::PermutationVector & mapping)554 bool TransposeInputTensors(ConversionData& data,
555 std::vector<LayerInputHandle>& inputs,
556 std::vector<armnn::TensorShape>& inputShapes,
557 const armnn::PermutationVector& mapping)
558 {
559 // If we have a IdentityPermutation4D or IdentityPermutation3D then we are not permuting
560 if (!mapping.IsEqual(IdentityPermutation4D) && !mapping.IsEqual(IdentityPermutation3D))
561 {
562 std::vector<armnn::BackendId> setBackendsVec;
563 armnn::TensorInfo outputTransposeInfo;
564 size_t nInputs = inputs.size();
565 for (size_t i=0; i<nInputs; ++i)
566 {
567 // check permute layer
568 armnn::TransposeDescriptor transposeDesc;
569 transposeDesc.m_DimMappings = mapping;
570 outputTransposeInfo = armnnUtils::TransposeTensorShape(inputs[i].GetTensorInfo(), mapping);
571
572 bool isSupported = false;
573 armnn::BackendId setBackend;
574 FORWARD_LAYER_SUPPORT_FUNC(__func__,
575 IsTransposeSupported,
576 data.m_Backends,
577 isSupported,
578 setBackend,
579 inputs[i].GetTensorInfo(),
580 outputTransposeInfo,
581 transposeDesc);
582 setBackendsVec.push_back(setBackend);
583 if (!isSupported)
584 {
585 return false;
586 }
587
588 }
589 SwizzleInputs(*data.m_Network, inputs, inputShapes, mapping, setBackendsVec);
590 }
591 return true;
592 }
593
CreateConcatPermutationParameters(const unsigned int numberOfDimensions,int32_t & concatDimension,std::pair<armnn::PermutationVector,armnn::PermutationVector> & permutationPair)594 bool CreateConcatPermutationParameters(const unsigned int numberOfDimensions,
595 int32_t & concatDimension,
596 std::pair<armnn::PermutationVector, armnn::PermutationVector> & permutationPair)
597 {
598 bool needPermute = false;
599 ARMNN_ASSERT(numberOfDimensions >= 3);
600
601 // ArmNN uses Compute Library subtensors to perform concatenation
602 // This only works when concatenating along dimension 0, 1 or 3 for a 4-D tensor,
603 // or along dimension 0 or 2 for a 3-D tensor.
604 if (numberOfDimensions == 4 && concatDimension == 2)
605 {
606 concatDimension = 3;
607 permutationPair = std::make_pair(SwapDim2And3, SwapDim2And3);
608 needPermute = true;
609 }
610 else if (numberOfDimensions == 3 && concatDimension == 1)
611 {
612 concatDimension = 0;
613 permutationPair = std::make_pair(RotateTensorLeft, RotateTensorRight);
614 needPermute = true;
615 }
616 // If the tensor is 3-D and the concat dimension is 2 then we don't need to permute but we do need to change the
617 // permutation identity to only have 3 dimensions
618 else if (numberOfDimensions == 3 && concatDimension == 2)
619 {
620 permutationPair = std::make_pair(IdentityPermutation3D, IdentityPermutation3D);
621 }
622 return needPermute;
623 }
624
625 } // anonymous namespace
626
627 namespace armnn_driver
628 {
629 using namespace android::nn;
630
631 //// Creates an ArmNN activation layer and connects it to the given layer, if the
632 //// passed in AndroidNN activation function requires so.
633 //// @return The end layer of the sequence of layers built for the given AndroidNN
634 //// activation function or nullptr if an error occurred (e.g. unsupported activation).
635 //// Note that the end layer matches the input layer if no activation is required
636 //// (the sequence of layers has length 1).
637 armnn::IConnectableLayer* ProcessActivation(const armnn::TensorInfo& tensorInfo,
638 ActivationFn activation,
639 armnn::IConnectableLayer* prevLayer,
640 ConversionData& data);
641
642
GetInputOperand(const Operation & operation,uint32_t inputIndex,const Model & model,bool failOnIndexOutOfBounds=true)643 inline const Operand* GetInputOperand(const Operation& operation,
644 uint32_t inputIndex,
645 const Model& model,
646 bool failOnIndexOutOfBounds = true)
647 {
648 if (inputIndex >= operation.inputs.size())
649 {
650 if (failOnIndexOutOfBounds)
651 {
652 Fail("%s: invalid input index: %i out of %i", __func__, inputIndex, operation.inputs.size());
653 }
654 return nullptr;
655 }
656
657 // Model should have been validated beforehand
658 ARMNN_ASSERT(operation.inputs[inputIndex] < getMainModel(model).operands.size());
659 return &getMainModel(model).operands[operation.inputs[inputIndex]];
660 }
661
GetOutputOperand(const Operation & operation,uint32_t outputIndex,const Model & model)662 inline const Operand* GetOutputOperand(const Operation& operation,
663 uint32_t outputIndex,
664 const Model& model)
665 {
666 if (outputIndex >= operation.outputs.size())
667 {
668 Fail("%s: invalid output index: %i out of %i", __func__, outputIndex, operation.outputs.size());
669 return nullptr;
670 }
671
672 // Model should have been validated beforehand
673 ARMNN_ASSERT(operation.outputs[outputIndex] < getMainModel(model).operands.size());
674
675 return &getMainModel(model).operands[operation.outputs[outputIndex]];
676 }
677
678 const void* GetOperandValueReadOnlyAddress(const Operand& operand,
679 const Model& model,
680 const ConversionData& data,
681 bool optional = false);
682
GetOperandType(const Operation & operation,uint32_t inputIndex,const Model & model,OperandType & type)683 inline bool GetOperandType(const Operation& operation,
684 uint32_t inputIndex,
685 const Model& model,
686 OperandType& type)
687 {
688 const Operand* operand = GetInputOperand(operation, inputIndex, model);
689 if (!operand)
690 {
691 return Fail("%s: invalid input operand at index %i", __func__, inputIndex);
692 }
693
694 type = operand->type;
695 return true;
696 }
697
IsOperandConstant(const Operand & operand)698 inline bool IsOperandConstant(const Operand& operand)
699 {
700 OperandLifeTime lifetime = operand.lifetime;
701
702 return lifetime == OperandLifeTime::CONSTANT_COPY ||
703 lifetime == OperandLifeTime::CONSTANT_REFERENCE ||
704 lifetime == OperandLifeTime::POINTER ||
705 lifetime == OperandLifeTime::NO_VALUE;
706 }
707
708 bool IsWeightsValid(const Operation& operation, uint32_t inputIndex, const Model& model);
709
710 ConstTensorPin ConvertOperandToConstTensorPin(const Operand& operand,
711 const Model& model,
712 const ConversionData& data,
713 const armnn::PermutationVector& dimensionMappings = g_DontPermute,
714 const armnn::TensorShape* overrideTensorShape = nullptr,
715 bool optional = false,
716 const armnn::DataType* overrideDataType = nullptr);
717
ConvertOperationInputToConstTensorPin(const Operation & operation,uint32_t inputIndex,const Model & model,const ConversionData & data,const armnn::PermutationVector & dimensionMappings=g_DontPermute,const armnn::TensorShape * overrideTensorShape=nullptr,bool optional=false)718 inline ConstTensorPin ConvertOperationInputToConstTensorPin(
719 const Operation& operation,
720 uint32_t inputIndex,
721 const Model& model,
722 const ConversionData& data,
723 const armnn::PermutationVector& dimensionMappings = g_DontPermute,
724 const armnn::TensorShape* overrideTensorShape = nullptr,
725 bool optional = false)
726 {
727 const Operand* operand = GetInputOperand(operation, inputIndex, model);
728 if (!operand)
729 {
730 Fail("%s: failed to get input operand: index=%u", __func__, inputIndex);
731 return ConstTensorPin();
732 }
733 return ConvertOperandToConstTensorPin(*operand,
734 model,
735 data,
736 dimensionMappings,
737 overrideTensorShape,
738 optional);
739 }
740
741 template <typename OutputType>
GetInputScalar(const Operation & operation,uint32_t inputIndex,OperandType type,OutputType & outValue,const Model & model,const ConversionData & data,bool optional=false)742 bool GetInputScalar(const Operation& operation,
743 uint32_t inputIndex,
744 OperandType type,
745 OutputType& outValue,
746 const Model& model,
747 const ConversionData& data,
748 bool optional = false)
749 {
750 const Operand* operand = GetInputOperand(operation, inputIndex, model);
751 if (!optional && !operand)
752 {
753 return Fail("%s: invalid input operand at index %i", __func__, inputIndex);
754 }
755
756 if (!optional && operand->type != type)
757 {
758 VLOG(DRIVER) << __func__ << ": unexpected operand type: " << operand->type << " should be: " << type;
759 return false;
760 }
761
762 if (!optional && operand->location.length != sizeof(OutputType))
763 {
764 return Fail("%s: incorrect operand location length: %i (should be %i)",
765 __func__, operand->location.length, sizeof(OutputType));
766 }
767
768 const void* valueAddress = GetOperandValueReadOnlyAddress(*operand, model, data);
769 if (!optional && !valueAddress)
770 {
771 return Fail("%s: failed to get address for operand", __func__);
772 }
773
774 if(!optional)
775 {
776 outValue = *(static_cast<const OutputType*>(valueAddress));
777 }
778
779 return true;
780 }
781
GetInputInt32(const Operation & operation,uint32_t inputIndex,int32_t & outValue,const Model & model,const ConversionData & data)782 inline bool GetInputInt32(const Operation& operation,
783 uint32_t inputIndex,
784 int32_t& outValue,
785 const Model& model,
786 const ConversionData& data)
787 {
788 return GetInputScalar(operation, inputIndex, OperandType::INT32, outValue, model, data);
789 }
790
GetInputFloat32(const Operation & operation,uint32_t inputIndex,float & outValue,const Model & model,const ConversionData & data)791 inline bool GetInputFloat32(const Operation& operation,
792 uint32_t inputIndex,
793 float& outValue,
794 const Model& model,
795 const ConversionData& data)
796 {
797 return GetInputScalar(operation, inputIndex, OperandType::FLOAT32, outValue, model, data);
798 }
799
GetInputActivationFunctionImpl(const Operation & operation,uint32_t inputIndex,OperandType type,ActivationFn & outActivationFunction,const Model & model,const ConversionData & data)800 inline bool GetInputActivationFunctionImpl(const Operation& operation,
801 uint32_t inputIndex,
802 OperandType type,
803 ActivationFn& outActivationFunction,
804 const Model& model,
805 const ConversionData& data)
806 {
807 if (type != OperandType::INT32 && type != OperandType::TENSOR_INT32)
808 {
809 VLOG(DRIVER) << __func__ << ": unexpected operand type: " << type
810 << " should be OperandType::INT32 or OperandType::TENSOR_INT32";
811 return false;
812 }
813
814 int32_t activationFunctionAsInt;
815 if (!GetInputScalar(operation, inputIndex, type, activationFunctionAsInt, model, data))
816 {
817 return Fail("%s: failed to get activation input value", __func__);
818 }
819 outActivationFunction = static_cast<ActivationFn>(activationFunctionAsInt);
820 return true;
821 }
822
GetInputActivationFunction(const Operation & operation,uint32_t inputIndex,ActivationFn & outActivationFunction,const Model & model,const ConversionData & data)823 inline bool GetInputActivationFunction(const Operation& operation,
824 uint32_t inputIndex,
825 ActivationFn& outActivationFunction,
826 const Model& model,
827 const ConversionData& data)
828 {
829 return GetInputActivationFunctionImpl(operation,
830 inputIndex,
831 OperandType::INT32,
832 outActivationFunction,
833 model,
834 data);
835 }
836
GetInputActivationFunctionFromTensor(const Operation & operation,uint32_t inputIndex,ActivationFn & outActivationFunction,const Model & model,const ConversionData & data)837 inline bool GetInputActivationFunctionFromTensor(const Operation& operation,
838 uint32_t inputIndex,
839 ActivationFn& outActivationFunction,
840 const Model& model,
841 const ConversionData& data)
842 {
843 // This only accepts a 1-D tensor of size 1
844 return GetInputActivationFunctionImpl(operation,
845 inputIndex,
846 OperandType::INT32,
847 outActivationFunction,
848 model,
849 data);
850 }
851
852
GetOptionalInputActivation(const Operation & operation,uint32_t inputIndex,ActivationFn & activationFunction,const Model & model,const ConversionData & data)853 inline bool GetOptionalInputActivation(const Operation& operation,
854 uint32_t inputIndex,
855 ActivationFn& activationFunction,
856 const Model& model,
857 const ConversionData& data)
858 {
859 if (operation.inputs.size() <= inputIndex)
860 {
861 activationFunction = ActivationFn::kActivationNone;
862 }
863 else
864 {
865 if (!GetInputActivationFunction(operation, inputIndex, activationFunction, model, data))
866 {
867 return Fail("%s: Operation has invalid inputs", __func__);
868 }
869 }
870 return true;
871 }
872
873 template<typename ConvolutionDescriptor>
GetOptionalConvolutionDilationParams(const Operation & operation,uint32_t dilationXIndex,ConvolutionDescriptor & descriptor,const Model & model,const ConversionData & data)874 bool GetOptionalConvolutionDilationParams(const Operation& operation,
875 uint32_t dilationXIndex,
876 ConvolutionDescriptor& descriptor,
877 const Model& model,
878 const ConversionData& data)
879 {
880 bool success = true;
881 if (operation.inputs.size() >= dilationXIndex + 2)
882 {
883 success &= GetInputScalar(operation,
884 dilationXIndex,
885 OperandType::INT32,
886 descriptor.m_DilationX,
887 model,
888 data);
889 success &= GetInputScalar(operation,
890 dilationXIndex + 1,
891 OperandType::INT32,
892 descriptor.m_DilationY,
893 model,
894 data);
895 }
896
897 return success;
898 }
899
GetOptionalBool(const Operation & operation,uint32_t inputIndex,const Model & model,const ConversionData & data)900 inline bool GetOptionalBool(const Operation& operation,
901 uint32_t inputIndex,
902 const Model& model,
903 const ConversionData& data)
904 {
905 const Operand* operand = GetInputOperand(operation, inputIndex, model);
906 if (!operand)
907 {
908 return false;
909 }
910
911 if (!IsBool(*operand))
912 {
913 return false;
914 }
915
916 const void* valueAddress = GetOperandValueReadOnlyAddress(*operand, model, data);
917 if (!valueAddress)
918 {
919 return false;
920 }
921
922 return *(static_cast<const bool*>(valueAddress));
923 }
924
925 bool GetTensorInt32Values(const Operand& operand,
926 std::vector<int32_t>& outValues,
927 const Model& model,
928 const ConversionData& data);
929
930 bool GetInputPaddingScheme(const Operation& operation,
931 uint32_t inputIndex,
932 PaddingScheme& outPaddingScheme,
933 const Model& model,
934 const ConversionData& data);
935
936 LayerInputHandle ConvertToLayerInputHandle(const Operation& operation,
937 uint32_t inputIndex,
938 const Model& model,
939 ConversionData& data,
940 const armnn::PermutationVector& dimensionMappings = g_DontPermute,
941 const LayerInputHandle* inputHandle = nullptr);
942
943 bool SetupAndTrackLayerOutputSlot(const Operation& operation,
944 uint32_t operationOutputIndex,
945 armnn::IConnectableLayer& layer,
946 uint32_t layerOutputIndex,
947 const Model& model,
948 ConversionData& data,
949 const armnn::TensorInfo* overrideOutputInfo = nullptr,
950 const std::function <void (const armnn::TensorInfo&, bool&)>& validateFunc = nullptr,
951 const ActivationFn& activationFunction = ActivationFn::kActivationNone,
952 bool inferOutputShapes = false);
953
954 armnn::DataLayout OptionalDataLayout(const Operation& operation,
955 uint32_t inputIndex,
956 const Model& model,
957 ConversionData& data);
958
SetupAndTrackLayerOutputSlot(const Operation & operation,uint32_t outputIndex,armnn::IConnectableLayer & layer,const Model & model,ConversionData & data,const armnn::TensorInfo * overrideOutputInfo=nullptr,const std::function<void (const armnn::TensorInfo &,bool &)> & validateFunc=nullptr,const ActivationFn & activationFunction=ActivationFn::kActivationNone)959 inline bool SetupAndTrackLayerOutputSlot(
960 const Operation& operation,
961 uint32_t outputIndex,
962 armnn::IConnectableLayer& layer,
963 const Model& model,
964 ConversionData& data,
965 const armnn::TensorInfo* overrideOutputInfo = nullptr,
966 const std::function <void (const armnn::TensorInfo&, bool&)>& validateFunc = nullptr,
967 const ActivationFn& activationFunction = ActivationFn::kActivationNone)
968 {
969 return SetupAndTrackLayerOutputSlot(operation,
970 outputIndex,
971 layer,
972 outputIndex,
973 model,
974 data,
975 overrideOutputInfo,
976 validateFunc,
977 activationFunction);
978 }
979
980 bool ConvertToActivation(const Operation& operation,
981 const char* operationName,
982 const armnn::ActivationDescriptor& activationDesc,
983 const Model& model,
984 ConversionData& data);
985
986 bool ConvertPaddings(const Operation& operation,
987 const Model& model,
988 ConversionData& data,
989 unsigned int rank,
990 armnn::PadDescriptor& padDescriptor);
991 bool ConvertReduce(const Operation& operation,
992 const Model& model,
993 ConversionData& data,
994 armnn::ReduceOperation reduceOperation);
995
996 bool ConvertPooling2d(const Operation& operation,
997 const char* operationName,
998 armnn::PoolingAlgorithm poolType,
999 const Model& model,
1000 ConversionData& data);
1001
IsQSymm8(const Operand & operand)1002 inline bool IsQSymm8(const Operand& operand)
1003 {
1004 return operand.type == OperandType::TENSOR_QUANT8_SYMM;
1005 }
1006
1007 enum class DequantizeStatus
1008 {
1009 SUCCESS,
1010 NOT_REQUIRED,
1011 INVALID_OPERAND
1012 };
1013
1014 using DequantizeResult = std::tuple<std::unique_ptr<float[]>, size_t, armnn::TensorInfo, DequantizeStatus>;
1015
1016 DequantizeResult DequantizeIfRequired(size_t operand_index,
1017 const Operation& operation,
1018 const Model& model,
1019 const ConversionData& data);
1020
1021 ConstTensorPin DequantizeAndMakeConstTensorPin(const Operation& operation,
1022 const Model& model,
1023 const ConversionData& data,
1024 size_t operandIndex,
1025 bool optional = false);
1026
1027 bool IsConnectedToDequantize(armnn::IOutputSlot* ioutputSlot);
1028
1029 } // namespace armnn_driver
1030