xref: /aosp_15_r20/external/armnn/delegate/test/RoundTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
CreateRoundTfLiteModel(tflite::BuiltinOperator roundOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & tensorShape,float quantScale=1.0f,int quantOffset=0)23 std::vector<char> CreateRoundTfLiteModel(tflite::BuiltinOperator roundOperatorCode,
24                                          tflite::TensorType tensorType,
25                                          const std::vector <int32_t>& tensorShape,
26                                          float quantScale = 1.0f,
27                                          int quantOffset = 0)
28 {
29     using namespace tflite;
30     flatbuffers::FlatBufferBuilder flatBufferBuilder;
31 
32     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
33     buffers.push_back(CreateBuffer(flatBufferBuilder));
34     buffers.push_back(CreateBuffer(flatBufferBuilder));
35     buffers.push_back(CreateBuffer(flatBufferBuilder));
36 
37     auto quantizationParameters =
38         CreateQuantizationParameters(flatBufferBuilder,
39                                      0,
40                                      0,
41                                      flatBufferBuilder.CreateVector<float>({quantScale}),
42                                      flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
43 
44     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
45     tensors[0] = CreateTensor(flatBufferBuilder,
46                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
47                                                                       tensorShape.size()),
48                               tensorType,
49                               1,
50                               flatBufferBuilder.CreateString("input"),
51                               quantizationParameters);
52     tensors[1] = CreateTensor(flatBufferBuilder,
53                               flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
54                                                                       tensorShape.size()),
55                               tensorType,
56                               2,
57                               flatBufferBuilder.CreateString("output"),
58                               quantizationParameters);
59 
60     const std::vector<int32_t> operatorInputs({0});
61     const std::vector<int32_t> operatorOutputs({1});
62 
63     flatbuffers::Offset<Operator> roundOperator;
64     flatbuffers::Offset<flatbuffers::String> modelDescription;
65     flatbuffers::Offset<OperatorCode> operatorCode;
66 
67     switch (roundOperatorCode)
68     {
69         case tflite::BuiltinOperator_FLOOR:
70         default:
71             roundOperator =
72                 CreateOperator(flatBufferBuilder,
73                                0,
74                                flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
75                                flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()));
76                 modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Floor Operator Model");
77                 operatorCode = CreateOperatorCode(flatBufferBuilder, tflite::BuiltinOperator_FLOOR);
78             break;
79     }
80     const std::vector<int32_t> subgraphInputs({0});
81     const std::vector<int32_t> subgraphOutputs({1});
82     flatbuffers::Offset<SubGraph> subgraph =
83         CreateSubGraph(flatBufferBuilder,
84                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
85                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
86                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
87                        flatBufferBuilder.CreateVector(&roundOperator, 1));
88 
89     flatbuffers::Offset<Model> flatbufferModel =
90         CreateModel(flatBufferBuilder,
91                     TFLITE_SCHEMA_VERSION,
92                     flatBufferBuilder.CreateVector(&operatorCode, 1),
93                     flatBufferBuilder.CreateVector(&subgraph, 1),
94                     modelDescription,
95                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
96 
97     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
98     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
99                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
100 }
101 
102 template<typename T>
RoundTest(tflite::BuiltinOperator roundOperatorCode,tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & shape,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)103 void RoundTest(tflite::BuiltinOperator roundOperatorCode,
104                tflite::TensorType tensorType,
105                std::vector<armnn::BackendId>& backends,
106                std::vector<int32_t>& shape,
107                std::vector<T>& inputValues,
108                std::vector<T>& expectedOutputValues,
109                float quantScale = 1.0f,
110                int quantOffset = 0)
111 {
112     using namespace delegateTestInterpreter;
113     std::vector<char> modelBuffer = CreateRoundTfLiteModel(roundOperatorCode,
114                                                            tensorType,
115                                                            shape,
116                                                            quantScale,
117                                                            quantOffset);
118 
119     // Setup interpreter with just TFLite Runtime.
120     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
121     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
122     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
123     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
124     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
125     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
126 
127     // Setup interpreter with Arm NN Delegate applied.
128     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
129     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
130     CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
131     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
132     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
133     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
134 
135     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
136     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, shape);
137 
138     tfLiteInterpreter.Cleanup();
139     armnnInterpreter.Cleanup();
140 }
141 
142 } // anonymous namespace
143