xref: /aosp_15_r20/external/armnn/delegate/test/StridedSliceTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateStridedSliceTfLiteModel(tflite::TensorType tensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & beginTensorData,const std::vector<int32_t> & endTensorData,const std::vector<int32_t> & strideTensorData,const std::vector<int32_t> & beginTensorShape,const std::vector<int32_t> & endTensorShape,const std::vector<int32_t> & strideTensorShape,const std::vector<int32_t> & outputTensorShape,const int32_t beginMask,const int32_t endMask,const int32_t ellipsisMask,const int32_t newAxisMask,const int32_t ShrinkAxisMask,const armnn::DataLayout & dataLayout)24 std::vector<char> CreateStridedSliceTfLiteModel(tflite::TensorType tensorType,
25                                                 const std::vector<int32_t>& inputTensorShape,
26                                                 const std::vector<int32_t>& beginTensorData,
27                                                 const std::vector<int32_t>& endTensorData,
28                                                 const std::vector<int32_t>& strideTensorData,
29                                                 const std::vector<int32_t>& beginTensorShape,
30                                                 const std::vector<int32_t>& endTensorShape,
31                                                 const std::vector<int32_t>& strideTensorShape,
32                                                 const std::vector<int32_t>& outputTensorShape,
33                                                 const int32_t beginMask,
34                                                 const int32_t endMask,
35                                                 const int32_t ellipsisMask,
36                                                 const int32_t newAxisMask,
37                                                 const int32_t ShrinkAxisMask,
38                                                 const armnn::DataLayout& dataLayout)
39 {
40     using namespace tflite;
41     flatbuffers::FlatBufferBuilder flatBufferBuilder;
42 
43     flatbuffers::Offset<tflite::Buffer> buffers[6] = {
44             CreateBuffer(flatBufferBuilder),
45             CreateBuffer(flatBufferBuilder),
46             CreateBuffer(flatBufferBuilder,
47                          flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(beginTensorData.data()),
48                                                         sizeof(int32_t) * beginTensorData.size())),
49             CreateBuffer(flatBufferBuilder,
50                          flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(endTensorData.data()),
51                                                         sizeof(int32_t) * endTensorData.size())),
52             CreateBuffer(flatBufferBuilder,
53                          flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(strideTensorData.data()),
54                                                         sizeof(int32_t) * strideTensorData.size())),
55             CreateBuffer(flatBufferBuilder)
56     };
57 
58     std::array<flatbuffers::Offset<Tensor>, 5> tensors;
59     tensors[0] = CreateTensor(flatBufferBuilder,
60                               flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
61                                                                       inputTensorShape.size()),
62                               tensorType,
63                               1,
64                               flatBufferBuilder.CreateString("input"));
65     tensors[1] = CreateTensor(flatBufferBuilder,
66                               flatBufferBuilder.CreateVector<int32_t>(beginTensorShape.data(),
67                                                                       beginTensorShape.size()),
68                               ::tflite::TensorType_INT32,
69                               2,
70                               flatBufferBuilder.CreateString("begin_tensor"));
71     tensors[2] = CreateTensor(flatBufferBuilder,
72                               flatBufferBuilder.CreateVector<int32_t>(endTensorShape.data(),
73                                                                       endTensorShape.size()),
74                               ::tflite::TensorType_INT32,
75                               3,
76                               flatBufferBuilder.CreateString("end_tensor"));
77     tensors[3] = CreateTensor(flatBufferBuilder,
78                               flatBufferBuilder.CreateVector<int32_t>(strideTensorShape.data(),
79                                                                       strideTensorShape.size()),
80                               ::tflite::TensorType_INT32,
81                               4,
82                               flatBufferBuilder.CreateString("stride_tensor"));
83     tensors[4] = CreateTensor(flatBufferBuilder,
84                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
85                                                                       outputTensorShape.size()),
86                               tensorType,
87                               5,
88                               flatBufferBuilder.CreateString("output"));
89 
90 
91     // create operator
92     tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_StridedSliceOptions;
93     flatbuffers::Offset<void> operatorBuiltinOptions = CreateStridedSliceOptions(flatBufferBuilder,
94                                                                                  beginMask,
95                                                                                  endMask,
96                                                                                  ellipsisMask,
97                                                                                  newAxisMask,
98                                                                                  ShrinkAxisMask).Union();
99 
100     const std::vector<int> operatorInputs{ 0, 1, 2, 3 };
101     const std::vector<int> operatorOutputs{ 4 };
102     flatbuffers::Offset <Operator> sliceOperator =
103             CreateOperator(flatBufferBuilder,
104                            0,
105                            flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
106                            flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
107                            operatorBuiltinOptionsType,
108                            operatorBuiltinOptions);
109 
110     const std::vector<int> subgraphInputs{ 0, 1, 2, 3 };
111     const std::vector<int> subgraphOutputs{ 4 };
112     flatbuffers::Offset <SubGraph> subgraph =
113             CreateSubGraph(flatBufferBuilder,
114                            flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
115                            flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
116                            flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
117                            flatBufferBuilder.CreateVector(&sliceOperator, 1));
118 
119     flatbuffers::Offset <flatbuffers::String> modelDescription =
120             flatBufferBuilder.CreateString("ArmnnDelegate: StridedSlice Operator Model");
121     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
122                                                                          BuiltinOperator_STRIDED_SLICE);
123 
124     flatbuffers::Offset <Model> flatbufferModel =
125             CreateModel(flatBufferBuilder,
126                         TFLITE_SCHEMA_VERSION,
127                         flatBufferBuilder.CreateVector(&operatorCode, 1),
128                         flatBufferBuilder.CreateVector(&subgraph, 1),
129                         modelDescription,
130                         flatBufferBuilder.CreateVector(buffers, 6));
131 
132     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
133 
134     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
135                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
136 }
137 
138 template <typename T>
StridedSliceTestImpl(std::vector<armnn::BackendId> & backends,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,std::vector<int32_t> & beginTensorData,std::vector<int32_t> & endTensorData,std::vector<int32_t> & strideTensorData,std::vector<int32_t> & inputTensorShape,std::vector<int32_t> & beginTensorShape,std::vector<int32_t> & endTensorShape,std::vector<int32_t> & strideTensorShape,std::vector<int32_t> & outputTensorShape,const int32_t beginMask=0,const int32_t endMask=0,const int32_t ellipsisMask=0,const int32_t newAxisMask=0,const int32_t ShrinkAxisMask=0,const armnn::DataLayout & dataLayout=armnn::DataLayout::NHWC)139 void StridedSliceTestImpl(std::vector<armnn::BackendId>& backends,
140                           std::vector<T>& inputValues,
141                           std::vector<T>& expectedOutputValues,
142                           std::vector<int32_t>& beginTensorData,
143                           std::vector<int32_t>& endTensorData,
144                           std::vector<int32_t>& strideTensorData,
145                           std::vector<int32_t>& inputTensorShape,
146                           std::vector<int32_t>& beginTensorShape,
147                           std::vector<int32_t>& endTensorShape,
148                           std::vector<int32_t>& strideTensorShape,
149                           std::vector<int32_t>& outputTensorShape,
150                           const int32_t beginMask = 0,
151                           const int32_t endMask = 0,
152                           const int32_t ellipsisMask = 0,
153                           const int32_t newAxisMask = 0,
154                           const int32_t ShrinkAxisMask = 0,
155                           const armnn::DataLayout& dataLayout = armnn::DataLayout::NHWC)
156 {
157     using namespace delegateTestInterpreter;
158     std::vector<char> modelBuffer = CreateStridedSliceTfLiteModel(
159             ::tflite::TensorType_FLOAT32,
160             inputTensorShape,
161             beginTensorData,
162             endTensorData,
163             strideTensorData,
164             beginTensorShape,
165             endTensorShape,
166             strideTensorShape,
167             outputTensorShape,
168             beginMask,
169             endMask,
170             ellipsisMask,
171             newAxisMask,
172             ShrinkAxisMask,
173             dataLayout);
174 
175     // Setup interpreter with just TFLite Runtime.
176     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
177     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
178     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
179     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
180     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
181     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
182 
183     // Setup interpreter with Arm NN Delegate applied.
184     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
185     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
186     CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
187     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
188     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
189     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
190 
191     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
192     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputTensorShape);
193 
194     tfLiteInterpreter.Cleanup();
195     armnnInterpreter.Cleanup();
196 } // End of StridedSlice Test
197 
198 } // anonymous namespace